
AFFINITY – Placement, 

Order and Binding

Gina Sitaraman, Bob Robey



2 |

Authors and Contributors

• Tom Papatheodore, ORNL

• Marcus Wagner, HPE

• Alfio Lazzaro, HPE

• Georgios Markomanolis, AMD

• Bill Brantley, AMD

• Noel Chalmers, AMD

• Kjetil Haugen, AMD



3 |

Agenda

• A look at Modern Heterogenous Architectures

• What is Affinity? Why is it important?

• Understanding Node Topology

• Placement Considerations on LUMI nodes

• Case Studies: Affinity Settings for Different Types of Applications



4 |

Modern Hardware Architectures

• Increasingly complex with multiple resources

• sockets

• cores

• GPUs

• memory controllers

• NICs (Network Interface Cards)

• Peripherals such as GPUs and memory controllers are local to a CPU socket

• Operating System (OS) controls process scheduling but is not designed for parallel and high-

performance computing jobs

• Processes may be preempted

• When rescheduled on a new core, cached data has to be moved to the caches close to the new core

• OS is unaware of parallel processes or their threads



5 |

                                                      

                           

LUMI Node Architecture

Courtesy: https://docs.olcf.ornl.gov/systems/frontier_user_guide.html#frontier-compute-nodes

• 64 cores on a single 

socket CPU

• 4 MI250X GPUs, each 

with 2 GCDs
• Each GCD is presented 

as a GPU device to 
rocm-smi

• 512 GB of DDR4 RAM

• Infinity Fabric™ links 

between GCDs and 

between GCDs and 

CPU cores

• 4 NICs attached to odd 

numbered GCDs

https://docs.olcf.ornl.gov/systems/frontier_user_guide.html#frontier-compute-nodes


6 |

NUMA (Non-Uniform Memory Access)

• Multi-processor systems where 

resources are divided into 

multiple nodes or domains

• A NUMA domain is a grouping of 

cores, memory and other 

peripherals

• Each CPU core is attached to its 

own local memory while being 

able to access memory attached 

to other processors

• Local memory accesses are fast 

while remote memory accesses 

have a higher latency, especially 

those that cross a socket-to-

socket interconnect

• With local accesses, memory 

contention from CPUs is reduced 

resulting in increased bandwidth

Two hardware threads running 

on a single physical CPU core

8 physical cores share an L3 cache



7 |

NUMA configuration (NPS)

• LUMI nodes may be configured at boot time with 1 or 4 NUMA domains Per Socket (NPS)

• Site administers this setting, users cannot change it

• NPS1:

• 1 NUMA domain per socket

• Memory accesses interleaved across all 8 memory channels

• More uniform bandwidth but slightly higher latency than NPS4 case

• More tolerant of hot spots in memory channels

• For example, if you are running only 1 MPI rank, you may benefit from a higher CPU memory bandwidth

• NPS4:

• 4 NUMA domains per socket

• Memory accesses in a domain interleaved across 2 memory channels

• Potential for higher memory bandwidth due to reduced contention and lower latency

• May be vulnerable to hot spots

• With NPS4, affinity is really important – need to spread processes across the NUMA domains

• LUMI nodes are currently configured with NPS4



8 |

What is Affinity?

• Affinity is a way for processes to indicate preference for hardware components (memory, cores, NICs, caches)

• Processes can be pinned to resources typically belonging to the same NUMA domain

• Why is Affinity important?

• Improved cache reuse

• Improved NUMA memory locality

• Reduces contention for resources

• Lowers latency

• Reduces variability from run to run

• Where is Affinity needed?

• Extremely important for processes running on CPU cores and the resulting placement of their data in CPU memory

• When running on GPUs, affinity is less critical unless there is a bottleneck with the location of data in host memory
• Memory copies between host and device, page migration and direct memory access may be affected if data in host memory is not in same NUMA domain

• Within a GPU, affinity is far less important

• For parallel processes, Affinity is more than binding:

• Placement

• Order



9 |

Process Placement

• Placement indicates where a process is placed

• Motivation: maximize available resources for a particular application/workload

• We want to use all resources (cores, caches, GPUs, NICs, memory controllers, etc...)

• Processes may have multiple threads (OpenMP®) and require separate cores for each thread

• We may want to use only hardware/physical cores and not virtual cores

• We may not have enough memory per process, we may want to skip some cores

• We may want to reserve some cores for system operations to reduce jitter for timing purposes

• MPI prefers "gang scheduling" whereas the OS doesn't know the processes are connected

• When a process waits to be scheduled by the OS, it may cause all other processes to wait longer at a synchronization barrier

• Until the last decade, placement was not that important

• Only 2-8 cores on a CPU, uniform architectures, no GPUs

• Distributed or Shared memory systems

• The OS controlled placement of processes, and that was okay

• On hardware today, controlling placement may help

• Avoid oversubscription of compute resources and unnecessary contention for common resources

• Avoid non-uniform use of compute resources where some processors are used, and some are idle

• Avoid sub-optimal communication performance when processes are placed too widely apart

• Prevent migration of processes

• Affinity controls in the OS and MPI have greatly improved and changed



10 |

Order of Processes

• Order defines how processes of a parallel job are distributed across the sockets of the node

• Why is order important?

• Processes communicating with each other are close together for lower latency and higher bandwidth

• Load balancing heavy workloads by scattering across compute resources

• Round-robin or Cyclic:

• Processes are distributed in a round-robin fashion across sockets.

• For example, if there are 8 MPI ranks and 2 sockets, rank 0 is scheduled on socket 0, rank 1 on socket 1, rank 2 on 

socket 0, rank 3 on socket 1 and so on.

• Maximizes available cache for each process, and evenly utilizes the resources of a node

• Packed or Close:

• Consecutive MPI ranks are assigned to processors in the same socket until it is filled before scheduling a rank on a 

different socket

• For example, if there are 8 MPI ranks and 2 sockets each with a 4 core CPU, ranks 0-3 are scheduled on socket 0, 

and ranks 4-7 are scheduled on socket 1

• Improved performance due to data locality if ranks that communicate the most are accessing data in the same 

memory node and sharing cache



Understanding Node Topology



12 |

Understanding Node Topology

• Even on a LUMI type system, the configuration may be different

• Number of NUMA domains per socket may change at boot time

• Some physical cores may be reserved

• Virtual cores may be enabled or disabled

• Some tools can help understand your system better

• lstopo: from hwloc package to visualize node architecture

• lscpu: gathers and displays CPU architecture information

• numactl –H: shows available NUMA nodes in the system and CPU core affinity for each node

• rocm-smi --showtopo: Displays the NUMA node and the CPU affinity associated with every GPU device.



13 |

• lstopo -p out.svg

• 1 socket = 1 package

• 4 NUMA nodes in 

socket

If you can't read this, it 

proves how complex the 

architecture is

LUMI Node 

Topology

                     

           

      

             

              

              

              

        

      

       

              

              

              

        

      

       

        

              

              

              

        

      

       

               

         

             

              

              

              

        

      

       

              

              

              

        

      

       

        

               

               

               

         

       

       

  

  

             

        

             

         

                    

                 

        

      

             

               

               

               

         

       

       

               

               

               

         

       

       

        

               

               

               

         

       

       

               

         

             

               

               

               

         

       

       

               

               

               

         

       

       

        

               

               

               

         

       

       

  

  

             

        

             

         

                    

      

             

               

               

               

         

       

       

               

               

               

         

       

       

        

               

               

               

         

       

        

               

         

             

               

               

               

         

       

        

               

               

               

         

       

        

        

               

               

               

         

       

        

  

  

             

        

             

         

                    

      

             

               

               

               

         

       

        

               

               

               

         

       

        

        

               

               

               

         

       

        

               

         

             

               

               

               

         

       

        

               

               

               

         

       

        

        

               

               

               

         

       

        

  

  

             

        

             

         

                    

               

                 

                              



14 |

Understanding Node Topology – lstopo NUMA domain #1

• 8 physical cores + 8 virtual 

cores share an L3 cache

• Two sets of 8 physical cores 

in a NUMA domain​

• Two GCDs in a NUMA 

domain​

• One high-speed NIC per 

NUMA domain



15 |

Understanding CPU Architecture

lscpu

Architecture: x86_64
CPU(s): 128
On-line CPU(s) list: 0-127
Thread(s) per core: 2
Core(s) per socket: 64
Socket(s): 1
NUMA node(s): 4
Model name: AMD EPYC 7A53 64-Core Processor
Frequency boost: enabled
CPU MHz: 3488.045
L1d cache: 2 MiB
L1i cache: 2 MiB
L2 cache: 32 MiB
L3 cache: 256 MiB
NUMA node0 CPU(s): 0-15,64-79
NUMA node1 CPU(s): 16-31,80-95
NUMA node2 CPU(s): 32-47,96-111
NUMA node3 CPU(s): 48-63,112-127

Hyperthreading 

is enabled

Hardware thread 

affinity to NUMA 

domains

OS sees 128 cores or 

hardware threads (HWT)



16 |

Understanding NUMA Configuration

available: 4 nodes (0-3)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
node 0 size: 128411 MB
node 0 free: 119892 MB
node 1 cpus: 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
node 1 size: 129015 MB
node 1 free: 124248 MB
node 2 cpus: 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 96 97 98 99 100 101 102 103 104 105 106 107 108 
109 110 111
node 2 size: 129015 MB
node 2 free: 124702 MB
node 3 cpus: 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 112 113 114 115 116 117 118 119 120 121 122 123 
124 125 126 127
node 3 size: 128998 MB
node 3 free: 124737 MB
node distances:
node 0 1 2 3

0: 10 12 12 12
1: 12 10 12 12
2: 12 12 10 12
3: 12 12 12 10

numactl -H

Here, hardware threads 0-15 and 64-79 belong to NUMA domain 0

More obvious on multiple socket nodes



17 |

Understanding NUMA Configuration for GPUs 

rocm-smi --showtopo

================================== Numa Nodes ==================================
GPU[0] : (Topology) Numa Node: 3
GPU[0] : (Topology) Numa Affinity: 3
GPU[1] : (Topology) Numa Node: 3
GPU[1] : (Topology) Numa Affinity: 3
GPU[2] : (Topology) Numa Node: 1
GPU[2] : (Topology) Numa Affinity: 1
GPU[3] : (Topology) Numa Node: 1
GPU[3] : (Topology) Numa Affinity: 1
GPU[4] : (Topology) Numa Node: 0
GPU[4] : (Topology) Numa Affinity: 0
GPU[5] : (Topology) Numa Node: 0
GPU[5] : (Topology) Numa Affinity: 0
GPU[6] : (Topology) Numa Node: 2
GPU[6] : (Topology) Numa Affinity: 2
GPU[7] : (Topology) Numa Node: 2
GPU[7] : (Topology) Numa Affinity: 2
============================= End of ROCm SMI Log ==============================

GCDs 4 and 5 are located 

in NUMA domain 0



Placement Considerations on LUMI 
nodes



19 |

                                                      

                           

Placement Considerations on LUMI nodes

• Each GCD is connected to one of the NUMA domains via a high-speed Infinity Fabric™ link

• Memory bandwidth is highest between GCDs of the same MI250X GPU

• NICs are directly connected to odd numbered GCDs

• Multiple processes can run on the same GCD

Choose rank order and placement 

carefully to optimize communication



20 |

Placement Considerations on LUMI nodes

• Each GCD is connected to a set of 8 CPU cores via a high-speed Infinity Fabric™ link

• Pinning a process and its threads on cores closest to the GCD it uses improves the efficiency of H2D and D2H 

transfers

Cores 0-7 are closest 

to GCD 4

Cores 48-55 are 

closest to GCD 0



21 |

Placement Considerations on LUMI nodes

• Memory bandwidth is highest between GCDs of the same MI250X GPU

• 4 Infinity Fabric™ links connect the two GCDs for a combined 200 GB/s peak bandwidth in each direction

• Place pairs of ranks that communicate the most on GCDs of the same MI250X GPU

                                                               
           

                     
           

                     
           

                         
             

                     
           

                    
           

                    
           

                                                               
           

                                                                           
                                                                                        

             

• Peak Bandwidth in each 

direction of Infinity 

Fabric™ link shown

• Even though bandwidths 

are different between 

GCDs, communication 

using device buffers will 

be at least as fast as 

communication using host 

buffers



22 |

Placement Considerations on LUMI nodes

• On a LUMI node, there are 4 NICs

• NICs are directly connected to odd 

numbered GCDs

• Inter-node MPI Communication using 

device buffers is expected to be faster 

(GPU Aware MPI)

• Cray provides environment variables 

for mapping processes to the NIC in 

the same NUMA domain

                                                                                    

                                                                                    

                

                                      

                                      



23 |

Placement Considerations on LUMI nodes

• Multiple processes on the same GCD

• AMD GPUs natively support running multiple MPI ranks on the same device where all processes share the available 

resources and improve utilization

• Depending on the application's communication pattern, pack ranks that communicate most on the same device

Here, 4 MPI ranks are running on GCD 4, and are pinned to cores 0, 2, 4 and 6 respectively



24 |

Choose Rank Order Carefully to Optimize Communication

• Intra-node communication is faster than inter-node communication

• Application expert may know the best placement

• For example, stencil near neighbors should be placed next to each other

• HPE's CrayPat profiler may be used to detect communication pattern between MPI ranks and generate a 

rank order file that can then be supplied to Cray MPICH

• HPE's grid_order utility may also be used to determine optimal rank order, check with HPE for more 

details

• Slurm binding options



25 |

How do I verify if I got the right Affinity?

• Use top or htop to visualize where processes and their threads are running

• If using OpenMPI, mpirun --report-bindings can be used to show the binding of each process as a 

mask

• For MPI + OpenMP® programs, you can use the following simple "Hello, World" program to check 

mappings: https://code.ornl.gov/olcf/hello_mpi_omp

• For MPI + OpenMP® + HIP programs, a simple "Hello, World" program with HIP can be used to verify 

mappings: https://code.ornl.gov/olcf/hello_jobstep

• HPE's xthi script, usually run prior to the application in the same Slurm batch 

job: https://github.com/olcf/XC30-Training/blob/master/affinity/Xthi.c

• Example code from Essentials of Parallel Computing, Chapter 14 can be used to verify mappings for 

OpenMP®, MPI and MPI+OpenMP cases: https://github.com/essentialsofparallelcomputing/Chapter14

https://code.ornl.gov/olcf/hello_mpi_omp
https://code.ornl.gov/olcf/hello_jobstep
https://github.com/olcf/XC30-Training/blob/master/affinity/Xthi.c
https://github.com/essentialsofparallelcomputing/Chapter14


26 |

Case Studies for Setting Affinity

• Serial Applications with OpenMP®

• Using numactl

• Using OpenMP® settings, OMP_PLACES, OMP_PROC_BIND

• Using GNU OpenMP® environment variables, GOMP_CPU_AFFINITY

• MPI Applications + OpenMP® + HIP

• Using Slurm binding options
• 1 MPI rank per GCD

• 1 MPI rank per GCD, 8 OpenMP threads per rank

• 2 MPI ranks per GCD



Case Studies: Serial Application + 
OpenMP®



28 |

Controlling Affinity for Serial Applications – numactl

• Use numactl from libnuma-dev Linux® package to control NUMA policy for processes and shared 

memory

numactl –C 2,3 –m 0 ./exe

^-- Run exe on CPU cores 2 or 3 and allocate mem on NUMA node 0

numactl –C 1-7 -i 0,1 ./exe

^-- Run exe on cores 1-7 and interleave memory allocations on NUMA nodes 0 and 1

• More detailed documentation can be found in the numactl manpage

• To verify bindings, run htop or top



29 |

Controlling Affinity for Serial Applications – OpenMP® settings

• OpenMP® 5.2 standard specifies environment variables to control affinity settings

• OMP_PLACES indicates hardware resources

• Can be an abstract name: cores, threads, sockets, l1_caches or numa_domains (definitions are implementation specific)

• Can be an explicit list of places described by non-negative numbers

export OMP_PLACES=threads # each place is a single hardware thread

export OMP_PLACES={0,1},{2,3},{4,5},{6,7} # Run process and its threads on given cores

export OMP_PLACES={0:$OMP_NUM_THREADS:2}

• OMP_PROC_BIND indicates how OpenMP® threads are bound to resources

• Can be a comma separated list of primary, close or spread, indicating policies for nested levels of parallelism

• Can be false to disable thread affinity

export OMP_PROC_BIND=close # Bind threads close to primary thread on given places

export OMP_PROC_BIND=spread # Spread threads evenly on given places

export OMP_PROC_BIND=primary # Bind threads on the same place as the primary thread

• OMP_DISPLAY_AFFINITY=TRUE helps verify bindings

• OMP_AFFINITY_FORMAT helps define the format when displaying OpenMP affinity information

export OMP_AFFINITY_FORMAT="Thread Affinity: %0.3L %.8n %.15{thread_affinity} %.12H"

• More details can be found in the OpenMP® Specification: https://www.openmp.org/spec-html/5.0/openmpch6.htm



30 |

Controlling Affinity for Serial Applications – GOMP_CPU_AFFINITY

• If using GNU OpenMP® implementation, we can set up CPU core affinity for a process and its threads 

using the environment variable, GOMP_CPU_AFFINITY

export GOMP_CPU_AFFINITY=0-64:4

export OMP_NUM_THREADS=16

./exe

In the above example, we expect the 16 threads of the process to be bound to cores 0, 4, 8, 12, 16, ... 60

• Same setting can be used to define affinity of threads for each process in an MPI job as well



Case Studies: MPI + OpenMP® + HIP



32 |

Controlling Affinity of MPI Applications

• OpenMPI

• mpirun offers several options for process placement, order and binding

• See manpage for mpirun for extensive documentation of all affinity related options

• Slurm

• Slurm offers a rich set of options to control binding of tasks to hardware resources

• See manpages for srun or slurm.conf for documentation of all affinity related options

• MPICH does not have many affinity control options

• Use native process manager, mpiexec.hydra

• Slurm integration using compile time option "--with-pmi=slurm --with-pm=no"

• Be ready to read man pages as options may change



33 |

MPI with OpenMP® Example

/* -------------------------------------------------------------
MPI + OpenMP Hello, World program to help understand process
and thread mapping to physical CPU cores and hardware threads
------------------------------------------------------------- */
int main(int argc, char *argv[]){

MPI_Init(&argc, &argv);
int size;
MPI_Comm_size(MPI_COMM_WORLD, &size);
int rank;
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
char name[MPI_MAX_PROCESSOR_NAME];
int resultlength;
MPI_Get_processor_name(name, &resultlength);

int hwthread;
int thread_id = 0;
#pragma omp parallel default(shared) private(hwthread, thread_id)
{

thread_id = omp_get_thread_num();
hwthread = sched_getcpu();
printf("MPI %03d - OMP %03d - HWT %03d - Node %s\n", rank, thread_id, hwthread, name);

}
MPI_Finalize();
return 0;

}

See full code at: https://code.ornl.gov/olcf/hello_mpi_omp

https://code.ornl.gov/olcf/hello_mpi_omp


34 |

MPI + OpenMP + HIP Example

// Find how many GPUs HIP runtime says are available
int num_devices = 0;
hipGetDeviceCount(&num_devices);

// Loop over the GPUs available to each MPI rank
for(int i=0; i<num_devices; i++){

// Set GPU device
hipSetDevice(i);
// Get the PCIBusId for each GPU and use it to query for UUID
char busid[64];
hipDeviceGetPCIBusId(busid, 64, i);

}

<snip>

#pragma omp parallel default(shared) private(hwthread, thread_id)
{

#pragma omp critical
{

thread_id = omp_get_thread_num();
hwthread = sched_getcpu();
printf("MPI %03d - OMP %03d - HWT %03d - Node %s - RT_GPU_ID %s - GPU_ID %s - Bus_ID %s\n",

rank, thread_id, hwthread, name, rt_gpu_id_list.c_str(), gpu_id_list, busid_list.c_str());
}

}

See full code at: https://code.ornl.gov/olcf/hello_jobstep

RT_GPU_ID = HIP runtime GPU ID as obtained by hipGetDevice()
GPU ID = node level global GPU ID from ROCR_VISIBLE_DEVICES

https://code.ornl.gov/olcf/hello_jobstep


35 |

Setting GPU Device Visibility on LUMI nodes

• By default, processes see all GPU devices. So, device visibility needs to be restricted for each process.

• May be able to allocate only some GPUs using Slurm – this sets ROCR_VISIBLE_DEVICES or 

HIP_VISIBLE_DEVICES to the set of GPUs requested depending on the site's Slurm configuration

• HIP_VISIBLE_DEVICES restricts GPU devices visible to the HIP runtime

• ROCR_VISIBLE_DEVICES restricts GPU devices visible to ROCr runtime

• The HIP runtime depends on the ROCr runtime, so the HIP layer can only see the subset of devices selected by 

ROCR_VISIBLE_DEVICES



36 |

Mapping Processes to GCDs on LUMI

• A simple way of initializing ROCR_VISIBLE_DEVICES for a process is to use the SLURM_LOCALID
environment variable

• Example script from man mpi on LUMI:

$ cat select_gpu_device.sh

#!/bin/bash

export ROCR_VISIBLE_DEVICES=$SLURM_LOCALID

exec $*

• Running with this script gives us the wrong mapping and this is not optimal

$ OMP_NUM_THREADS=1 srun -n8 -N1 -c1 ./set_gpu_device.sh ./hello_jobstep

MPI 004 - OMP 000 - HWT 005 - Node nid005116 - RT_GPU_ID 0 - GPU_ID 4 - Bus_ID d1

MPI 006 - OMP 000 - HWT 007 - Node nid005116 - RT_GPU_ID 0 - GPU_ID 6 - Bus_ID d9

MPI 007 - OMP 000 - HWT 008 - Node nid005116 - RT_GPU_ID 0 - GPU_ID 7 - Bus_ID de

MPI 000 - OMP 000 - HWT 001 - Node nid005116 - RT_GPU_ID 0 - GPU_ID 0 - Bus_ID c1

MPI 001 - OMP 000 - HWT 002 - Node nid005116 - RT_GPU_ID 0 - GPU_ID 1 - Bus_ID c6

MPI 002 - OMP 000 - HWT 003 - Node nid005116 - RT_GPU_ID 0 - GPU_ID 2 - Bus_ID c9

MPI 003 - OMP 000 - HWT 004 - Node nid005116 - RT_GPU_ID 0 - GPU_ID 3 - Bus_ID ce

MPI 005 - OMP 000 - HWT 006 - Node nid005116 - RT_GPU_ID 0 - GPU_ID 5 - Bus_ID d6

Rank 0 got HWT 1 and GCD 0

Only hardware threads from NUMA 

domain 0 were selected



37 |

Mapping Processes to GCDs on LUMI - Naïve Mapping

• We need a different GCD to core mapping for optimal performance on LUMI, and we want to see a core 

picked from each set for each rank

GCD ID 0 1 2 3 4 5 6 7

CPU set 48-55 56-63 16-23 24-31 0-7 8-15 32-39 40-47



38 |

• The following script picks the GPU devices in specified order for MPI ranks 0-7 (Courtesy: Alfio Lazzaro, HPE)

$ cat set_gpu_device_lumi.sh

#!/bin/bash

GPUSID="4 5 2 3 6 7 0 1"

GPUSID=(${GPUSID})

if [ ${#GPUSID[@]} -gt 0 ]; then

export ROCR_VISIBLE_DEVICES=${GPUSID[$((SLURM_LOCALID / ($SLURM_NTASKS_PER_NODE / ${#GPUSID[@]})))]}

fi

exec $*

• Running this script does not give the correct HWT binding though

MPI 005 - OMP 000 - HWT 006 - Node nid005116 - RT_GPU_ID 0 - GPU_ID 7 - Bus_ID de
MPI 007 - OMP 000 - HWT 008 - Node nid005116 - RT_GPU_ID 0 - GPU_ID 1 - Bus_ID c6
MPI 000 - OMP 000 - HWT 001 - Node nid005116 - RT_GPU_ID 0 - GPU_ID 4 - Bus_ID d1
MPI 001 - OMP 000 - HWT 002 - Node nid005116 - RT_GPU_ID 0 - GPU_ID 5 - Bus_ID d6
MPI 002 - OMP 000 - HWT 003 - Node nid005116 - RT_GPU_ID 0 - GPU_ID 2 - Bus_ID c9
MPI 003 - OMP 000 - HWT 004 - Node nid005116 - RT_GPU_ID 0 - GPU_ID 3 - Bus_ID ce
MPI 004 - OMP 000 - HWT 005 - Node nid005116 - RT_GPU_ID 0 - GPU_ID 6 - Bus_ID d9
MPI 006 - OMP 000 - HWT 007 - Node nid005116 - RT_GPU_ID 0 - GPU_ID 0 - Bus_ID c1

Mapping Processes to GCDs on LUMI - Optimal mapping

The correct GCD is picked 

for each rank

The hardware threads picked for each rank come from the 

same NUMA domain. This is not optimal.

Rank 0 got HWT 1 and GCD 4



39 |

Mapping Processes to GCDs on LUMI - Optimal mapping

• On LUMI, we also need the map_cpu option to pick a core for each MPI rank from each CPU set

srun -n8 -N1 -c 1 --ntasks-per-node 8 --cpu-bind=map_cpu:1,8,16,24,32,40,48,56 ./set_gpu_device_lumi.sh ./hello_jobstep

MPI 000 - OMP 000 - HWT 001 - Node nid005116 - RT_GPU_ID 0 - GPU_ID 4 - Bus_ID d1
MPI 002 - OMP 000 - HWT 016 - Node nid005116 - RT_GPU_ID 0 - GPU_ID 2 - Bus_ID c9
MPI 003 - OMP 000 - HWT 024 - Node nid005116 - RT_GPU_ID 0 - GPU_ID 3 - Bus_ID ce
MPI 004 - OMP 000 - HWT 032 - Node nid005116 - RT_GPU_ID 0 - GPU_ID 6 - Bus_ID d9
MPI 005 - OMP 000 - HWT 040 - Node nid005116 - RT_GPU_ID 0 - GPU_ID 7 - Bus_ID de
MPI 006 - OMP 000 - HWT 048 - Node nid005116 - RT_GPU_ID 0 - GPU_ID 0 - Bus_ID c1
MPI 007 - OMP 000 - HWT 056 - Node nid005116 - RT_GPU_ID 0 - GPU_ID 1 - Bus_ID c6
MPI 001 - OMP 000 - HWT 008 - Node nid005116 - RT_GPU_ID 0 - GPU_ID 5 - Bus_ID d6

Core 0 is reserved via Slurm on LUMI as low-

noise mode is enabled.

Change 1 to 0 when low-noise mode is disabled.

The correct GCD is picked 

for each rank

Each hardware thread comes from a 

different NUMA domain

--cpu-bind=map_cpu:1,8,16,24,32,40,48,56

Please note, we didn't specify HWT 0 here:



40 |

Case Studies: 1 MPI rank per GCD, 2 OpenMP® threads per rank

$ OMP_NUM_THREADS=2 OMP_PLACES=cores OMP_PROC_BIND=close srun -n8 -N1 -c2 --ntasks-per-node 8 -A <project> -t 
01:00 ./set_gpu_device_lumi.sh ./hello_jobstep

MPI 002 - OMP 000 - HWT 016 - Node crusher143 - RT_GPU_ID 0 - GPU_ID 2 - Bus_ID c9

MPI 002 - OMP 001 - HWT 017 - Node crusher143 - RT_GPU_ID 0 - GPU_ID 2 - Bus_ID c9

MPI 003 - OMP 000 - HWT 024 - Node crusher143 - RT_GPU_ID 0 - GPU_ID 3 - Bus_ID ce

MPI 003 - OMP 001 - HWT 025 - Node crusher143 - RT_GPU_ID 0 - GPU_ID 3 - Bus_ID ce

MPI 006 - OMP 000 - HWT 048 - Node crusher143 - RT_GPU_ID 0 - GPU_ID 0 - Bus_ID c1

MPI 006 - OMP 001 - HWT 049 - Node crusher143 - RT_GPU_ID 0 - GPU_ID 0 - Bus_ID c1

MPI 001 - OMP 000 - HWT 008 - Node crusher143 - RT_GPU_ID 0 - GPU_ID 5 - Bus_ID d6

MPI 001 - OMP 001 - HWT 009 - Node crusher143 - RT_GPU_ID 0 - GPU_ID 5 - Bus_ID d6

MPI 007 - OMP 000 - HWT 056 - Node crusher143 - RT_GPU_ID 0 - GPU_ID 1 - Bus_ID c6

MPI 007 - OMP 001 - HWT 057 - Node crusher143 - RT_GPU_ID 0 - GPU_ID 1 - Bus_ID c6

MPI 000 - OMP 000 - HWT 000 - Node crusher143 - RT_GPU_ID 0 - GPU_ID 4 - Bus_ID d1

MPI 000 - OMP 001 - HWT 001 - Node crusher143 - RT_GPU_ID 0 - GPU_ID 4 - Bus_ID d1

MPI 005 - OMP 000 - HWT 040 - Node crusher143 - RT_GPU_ID 0 - GPU_ID 7 - Bus_ID de

MPI 005 - OMP 001 - HWT 041 - Node crusher143 - RT_GPU_ID 0 - GPU_ID 7 - Bus_ID de

MPI 004 - OMP 000 - HWT 032 - Node crusher143 - RT_GPU_ID 0 - GPU_ID 6 - Bus_ID d9

MPI 004 - OMP 001 - HWT 033 - Node crusher143 - RT_GPU_ID 0 - GPU_ID 6 - Bus_ID d9

Combining OpenMP® settings 

with srun options, we can pin 

a separate core for each 

thread of each rank

Does not work on LUMI yet!



41 |

Case Studies: 2 MPI ranks per GCD, 4 OpenMP® threads per rank

Using a CPU mask was essential to pin consecutive ranks and their threads to consecutive CPU cores

$ OMP_NUM_THREADS=4 srun -n16 -N1 -c4 --ntasks-per-node 16 --cpu-
bind=mask_cpu:f,f0,f00,f000,f0000,f00000,f000000,f0000000,f00000000,f000000000,f0000000000,f00000000000,f000000000000,f00000000000
00,f00000000000000,f000000000000000 -A <project> -t 01:00 ./set_gpu_device_lumi.sh ./hello_jobstep

MPI 000 - OMP 000 - HWT 001 - Node crusher043 - RT_GPU_ID 0 - GPU_ID 4 - Bus_ID d1

MPI 000 - OMP 002 - HWT 003 - Node crusher043 - RT_GPU_ID 0 - GPU_ID 4 - Bus_ID d1

MPI 000 - OMP 001 - HWT 002 - Node crusher043 - RT_GPU_ID 0 - GPU_ID 4 - Bus_ID d1

MPI 000 - OMP 003 - HWT 000 - Node crusher043 - RT_GPU_ID 0 - GPU_ID 4 - Bus_ID d1

MPI 001 - OMP 000 - HWT 004 - Node crusher043 - RT_GPU_ID 0 - GPU_ID 4 - Bus_ID d1

MPI 001 - OMP 001 - HWT 005 - Node crusher043 - RT_GPU_ID 0 - GPU_ID 4 - Bus_ID d1

MPI 001 - OMP 002 - HWT 006 - Node crusher043 - RT_GPU_ID 0 - GPU_ID 4 - Bus_ID d1

MPI 001 - OMP 003 - HWT 007 - Node crusher043 - RT_GPU_ID 0 - GPU_ID 4 - Bus_ID d1

MPI 002 - OMP 000 - HWT 008 - Node crusher043 - RT_GPU_ID 0 - GPU_ID 5 - Bus_ID d6

MPI 002 - OMP 002 - HWT 010 - Node crusher043 - RT_GPU_ID 0 - GPU_ID 5 - Bus_ID d6

MPI 002 - OMP 003 - HWT 011 - Node crusher043 - RT_GPU_ID 0 - GPU_ID 5 - Bus_ID d6

MPI 002 - OMP 001 - HWT 009 - Node crusher043 - RT_GPU_ID 0 - GPU_ID 5 - Bus_ID d6

MPI 003 - OMP 000 - HWT 013 - Node crusher043 - RT_GPU_ID 0 - GPU_ID 5 - Bus_ID d6

MPI 003 - OMP 003 - HWT 012 - Node crusher043 - RT_GPU_ID 0 - GPU_ID 5 - Bus_ID d6

MPI 003 - OMP 002 - HWT 015 - Node crusher043 - RT_GPU_ID 0 - GPU_ID 5 - Bus_ID d6

MPI 003 - OMP 001 - HWT 014 - Node crusher043 - RT_GPU_ID 0 - GPU_ID 5 - Bus_ID d6

<snip>

With NPS4, we want to get the full 

CPU socket bandwidth. We need to 

have processes/threads on each core 

in each NUMA domain.

In addition, we oversubscribe the 

GCD with 2 ranks to better utilize its 

resources.



42 |

Generating the CPU Mask Used in Previous Example
#!/usr/bin/env python3

num_ranks = 16

num_threads = 4 # spread over 64 cores

cpu_of_rank_thread = [

[0,1,2,3], # rank 0

[4,5,6,7], # rank 1

[8,9,10,11], # rank 2

[12,13,14,15], # rank 3

[16,17,18,19], # rank 4

[20,21,22,23], # rank 5

[24,25,26,27], # rank 6

[28,29,30,31], # rank 7

[32,33,34,35], # rank 8

[36,37,38,39], # rank 9

[40,41,42,43], # rank 10

[44,45,46,47], # rank 11

[48,49,50,51], # rank 12

[52,53,54,55], # rank 13

[56,57,58,59], # rank 14

[60,61,62,63], # rank 15

]

mask = ""​

for rank in range(num_ranks):​

sum = 0​

for thread in range(num_threads):​

cpu = cpu_of_rank_thread[rank][thread]​

two_pow = 2 ** cpu

sum += two_pow

hex_sum = hex(sum)​

if thread == num_threads - 1:​

if rank > 0:​

mask += ","​

mask += hex_sum

print("mask=", mask)​

print("")​

print(mask.replace("0x",""))

Courtesy: Marcus Wagner, HPE

Explicitly specify cores to 

be used by each rank

Output the hex mask 

based on those 

assignments



43 |

Low noise mode on LUMI

Where is Core 0?

Slurm setting in 

LUMI reserves 

Core 0 for system 

operations

So, Core 0 is not 

allocated for user 

processes

Helps reduce jitter 

and variability from 

run to run

lstopo sees only 7 cores in the first CPU set 

because lstopo was run with Slurm

All other CPU sets have 8 cores



44 |

Low Noise Mode – More Details

• Optionally, the closest CPU in each set {0, 8, 16, .. 56} may be reserved for servicing GPU interrupts

• One way to accomplish binding with the remaining 7 cores of each set when running 8 MPI ranks per node and 7 OMP 

threads per rank is by using the srun command below:

srun -N <nodes> -n $((8 * nodes)) -S 8 -c 7 --cpu-
bind=mask_cpu:0xfe000000000000,0xfe00000000000000,0xfe0000,0xfe000000,0xfe,0xfe00,0xfe00000000,0xfe0000000000 
./hello_jobstep

MPI 000 - OMP 001 - HWT 050 - Node nid005166 - RT_GPU_ID 0,1,2,3,4,5,6,7 - GPU_ID 0,1,2,3,4,5,6,7 - Bus_ID c1,c6,c9,ce,d1,d6,d9,de

MPI 000 - OMP 006 - HWT 055 - Node nid005166 - RT_GPU_ID 0,1,2,3,4,5,6,7 - GPU_ID 0,1,2,3,4,5,6,7 - Bus_ID c1,c6,c9,ce,d1,d6,d9,de

MPI 000 - OMP 003 - HWT 052 - Node nid005166 - RT_GPU_ID 0,1,2,3,4,5,6,7 - GPU_ID 0,1,2,3,4,5,6,7 - Bus_ID c1,c6,c9,ce,d1,d6,d9,de

MPI 000 - OMP 000 - HWT 049 - Node nid005166 - RT_GPU_ID 0,1,2,3,4,5,6,7 - GPU_ID 0,1,2,3,4,5,6,7 - Bus_ID c1,c6,c9,ce,d1,d6,d9,de

MPI 000 - OMP 004 - HWT 053 - Node nid005166 - RT_GPU_ID 0,1,2,3,4,5,6,7 - GPU_ID 0,1,2,3,4,5,6,7 - Bus_ID c1,c6,c9,ce,d1,d6,d9,de

MPI 000 - OMP 002 - HWT 051 - Node nid005166 - RT_GPU_ID 0,1,2,3,4,5,6,7 - GPU_ID 0,1,2,3,4,5,6,7 - Bus_ID c1,c6,c9,ce,d1,d6,d9,de

MPI 000 - OMP 005 - HWT 054 - Node nid005166 - RT_GPU_ID 0,1,2,3,4,5,6,7 - GPU_ID 0,1,2,3,4,5,6,7 - Bus_ID c1,c6,c9,ce,d1,d6,d9,de

<snip>

For applications that are bandwidth bound, GPU bound or not multi-threaded, losing one core may not be a 

big deal. Losing a core in CPU compute bound applications will hurt performance.

Instruct srun to reserve 8 cores for system operations

Restrict hardware threads using CPU mask



45 |

Generating CPU Mask for Low Noise Mode

#!/usr/bin/env python3

cpu_of_rank_thread = [ # sparing first 2 cores 
each 8-core CCD

[ 2, 3, 4, 5, 6, 7] , # local rank 0

[10,11,12,13,14,15] , # local rank 1

[18,19,20,21,22,23] , # local rank 2

[26,27,28,29,30,31] , # local rank 3

[34,35,36,37,38,39] , # local rank 4

[42,43,44,45,46,47] , # local rank 5

[50,51,52,53,54,55] , # local rank 6

[58,59,60,61,62,63] ] # local rank 7

num_ranks = len(cpu_of_rank_thread)​
mask = ""​
for rank in range(num_ranks):​

sum = 0​
num_threads_this_rank = len(cpu_of_rank_thread[rank])​
for thread in range( num_threads_this_rank ):​

cpu = cpu_of_rank_thread[rank][thread]​
two_pow = 2 ** cpu
sum += two_pow
if thread == num_threads_this_rank - 1:​

if rank > 0:​
mask += ","​

mask += hex(sum)​
if rank == num_ranks - 1:​

print("mask=", mask)​
print(mask.replace("0x","")

Courtesy: Marcus Wagner, HPE

Skip cores you don't want to use for each rank

In this example, we are skipping the first two cores of each CPU set



47 |

Summary

• In parallel applications, Affinity involves Placement, Order and Binding

• Affinity is important for hybrid applications on the complex architectures of today

• Higher memory bandwidth

• Lower latency

• Optimize communication

• Avoid excessive thread/process migration

• Affinity can be achieved in many ways

• Need to know the architecture

• Need to know the performance limiters of the application and design the best strategy to use resources

• Need to know the communication pattern between processes

• Need to know how to control placement using a combination of MPI, OpenMP®, Pthread, Slurm options



48 |

References

• Frontier User Guide, Oak Ridge Leadership Compute Facility, Oak Ridge National 

Laboratory, https://docs.olcf.ornl.gov/systems/frontier_user_guide.html#

• Parallel and High Performance Computing, Robert Robey and Yuliana Zamora, Manning Publications, May 2021

• Essentials of Parallel Computing, Chapter 14 Code 

Examples: https://github.com/essentialsofparallelcomputing/Chapter14

• Code Examples from Tom Papatheodore, ORNL:

• https://code.ornl.gov/olcf/hello_mpi_omp

• https://code.ornl.gov/olcf/hello_jobstep

• OpenMP® Specification: https://www.openmp.org/

• MPICH, https://www.mpich.org/

• OpenMPI, https://www.open-mpi.org/

• Slurm, https://slurm.schedmd.com/

• Performance Analysis of CP2K Code for Ab Initio Molecular Dynamics on CPUs and GPUs, Dewi Yokelson, Nikolay V. 

Tkachenko, Robert Robey, Ying Wai Li, and Pavel A. Dub, Journal of Chemical Information and Modeling 2022 62 (10), 

2378-2386, DOI: 10.1021/acs.jcim.1c01538

https://docs.olcf.ornl.gov/systems/frontier_user_guide.html
https://github.com/essentialsofparallelcomputing/Chapter14
https://code.ornl.gov/olcf/hello_mpi_omp
https://code.ornl.gov/olcf/hello_jobstep
https://www.openmp.org/
https://www.mpich.org/
https://www.open-mpi.org/
https://slurm.schedmd.com/


49 |

Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The 

information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, 

component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS 

flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes 

no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to 

time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVI E  ‘AS IS.” AM  MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPE T TO THE  ONTENTS HEREOF 

AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD 

SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. 

IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES 

ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH 

DAMAGES.

AMD, the AMD Arrow logo, ROCm and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for 

identification purposes only and may be trademarks of their respective companies.

The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board.

HPE is a registered trademark of Hewlett Packard Enterprise Company and/or its affiliates.

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

© 2022 Advanced Micro Devices, Inc. All rights reserved.




