
Introduction to OmniTools

Nicholas Curtis, Jonathan Madsen, Keith Lowery, Xiaomin Lu,

George Markomanolis, Cole Ramos, Karl W. Schulz, Noah Wolfe

Developing Applications with the AMD ROCm Ecosystem

2 |

[Public]

Background – AMD Profilers

| AMD Hierarchical Roofline Presentation | November

10th, 2022

2

• rocprof
• github.com/ROCm-Developer-Tools/rocprofiler

• Raw collection of GPU counters

and traces

• Counter collection driven by user

provided input files

• Counter results output in CSV

• Trace collection support for:
• HIP

• HSA

• GPU

• Traces visualized with Perfetto

A
tt

ai
n

ab
le

 F
LO

Ps
/s

1000

100

▪ Omnitrace
⁃ github.com/AMDResearch/omnitrace

⁃ Comprehensive trace collection
and visualization of CPU+GPU

⁃ Includes support for:

⁃ HIP, HSA, GPU

⁃ OpenMP®

⁃ MPI

⁃ Kokkos

⁃ Pthreads

⁃ Multi-GPU

⁃ Visualizations with Perfetto

▪ Omniperf
⁃ github.com/AMDResearch/omniperf

⁃ Automated collection, analysis
and visualization of performance
counters

⁃ Includes support for:

⁃ GPU Speed-of-Light Analysis

⁃ Memory Chart Analysis

⁃ Roofline Analysis

⁃ Kernel comparison

⁃ Visualizations with Grafana or
standalone GUI

https://github.com/ROCm-Developer-Tools/rocprofiler
https://github.com/AMDResearch/omnitrace
https://github.com/AMDResearch/omniperf

3 |

[Public]

Background – AMD Profilers

3

Roofline
HW

Counters

Timeline

Trace

Analysis

Approac

h

How well am I using the

GPU?

Why am I seeing this perf? Where should I focus my

time?

Objectiv

e

AMD

Tools
Omniperf Omnitrace

Omnitrace

5 |

[Public]

Omnitrace: Application Profiling, Tracing, and Analysis

• It is an AMD Research tool, repository: https://github.com/AMDResearch/omnitrace

• It is not part of ROCm stack

• Omnitrace is a comprehensive profiling and tracing tool for parallel applications written in C, C++,

Fortran, HIP, OpenCL™, and Python™ which execute on the CPU or CPU+GPU

• Data collection modes:

• Dynamic instrumentation

• Statistical sampling

• Process-level sampling

• Critical trace generation

• Data analysis:

• High-level summary profiles

• Comprehensive traces

• Critical trace analysis

• Parallelism support: HIP, HSA, Pthreads, MPI, Kokkos, OpenMP®

• GPU Metrics: GPU hardware counters, HIP/HSA API, HIP kernel tracing, HSA operation tracing,

memory/power/temperature/utilization

• CPU Metrics: Hardware counters, timing metrics, memory metrics, network statistics, I/O, and more

https://github.com/AMDResearch/omnitrace

6 |

[Public]

Installation (if required)

• Instructions for binary installation

• Visit the Omnitrace releases page: https://github.com/AMDResearch/omnitrace/releases

• Select the version that matches your operating system, ROCm version, etc.

• For an HPE/AMD system, we select OpenSuse operating system

• For example, download the installer omnitrace-1.7.2-opensuse-15.4-ROCm-50300-PAPI-OMPT-

Python3.sh

• Any user can install it in his project but it should not be required

• There are rpm and deb files for installation also

• Full documentation: https://amdresearch.github.io/omnitrace/

wget https://github.com/AMDResearch/omnitrace/releases/download/v1.7.2/omnitrace-1.7.2-

opensuse-15.4-ROCm-50300-PAPI-OMPT-Python3.sh

mkdir /opt/omnitrace/

chmod +x omnitrace-1.7.2-opensuse-15.4-ROCm-50300-PAPI-OMPT-Python3.sh

./omnitrace-1.7.2-opensuse-15.4-ROCm-50300-PAPI-OMPT-Python3.sh --prefix=/opt/omnitrace -

-exclude-subdir

export PATH=/opt/omnitrace/:$PATH

source omnitrace_installation_path/share/omnitrace/setup-env.sh

https://github.com/AMDResearch/omnitrace/releases
https://amdresearch.github.io/omnitrace/

7 |

[Public]

Omnitrace instrumentation modes

• Runtime instrumentation: Dynamic binary instrumentation, it can instrument a lot of data and

increased overhead

• Sampling instrumentation (omnitrace-sample)

• Attaching to a process (-p)

• Binary rewriting (-o)

• It will not instrument the dynamically-linked libraries, thus lower overhead and faster execution

• This approach is recommended when the target executable uses process-level parallelism (e.g.

MPI)

• To instrument dynamic libraries:
https://amdresearch.github.io/omnitrace/instrumenting.html#binary-rewriting-a-library

For problems, create an issue here: https://github.com/AMDResearch/omnitrace/issues
Documentation: https://amdresearch.github.io/omniperf/

https://amdresearch.github.io/omnitrace/instrumenting.html#binary-rewriting-a-library
https://github.com/AMDResearch/omnitrace/issues
https://amdresearch.github.io/omniperf/

8 |

[Public]

Execution

• Runtime instrumentation

srun … omnitrace <omnitrace-options> -- <exe> [<exe-options>]

• Sampling instrumentation

srun … omnitrace-sample <omnitrace-options> -- <exe> [<exe-options>]

• Binary rewriting

srun … omnitrace <omnitrace-options> -o <name-of-new-exe-or-library> -- <exe-or-

library>

srun … <name-of-new-exe>

9 |

[Public]

Omnitrace configuration (I)

srun -n 1 --gpus 1 omnitrace-avail --categories omnitrace

10 |

[Public]

Omnitrace configuration (II)

srun -n 1 --gpus 1 omnitrace-avail --categories omnitrace --brief --description

11 |

[Public]

Create a configuration file

• Use a name of non-existing config file

srun -n 1 omnitrace-avail -G omnitrace.cfg

[omnitrace-avail] Outputting text configuration file './omnitrace.cfg'...

• To add also description for each variable

srun -n 1 omnitrace-avail -G omnitrace_all.cfg --all

[omnitrace-avail] Outputting text configuration file './omnitrace_all.cfg’...

• Declare which cfg file to use :

export OMNITRACE_CONFIG_GILE=/path/omnitrace.cfg

12 |

[Public]

Executing MatrixTranspose

• Non instrumented execution

time srun -n 1 --gpus 1 ./MatrixTranspose

real 0m1.245s

• Dynamic instrumentation

time srun –n 1 –gpus 1 omnitrace -- ./MatrixTranspose

[omnitrace][exe]

[omnitrace][exe] command ::

'/pfs/lustrep4/scratch/project_462000075/markoman/HIP/samples/2_Cookbook/0_MatrixTranspose/MatrixTransp

ose'...

[omnitrace][exe]

…

[omnitrace][118151][metadata]> Outputting 'omnitrace-MatrixTranspose-output/2022-10-16_22.53/metadata-

118151.json' and 'omnitrace-MatrixTranspose-output/2022-10-16_22.53/functions-118151.json'

[omnitrace][118151][0][omnitrace_finalize] Finalized

[706.822] perfetto.cc:57383 Tracing session 1 ended, total sessions:0

[omnitrace][exe] End of omnitrace

real 1m27.841s

13 |

[Public]

Identify overhead

Command: nm --demangle MatrixTranspose | egrep -i ' (t|u) '

14 |

[Public]

Available functions to instrument

srun -n 1 --gpus 1 omnitrace -v -1 --simulate --print-available functions --

./MatrixTranspose

More than 36000 functions

15 |

[Public]

Custom including/excluding functions

• Include functions

srun -n 1 --gpus 1 omnitrace -v -1 --simulate --print-available functions -I

'function_name1' 'function_name2' -- ./MatrixTranspose

• Exclude functions

srun -n 1 --gpus 1 omnitrace -v -1 --simulate --print-available functions -E

'function_name1' 'function_name2' -- ./MatrixTranspose

The above commands include the simulate flag that it will demonstrate the available functions but it will not

run the MatrixTranspose executable

16 |

[Public]

Decreasing profiling overhead

• Binary rewriting and print available functions

srun -n 1 --gpus 1 omnitrace -v -1 --print-available functions -o matrix.inst --

./MatrixTranspose

• Default instrumentation is

main function and functions of

1024 instructions and more

(for CPU)

• To instrument routines with for

example 50 instructions, add

the option "–i 50" to

instrument function of 50

instructions and above (move

overhead)

17 |

[Public]

Executing the new binary

time srun -n 1 --gpus 1 ./matrix.inst

18 |

[Public]

Check the list of the GPU calls instrumented

omnitrace-matrix.inst-output/2022-11-14_12.33_PM/roctracer.txt

19 |

[Public]

Visualizing trace

• Copy the perfetto-trace.proto to your laptop

• Go to https://ui.perfetto.dev/ click open trace and select the perfetto-trace.proto

https://ui.perfetto.dev/

20 |

[Public]

Visualizing trace

• Copy the perfetto-trace.proto to your laptop

• Go to https://ui.perfetto.dev/ click open trace and select the perfetto-trace.proto

https://ui.perfetto.dev/

21 |

[Public]

Hardware counters (I)

srun -n 1 --gpus 1 omnitrace-avail --all

…

22 |

[Public]

Commonly Used Counters

• VALUUtilization: The percentage of ALUs active in a wave. Low VALUUtilization is likely due to high

divergence or a poorly sized grid

• VALUBusy: The percentage of GPUTime vector ALU instructions are processed. Can be thought of as

something like compute utilization

• FetchSize: The total kilobytes fetched from global memory

• WriteSize: The total kilobytes written to global memory

• L2CacheHit: The percentage of fetch, write, atomic, and other instructions that hit the data in L2 cache

• MemUnitBusy: The percentage of GPUTime the memory unit is active. The result includes the stall time

• MemUnitStalled: The percentage of GPUTime the memory unit is stalled

• WriteUnitStalled: The percentage of GPUTime the write unit is stalled

Full list at: https://github.com/ROCm-Developer-Tools/rocprofiler/blob/amd-master/test/tool/metrics.xml

https://github.com/ROCm-Developer-Tools/rocprofiler/blob/amd-master/test/tool/metrics.xml

23 |

[Public]

Hardware counters (II)

• Declare in your cfg file the metrics you want to profile

• For example, profile metrics only for the GPU with id 0:

OMNITRACE_ROCM_EVENTS = GPUBusy:device=0,Wavefronts:device=0,

VALUBusy:device=0,L2CacheHit:device=0,MemUnitBusy:device=0

• Profile for all the participated GPUs:

OMNITRACE_ROCM_EVENTS = GPUBusy,Wavefronts,VALUBusy,L2CacheHit,MemUnitBusy

24 |

[Public]

Execution with hardware counters

srun -n 1 --gpus 1 ./matrix.inst

25 |

[Public]

Visualization with hardware counters

26 |

[Public]

Sampling call-stack (I)

• Another application with OMNITRACE_USE_SAMPLING = false

• With OMNITRACE_USE_SAMPLING = true and OMNITRACE_SAMPLING_FREQ = 100 (100 samples

per second)

27 |

[Public]

Sampling call-stack (II)

• Zoom in call-stack sampling

28 |

[Public]

How to see kernels timing?

• omnitrace-binary-output/timestamp/wall_clock.txt

29 |

[Public]

How to see kernels timing? (II

• Add/edit in your omnitrace.cfg file, OMNITRACE_USE_TIMEMORY = true and

OMNITRACE_FLAT_PROFILE = true

30 |

[Public]

User API

• Omnitrace provides an API to control the instrumentation

All the API calls: https://amdresearch.github.io/omnitrace/user_api.html

API Call Description

int omnitrace_user_start_trace(void) Enable tracing on this thread and all

subsequently created threads

int omnitrace_user_stop_trace(void) Disable tracing on this thread and all

subsequently created threads

int

omnitrace_user_start_thread_trace(vo

id)

Enable tracing on this specific thread. Does not

apply to subsequently created threads

int

omnitrace_user_stop_thread_trace(voi

d)

Disable tracing on this specific thread. Does not

apply to subsequently created threads

31 |

[Public]

MPI

• We use the example omnitrace/examples/mpi/mpi.cpp

• Compile and run it to check the output, then create an instrumented binary

srun -n 1 omnitrace -o mpi.inst -- ./mpi

srun -n 2 ./mpi.inst

MPI 0

MPI 1

32 |

[Public]

MPI visualizing one Perfetto per MPI process

MPI 0

MPI 1

33 |

[Public]

Visualizing all the MPI processes in once

• Merge the Perfetto files:

cat omnitrace-mpi.inst-output/timestamp/perfetto-trace-0.proto omnitrace-

mpi.inst-output/timestamp/perfetto-trace-1.proto > allprocesses.proto

• For large number or processes a different approach is required if willing to visualize many processes

34 |

[Public]

OpenMP®

• We use the example /omnitrace/examples/openmp/

• Build the code:

cmake –B build .

• We use the openmp-lu binary, execution:

export OPENMP_NUM_THREADS=4

srun –n 1 –c 4 ./openmp-lu

• Create a new instrumented binary:

srun -n 1 omnitrace -o openmp-lu.inst -- ./openmp-lu

35 |

[Public]

OpenMP® (II)
• Execution:

srun -n 1 –c 4 ./openmp-lu.inst

36 |

[Public]

OpenMP® visualization

37 |

[Public]

Python™

• The omnitrace Python package is installed in /path/omnitrace_install/lib/pythonX.Y/site-packages/omnitrace

• Setup the environment

export PYTHONPATH=/path/omnitrace/lib/python/site-packages/:${PYTHONPATH}

• We use the Fibonacci example:

omnitrace/examples/python/source.py

• Execute:

srun -n 1 --gpus 1 omnitrace-python ./external.py

There will be a new directory called omnitrace-source-output with contents

Python documentation: https://amdresearch.github.io/omnitrace/python.html

38 |

[Public]

Python™ (II)

• omnitrace-source-output/timestamp/wall_clock.txt

39 |

[Public]

Visualizing Python™ Perfeto tracing

40 |

[Public]

Omnitrace-sample

• For easy usage of Omnitrace there is also the omnitrace-sample that does sampling with less overhead.

• It provides less overhead but you need to be sure that you do not miss information

• Not all the declarations of a cfg file apply, for example to use hardware counters, ou need to execute the

following command:

srun -n 1 omnitrace-sample -TPHD -G
"GPUBusy:device=0,Wavefronts:device=0,VALUBusy:device=0,L2CacheHit:device=0,MemUnitBusy:device=0” -- ./binary

See omnitrace-sample -h for more information

41 |

[Public]

Tips & Tricks

• My Perfetto timeline seems weird how can I check the clock skew?

• OMNITRACE_VERBOSE equal to 1 or higher for verbose mode and it will print the timestamp skew

• Omnitrace takes too long time in the finalization, how to check which part takes a lot of time?

• Use OMNITRACE_VERBOSE equal to 1 or higher for verbose mode

• It takes too long time to map rocm-smi samples to the kernels

• Use temporarily OMNITRACE_USE_ROCM_SMI=OF

• If you are doing binary rewriting and you do not get information about kernels, declare:

• HSA_TOOLS_LIB=libomnitrace.so in the environment and be sure that OMNITRACE_USE_ROCTRACER=ON in

the cfg file

• My HIP application hangs in different points, what to do?

• Try to set HSA_ENABLE_INTERRUPT=0 in the environment, this handles different how HIP is notified that GPU

kernels completed

• It is preferred to use binary rewriting for MPI applications, in order to write one file per MPI process, and

not aggregated, use: OMNITRACE_USE_PID=ON

• My Perfetto trace is too big, can I decrease it?

• Yes, with v1.7.3 and later declare OMNITRACE_PERFETTO_ANNOTATIONS to false.

• Full documentation: https://amdresearch.github.io/omnitrace/

https://amdresearch.github.io/omnitrace/

Omniperf

43 |

[Public]

Omniperf

• The Omniperf executes the code as many times required based on the job submission

• Without specific option the application will be executed many times with various hardware counters (more

than 100), so this can take long time. It does not mean that all the counters will provide useful data.

• There are various options for filtering (kernel, metric) even to execute mainly for roofline analysis

• There are many data per metric/HW and we will show a few, Omniperf provides tables for every metric

• With Omniperf first we profile, then we analyze and then we can import to database or visualize with

standalone GUI

• The Omniperf targets MI100 and MI200 and later future generation AMD GPUs

• For problems, create an issue here: https://github.com/AMDResearch/omniperf/issues

44 |

[Public]

Omniperf Architecture

45 |

[Public]

Omniperf features

Omniperf Features

MI200 support Roofline Analysis Panel (Supported

on MI200 only, SLES 15 SP3 or

RHEL8)

MI100 support Command Processor (CP) Panel

Standalone GUI Analyzer Shader Processing Input (SPI) Panel

Grafana/MongoDB GUI Analyzer Wavefront Launch Panel

Dispatch Filtering Compute Unit - Instruction Mix Panel

Kernel Filtering Compute Unit - Pipeline Panel

GPU ID Filtering Local Data Share (LDS) Panel

Baseline Comparison Instruction Cache Panel

Multi-Normalizations Scalar L1D Cache Panel

System Info Panel Texture Addresser and Data Panel

System Speed-of-Light Panel Vector L1D Cache Panel

Kernel Statistic Panel L2 Cache Panel

Memory Chart Analysis Panel L2 Cache (per-Channel) Panel

46 |

[Public]

Client-side installation (if required)

• Download the latest version from here: https://github.com/AMDResearch/omniperf/releases

wget https://github.com/AMDResearch/omniperf/releases/download/v1.0.4/omniperf-

1.0.4.tar.gz

tar zxvf omniperf-1.0.4.tar.gz

module load rocm

cd omniperf-1.0.4/

python3 -m pip install -t ${INSTALL_DIR}/python-libs -r requirements.txt

mkdir build

cd build

export PYTHONPATH=$INSTALL_DIR/python-libs

cmake -DCMAKE_INSTALL_PREFIX=${INSTALL_DIR}/1.0.4 \

-DPYTHON_DEPS=${INSTALL_DIR}/python-libs \

-DMOD_INSTALL_PATH=${INSTALL_DIR}/modulefiles ..

make install

export PATH=$INSTALL_DIR/1.0.4/bin:$PATH

https://github.com/AMDResearch/omniperf/releases

47 |

[Public]

Omniperf modes

• Profiling

omniperf profile -n workload_name [profile options] [roofline options] --

<profile_cmd>

• Analysis

omniperf analyze -p workloads/workload_name/mi200/

• GUI import

omniperf database --import [CONNECTION OPTIONS]

• GUI standalone

omniperf analyze -p workloads/workload_name/mi200/ --gui

Then follow the instructions to open the web page for the GUI

48 |

[Public]

Omniperf Profiling

• We use the example sample/vcopy.cpp from the Omniperf installation folder (cp

/global/training/enccs/omniperf/1.0.4/share/sample/vcopy.cpp .)

• Compile with hipcc, let’s call the binary vcopy

• Load Omniperf module

• Profiling with the default set pf data for all kernels, execute:
srun -n 1 --gpus 1 omniperf profile -n vcopy_all -- ./vcopy 1048576 256

…

Profile only

omniperf ver: 1.0.4

Path: /pfs/lustrep4/scratch/project_462000075/markoman/omniperf-1.0.4/build/workloads

Target: mi200

Command: ./vcopy 1048576 256

Kernel Selection: None

Dispatch Selection: None

IP Blocks: All

In this case we call the workload name “vcopy_all” and after the “--” everything is about the application

we execute. In this case, the application will be executed many times for collecting different metrics, if

the application takes significant time to run once, then this could b not the optimum approach.

At the end of the execution, we have a folder workloads/vcopy_all/mi200/
You can see all the options with the command omniperf profile --help

49 |

[Public]

Omniperf Analyze

• We use the example sample/vcopy.cpp from the Omniperf installation folder

srun -n 1 --gpus 1 omniperf analyze -p workloads/vcopy_all/mi200/ &>

vcopy_analyze.txt

50 |

[Public]

Omniperf Analyze (II)

• Execute omniperf analyze –h to see various options

• Use specific IP block (-b)

• Top kernel:
srun -n 1 --gpus 1 omniperf analyze -p workloads/vcopy_all/mi200/ -b 0

• IP Block of wavefronts: srun -n 1 --gpus 1 omniperf analyze -p

workloads/vcopy_all/mi200/ -b 7.1.2

51 |

[Public]

Omniperf Analyze (III)

omniperf analyze -h

52 |

[Public]

Omniperf Analyze with standalone GUI

• Download the data on your computer (workloads/vcopy_all/), install Omniperf without ROCm, and

execute:

omniperf analyze -p workloads/vcopy_all/mi200/ --gui

Open web page http://172.21.7.117:8050/

53 |

[Public]

Omniperf Analyze with standalone GUI (II)

54 |

[Public]

Omniperf Analyze with standalone GUI (III)

55 |

[Public]

Roofline Analysis

• Profile with roofline:

srun -n 1 --gpus 1 omniperf profile -n roofline_case_app --roof-only --

./app

• Prepare GUI:

Copy the workload to your computer

Execute: omniperf analyze -p workloads/roofline_case_app/mi200/ --gui

Open the web page http://172.21.7.117:8050/

56 |

[Public]

Grafana – System Info

57 |

[Public]

Grafana – System Speed-of-Light

58 |

[Public]

Grafana- Kernel Statistics

59 |

[Public]

Grafana – Mmeory Chart Analysis

60 |

[Public]

Grafana - Roofline

61 |

[Public]

Grafana – Wavefront & Compute Unit

62 |

[Public]

Grafana – Instruction Cache & Scalar L1 Data Cache

63 |

[Public]

Grafana – Vector L1 Data Cache

64 |

[Public]

Grafana – L2 Cache

65 |

[Public]

Grafana – L2 Cache (per Channel)

66 |

[Public]

DISCLAIMERS AND ATTRIBUTIONS

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The

information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes,

component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS

flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes

no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to

time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF

AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD

SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE.

IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES

ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH

DAMAGES.

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-PARTY CONTENT IS

PROVIDED “AS IS” WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT YOUR SOLE DISCRETION AND UNDER

NO CIRCUMSTANCES WILL AMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU ASSUME ALL RISK AND ARE SOLELY RESPONSIBLE FOR

ANY DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY CONTENT.

© 2022 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, ROCm, and combinations thereof are trademarks of Advanced Micro Devices,

Inc. in the United States and/or other jurisdictions. Other names are for informational purposes only and may be trademarks of their respective owners.

OpenCL is a trademark of Apple Inc. used by permission by Khronos Group, Inc.

The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board

