
OpenMP Offload Programming

Dr.-Ing. Michael Klemm Principal Member of Technical Staff

HPC Center of Excellence

2 | Copyright OpenMP ARB, used with permission

[Public]

Agenda

▪ Avoiding Data Transfers

▪ Asynchronous Offloading

▪ Hybrid Programming with OpenMP and HIP

▪ Integrating Asynchronous Programming Models

3 | Copyright OpenMP ARB, used with permission

[Public]

Running Example for this Presentation: saxpy

void saxpy() {
float a, x[SZ], y[SZ];
// left out initialization
double t = 0.0;
double tb, te;
tb = omp_get_wtime();
#pragma omp parallel for firstprivate(a)
for (int i = 0; i < SZ; i++) {

y[i] = a * x[i] + y[i];
}
te = omp_get_wtime();
t = te - tb;
printf("Time of kernel: %lf\n", t);

}

Timing code (not needed, just to

have a bit more code to show ☺)

Timing code (not needed, just to

have a bit more code to show ☺)

This is the code we want to execute on

a target device (i.e., GPU)

Don’t do this at home!

Use a BLAS library for this!

Avoiding Data Transfers

5 | Copyright OpenMP ARB, used with permission

[Public]

Optimizing Data Transfers is Key to Performance

▪ Connections between host and accelerator are typically lower-bandwidth, higher-latency interconnects

▪ Bandwidth host memory: hundreds of GB/sec

▪ Bandwidth accelerator memory: TB/sec

▪ PCIe Gen 4 bandwidth (16x): tens of GB/sec

▪ Unnecessary data transfers must be avoided, by

▪ only transferring what is actually needed for the computation, and

▪ making the lifetime of the data on the target device as long as possible.

Accelerators

Host

6 | Copyright OpenMP ARB, used with permission

[Public]

Optimize Data Transfers

▪ Reduce the amount of time spent transferring data

▪ Use map clauses to enforce direction of data transfer.

▪ Use target data, target enter data, target exit data constructs to keep data environment on

the target device.

void example() {
float tmp[N], data_in[N], float data_out[N];
#pragma omp target data map(alloc:tmp[:N]) \

map(to:a[:N],b[:N]) \
map(tofrom:c[:N])

{
zeros(tmp, N);
compute_kernel_1(tmp, a, N); // uses target
saxpy(2.0f, tmp, b, N);
compute_kernel_2(tmp, b, N); // uses target
saxpy(2.0f, c, tmp, N);

} }

void zeros(float* a, int n) {
#pragma omp target teams distribute parallel for
for (int i = 0; i < n; i++)

a[i] = 0.0f;
}

void saxpy(float a, float* y, float* x, int n) {
#pragma omp target teams distribute parallel for
for (int i = 0; i < n; i++)

y[i] = a * x[i] + y[i];
}

Create data environment.

No map clauses! Presence checks

will find data via the pointer.

7 | Copyright OpenMP ARB, used with permission

[Public]

target data Construct Syntax

▪ Create scoped data environment and transfer data from the host to the device and
back

▪ Syntax (C/C++)
#pragma omp target data [clause[[,] clause],…]
structured-block

▪ Syntax (Fortran)
!$omp target data [clause[[,] clause],…]
structured-block
!$omp end target data

▪ Clauses
device(scalar-integer-expression)
map([{alloc | to | from | tofrom | release | delete}:] list)
if(scalar-expr)

8 | Copyright OpenMP ARB, used with permission

[Public]

target update Construct Syntax

▪ Issue data transfers to or from existing data device environment

▪ Syntax (C/C++)
#pragma omp target update [clause[[,] clause],…]

▪ Syntax (Fortran)
!$omp target update [clause[[,] clause],…]

▪ Clauses
device(scalar-integer-expression)
to(list)
from(list)
if(scalar-expr)

9 | Copyright OpenMP ARB, used with permission

[Public]

Example: target data and target update

#pragma omp target data device(0) map(alloc:tmp[:N]) map(to:input[:N)) map(from:res)

{

#pragma omp target device(0)

#pragma omp teams distribute parallel for simd

for (i=0; i<N; i++)

tmp[i] = some_computation(input[i], i);

update_input_array_on_the_host(input);

#pragma omp target update device(0) to(input[:N])

#pragma omp target device(0)

#pragma omp teams parallel for simd reduction(+:res)

for (i=0; i<N; i++)

res += final_computation(input[i], tmp[i], i)

}

h
o
s
t

ta
rg
e
t

h
o
s
t

ta
rg
e
t

h
o
s
t

Avoiding Data Transfers

11 | Copyright OpenMP ARB, used with permission

[Public]

Asynchronous Offloads

▪ OpenMP target constructs are synchronous by default.

▪ The encountering host thread awaits the end of the target region before continuing.

▪ The nowait clause makes the target constructs asynchronous

(in OpenMP lingo: they become an OpenMP task).

#pragma omp task
init_data(a);

#pragma omp target map(to:a[:N]) map(from:x[:N])
compute_1(a, x, N);

#pragma omp target map(to:b[:N]) map(from:y[:N])
compute_2(b, y, N);

#pragma omp target map(to:x[:N],y[:N]) map(from:z[:N])
compute_3(x, y, z, N);

#pragma omp taskwait

depend(in:a) depend(out:x)

depend(in:b) depend(out:y)

depend(in:x) depend(in:y)

depend(out:a)

nowait

nowait

nowait

Hybrid Programming with OpenMP + HIP

13 | Copyright OpenMP ARB, used with permission

[Public]

Hybrid Programming

▪ Hybrid programming here stands for the interaction of OpenMP with a lower-level programming model,

e.g.,

▪ OpenCL

▪ HIP

▪ OpenMP supports these interactions

▪ Calling low-level HIP kernels from OpenMP application code

▪ Calling OpenMP kernels from low-level application code

▪ Interaction with the underlying asynchronous stream mechanism

15 | Copyright OpenMP ARB, used with permission

[Public]

HIP Buffer Management

void example() {

HIPCALL(hipSetDevice(0));

compute_1(n, x);

compute_2(n, y);

HIPCALL(hipMalloc(&x_dev, sizeof(*x_dev) * count));

HIPCALL(hipMalloc(&y_dev, sizeof(*y_dev) * count));

HIPCALL(hipMemcpy(x_dev, x, sizeof(*x) * count, hipMemcpyHostToDevice));

HIPCALL(hipMemcpy(y_dev, y, sizeof(*y) * count, hipMemcpyHostToDevice));

saxpy_omp(count, a, x_dev, y_dev);

HIPCALL(hipMemcpy(y, y_dev, sizeof(*y) * count, hipMemcpyDeviceToHost));

HIPCALL(hipFree(x_dev));

HIPCALL(hipFree(y_dev));

compute_3(n, y);

}

Allocate buffers to hold

data on the target GPU.

Copy the data from the host

memory to the GPU buffer space.

Copy result data back from GPU.

Deallocate the buffers on the

target GPU.

16 | Copyright OpenMP ARB, used with permission

[Public]

HIP Buffer Management

void example() {

HIPCALL(hipSetDevice(0));

compute_1(n, x);

compute_2(n, y);

HIPCALL(hipMalloc(&x_dev, sizeof(*x_dev) * count));

HIPCALL(hipMalloc(&y_dev, sizeof(*y_dev) * count));

HIPCALL(hipMemcpy(x_dev, x, sizeof(*x) * count, hipMemcpyHostToDevice));

HIPCALL(hipMemcpy(y_dev, y, sizeof(*y) * count, hipMemcpyHostToDevice));

saxpy_omp(count, a, x_dev, y_dev);

HIPCALL(hipMemcpy(y, y_dev, sizeof(*y) * count, hipMemcpyDeviceToHost));

HIPCALL(hipFree(x_dev));

HIPCALL(hipFree(y_dev));

compute_3(n, y);

}

void saxpy_omp(size_t n, float a,
float * x, float * y) {

#pragma omp target teams distribute \
parallel for simd

for (size_t i = 0; i < n; ++i) {
y[i] = a * x[i] + y[i];

}
}

OpenMP region needs to access

the existing device pointers, no

pointer translation please!

OpenMP region needs to access

the existing device pointers, no

pointer translation please!

17 | Copyright OpenMP ARB, used with permission

[Public]

HIP “Pointer Translation”

▪ In the HIP model, “pointer translation” is handled by the programmer!

▪ Explicitly associate host pointer (“x”) with device pointer (“x_dev”).

▪ Association is done via the hipMemcpy() API that requires both as arguments.

Host memory Device mem.

x:

x:

0xabcd

0xef12

0xabcd

0xef12

x

Programmer’s Brain:

x_dev

hipMemcpy(x_dev, x, …)

hipMalloc(&x_dev, …)

18 | Copyright OpenMP ARB, used with permission

[Public]

Disabling OpenMP Presence Check (and Pointer Translation)

▪ The OpenMP target construct has the is_device_ptr() clause that

▪ instructs the OpenMP implementation to not do a presence check for the listed entities, and

▪ avoids pointer translation and passes the given pointer value into the kernel w/o further interpretation.

void saxpy_omp(size_t n, float a, float * x, float * y) {

#pragma omp target teams distribute parallel for \

schedule(nonmonotonic:static,1) \

is_device_ptr(x, y)

for (size_t i = 0; i < n; ++i) {

y[i] = a * x[i] + y[i];

}

}

Calling HIP from OpenMP Offload Regions

19

20 | Copyright OpenMP ARB, used with permission

[Public]

void example() {

float a = 2.0;

float * x;

float * y;

#pragma omp target data map(to:x[0:count]) map(tofrom:y[0:count])

{

compute_1(n, x);

compute_2(n, y);

#pragma omp target update to(x[0:count]) to(y[0:count])

saxpy(n, a, x, y)

compute_3(n, y);

}

}

Example: Calling saxpy

void saxpy(size_t n, float a,
float * x, float * y) {

#pragma omp target teams distribute \
parallel for …

for (size_t i = 0; i < n; ++i) {
y[i] = a * x[i] + y[i];

}
}

Let’s assume that we want to

implement the saxpy() function

in a low-level language.

Allocate device memory for x
and y, and specify directions

of data transfers

21 | Copyright OpenMP ARB, used with permission

[Public]

HIP Kernel for saxpy()

▪ Assume a HIP version of the SAXPY kernel:

▪ We need a way to translate the host pointer that was mapped by OpenMP directives and retrieve the

associated device pointer.

__global__ void saxpy_kernel(size_t n, float a, float * x, float * y) {

size_t i = threadIdx.x + blockIdx.x * blockDim.x;

y[i] = a * x[i] + y[i];

}

void saxpy_hip(size_t n, float a, float * x, float * y) {

assert(n % 256 == 0);

saxpy_kernel<<<n/256,256,0,NULL>>>(n, a, x, y);

}

These are device pointers!

22 | Copyright OpenMP ARB, used with permission

[Public]

Pointer Translation /1

▪ When creating the device data environment, OpenMP creates a mapping
between
▪ the (virtual) memory pointer on the host and

▪ the (virtual) memory pointer on the target device.

▪ This mapping is established through the data-mapping directives and their
clauses.

Host memory Device mem.

x:

x:

0xabcd

0xef12

#pragma omp target data \
map(to:x[0:n])

...
0xabcd

0xef12

x (host pointer)

Mapping Table:

x (device pointer)

This is what we need for
the kernel invocation.

23 | Copyright OpenMP ARB, used with permission

[Public]

Pointer Translation /2

▪ The target data construct defines the use_device_ptr clause to perform pointer translation.

▪ The OpenMP implementation searches for the host pointer in its internal mapping tables.

▪ The associated device pointer is then returned.

▪ Note: the pointer variable is “shadowed” within the target data construct for the translation.

type * x = 0xabcd;

#pragma omp target data use_device_ptr(x)

{

example_func(x); // x == 0xef12

}

24 | Copyright OpenMP ARB, used with permission

[Public]

Putting it Together…

void example() {

float a = 2.0;

float * x = ...; // assume: x = 0xabcd

float * y = ...;

// allocate the device memory

#pragma omp target data map(to:x[0:count]) map(tofrom:y[0:count])

{

compute_1(n, x); // mapping table: x:[0xabcd,0xef12], x = 0xabcd

compute_2(n, y);

#pragma omp target update to(x[0:count]) to(y[0:count]) // update x and y on the target

#pragma omp target data use_device_ptr(x,y)

{

saxpy_hip(n, a, x, y) // mapping table: x:[0xabcd,0xef12], x = 0xef12

}

}

compute_3(n, y);

}

25 | Copyright OpenMP ARB, used with permission

[Public]

AOMP Implementation Status

▪ Call HIP kernel with OpenMP-managed buffers (use_device_ptr)

▪ Call OpenMP kernels with HIP-managed buffers (is_device_ptr)

▪ HIP and OpenMP kernels co-existence in same translation unit

Integrating Asynchronous Programming Models

27 | Copyright OpenMP ARB, used with permission

[Public]

Asynchronous API Interaction

▪ Some APIs are based on asynchronous operations

▪ MPI asynchronous send and receive

▪ Asynchronous I/O

▪ HIP stream-based offloading

▪ In general: any other API/model that executes asynchronously with OpenMP (tasks)

▪ Example: HIP asynchronous memory transfers

▪ Programmers need a mechanism to marry asynchronous APIs with the parallel task
model of OpenMP

▪ How to synchronize completions events with task execution?

do_something();
hipMemcpyAsync(dst, src, nbytes, hipMemcpyDeviceToHost, stream);
do_something_else();
hipStreamSynchronize(stream);
do_other_important_stuff(dst);

28 | Copyright OpenMP ARB, used with permission

[Public]

Try 1: Use just OpenMP Tasks

▪ This solution does not work!

void hip_example() {

#pragma omp task // task A

{

do_something();
hipMemcpyAsync(dst, src, nbytes, hipMemcpyDeviceToHost, stream);

}
#pragma omp task // task B
{

do_something_else();
}
#pragma omp task // task C
{

hipStreamSynchronize(stream);
do_other_important_stuff(dst);

}
}

Race condition between the tasks A & C,

task C may start execution before

task A enqueues memory transfer.

29 | Copyright OpenMP ARB, used with permission

[Public]

Try 2: Use just OpenMP Tasks Dependences

▪ This solution may work, but

▪ Takes a thread away from execution while the system is handling the data transfer and may be

problematic if the called interface is not thread-safe!

void hip_example() {

#pragma omp task depend(out:stream) // task A

{

do_something();
hipMemcpyAsync(dst, src, nbytes, hipMemcpyDeviceToHost, stream);

}
#pragma omp task // task B
{

do_something_else();
}
#pragma omp task depend(in:stream) // task C
{

hipStreamSynchronize(stream);
do_other_important_stuff(dst);

}
}

Synchronize execution of tasks through

dependence. May work, but task C will be

blocked waiting for the data transfer to finish

30 | Copyright OpenMP ARB, used with permission

[Public]

OpenMP Detachable Tasks

▪ OpenMP 5.0 introduces the concept of a detachable task

▪ Task can detach from executing thread without being “completed”

▪ Regular task synchronization mechanisms can be applied to await completion of a detached task

▪ Runtime API to complete a task

▪ Detached task events: omp_event_handle_t datatype

▪ Detached task clause: detach(event)

▪ Runtime API: void omp_fulfill_event(omp_event_handle_t event)

30

31 | Copyright OpenMP ARB, used with permission

[Public]

Detaching Tasks

omp_event_handle_t event;

void detach_example() {

#pragma omp task detach(event)

{

important_code();

}

#pragma omp taskwait

}

omp_fulfill_event(event);

Some other thread/task:

1. Task detaches

2. taskwait construct cannot

complete

3. Signal event for completion

4. Task completes and taskwait
can continue

31

32 | Copyright OpenMP ARB, used with permission

[Public]

Putting It All Together

void callback(hipStream_t stream, hipError_t status, void *cb_dat) {
omp_fulfill_event(* (omp_event_handle_t *) cb_data);

}

void hip_example() {

omp_event_handle_t hip_event;

#pragma omp task detach(hip_event) // task A

{

do_something();
hipMemcpyAsync(dst, src, nbytes, hipMemcpyDeviceToHost, stream);
hipStreamAddCallback(stream, callback, &hip_event, 0);

}
#pragma omp task // task B

do_something_else();

#pragma omp taskwait
#pragma omp task // task C

{
do_other_important_stuff(dst);

} }

1. Task A detaches

2. taskwait does not continue

3. When memory transfer completes, callback is

invoked to signal the event for task completion

4. taskwait continues, task C executes

33 | Copyright OpenMP ARB, used with permission

[Public]

Removing the taskwait Construct

void callback(hipStream_t stream, hipError_t status, void *cb_dat) {
omp_fulfill_event(* (omp_event_handle_t *) cb_data);

}

void hip_example() {

omp_event_handle_t hip_event;

#pragma omp task depend(out:dst) detach(hip_event) // task A

{

do_something();
hipMemcpyAsync(dst, src, nbytes, hipMemcpyDeviceToHost, stream);
hipStreamAddCallback(stream, callback, &hip_event, 0);

}
#pragma omp task // task B

do_something_else();

#pragma omp task depend(in:dst) // task C
{

do_other_important_stuff(dst);
} }

1. Task A detaches and task C will not execute

because of its unfulfilled dependency on A

2. When memory transfer completes, callback is

invoked to signal the event for task completion

3. Task A completes and C’s dependency is fulfilled

34 | Copyright OpenMP ARB, used with permission

[Public]

Summary

▪ OpenMP API is ready to use AMD discrete GPUs for offloading compute

▪ Mature offload model w/ support for asynchronous offload/transfer

▪ Tightly integrates with OpenMP multi-threading on the host

▪ More, advanced features (not covered here)

▪ Memory management API

▪ Interoperability with native streaming interfaces

▪ Unified shared memory support

35 | Copyright OpenMP ARB, used with permission

[Public]

Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions,
and typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons,
including but not limited to product and roadmap changes, component and motherboard version changes, new model and/or
product releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the
like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no
obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and
to make changes from time to time to the content hereof without obligation of AMD to notify any person of such revisions or
changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS
HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS
INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL,
OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS
EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

© 2022 Advanced Micro Devices, Inc and OpenMP® Architecture Review Board. All rights reserved.

AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in
this publication are for identification purposes only and may be trademarks of their respective companies.

