
Developing Fortran

Applications: HIPFort,

OpenMP®, and OpenACC

Bob Robey and Brian Cornille

EuroCC National Compentence Centre Sweden (ENCCS)

Nov 29th, 2022

2 |

[Public]

Authors and Contributors

Brian Cornille

Bob Robey

Mahdieh Ghazimirsaeed

Justin Chang

Nov 29th, 2022 EuroCC National Competence Centre Sweden

Thanks to all the AMD contributors for their work on creating these materials.

3 |

[Public]

Agenda 1. Fortran Pathways

a. Hipify – Fortran with separate CUDA routines

b. HIPFort – a native HIP solution

c. Using OpenMP® offloading: a directive-based approach

d. OpenACC: alternative, but more limited option

EuroCC National Competence Centre SwedenNov 29th, 2022

4 |

[Public]

NDA NOT REQUIRED | AMD PUBLIC

USE

Hipify

5 |

[Public]

Hipify

• In this case, we have CUDA code that is called from a Fortran code.

oDifficulties with calling C routines from Fortran have already been taken care of

• Hipfiy and hipify-clang can be used on separate CUDA C/C++ files

oThis process has already been covered in the HIP and hipify talks

• Compile resulting HIP code with hipcc

• Compile Fortran code with Fortran compiler

• Link with hipcc

oStandard issues with cross-language links

EuroCC National Competence Centre SwedenNov 29th, 2022

6 |

[Public]

NDA NOT REQUIRED | AMD PUBLIC

USE

HIPFort

7 |

[Public]

HIPFort

• A native GPU language solution is desired for cases with

o CUDA Fortran conversion

o Pure Fortran code

• HIP functions are callable from C, using `extern C`, so they can be called directly from Fortran

• The strategy here is:

oManually port CUDA Fortran code to HIP kernels in C-like syntax

oWrap the kernel launch in a C function

oCall the C function from Fortran through Fortran’s ISO_C_binding.

oFortran 2003 is required. An improved interface is available with Fortran 2008.

oWith HIP, resulting code can run on both AMD and Nvidia GPUs

oROCm™ interfaces will only run on AMD GPUs

EuroCC National Competence Centre SwedenNov 29th, 2022

8 |

[Public]

HIPFort -- installation

• HIPFort is part of the ROCm™ software package

o HIPFort is installed as part of the meta-packages starting with ROCM-5.4.0

o Check to see if it is installed with your ROCm packages – check for /opt/rocm<-version>/bin/hipfc

o May need to be specifically installed with a package install command before 5.4.0

o PATH should include /opt/rocm<-version>/bin/hipfc

o INCLUDE_PATH should include /opt/rocm<-version>/include/hipfort

o LD_LIBRARY_PATH should include /opt/rocm<-version>/libexe/hipfort

o Sample Makefile.hipfort at /opt/rocm<-version>/share/hipfort/Makefile.hipfort

• If need to do a user install

o git clone https://github.com/ROCmSoftwarePlatform/hipfort

o Add the hipfort/bin location to your path

EuroCC National Competence Centre SwedenNov 29th, 2022

https://github.com/ROCmSoftwarePlatform/hipfort

9 |

[Public]

CUDA Fortran -> Fortran + HIP C/C++ (I)

• There is no HIP equivalent to CUDA Fortran

• But HIP functions are callable from C, using `extern C`, so they can be called directly from Fortran

• The strategy here is:

• Manually port CUDA Fortran code to HIP kernels in C-like syntax

• Wrap the kernel launch in a C function

• Call the C function from Fortran through Fortran’s ISO_C_binding. It requires either Fortran 2003 or a

simpler version with Fortran 2008.

• This strategy should be usable by Fortran users since it is standard conforming Fortran

• ROCm™ has an interface layer for libraires, hipFort, which provides the wrapped bindings for use in Fortran

• https://github.com/ROCmSoftwarePlatform/hipfort

EuroCC National Competence Centre SwedenNov 29th, 2022

https://github.com/ROCmSoftwarePlatform/hipfort

10 |

[Public]

More explanation -- example of hipLaunchKernelGGL wrapper

extern "C" {

void launch(double **dout, double **da, double **db, int N) {

hipLaunchKernelGGL((vector_add), dim3(320), dim3(256), 0, 0, *dout, *da,

*db, N);

}

}

interface

subroutine launch(out,a,b,N) bind(c)

use iso_c_binding

implicit none

type(c_ptr) :: a, b, out

integer, value :: N

end subroutine

end interface

Nov 29th, 2022 EuroCC National Competence Centre Sweden

11 |

[Public]

Example
Install HIPFort

• export HIPFORT_INSTALL_DIR=`pwd`/hipfort

• git clone https://github.com/ROCmSoftwarePlatform/hipfort hipfort-source

• mkdir hipfort-build; cd hipfort-build

• cmake -DHIPFORT_INSTALL_DIR=${HIPFORT_INSTALL_DIR} ../hipfort-source

• make install

• export PATH=${HIPFORT_INSTALL_DIR}/bin:$PATH

Try a test problem

• ROCM_GPU=`rocminfo |grep -m 1 -E gfx[^0]{1} | sed -e 's/ *Name: *//'`

• cd ../hipfort-source/test/f2003/vecadd

• hipfc -v --offload-arch=${ROCM_GPU} hip_implementation.cpp main.f03

• ./a.out

• cd ../../f2008/vecadd

• hipfc -v --offload-arch=${ROCM_GPU} hip_implementation.cpp main.f03

• ./a.out

Nov 29th, 2022 EuroCC National Competence Centre Sweden

https://github.com/ROCmSoftwarePlatform/hipfort

12 |

[Public]

Other Resources

• Github repository -- https://github.com/ROCmSoftwarePlatform/hipfort

• Lunch & Learn: Joe Schoonover: Porting multi-GPU SELF Fluids code to HIPFort

• Part of the AMD “Lunch & Learn” series

• https://www.youtube.com/watch?v=RGDmu29T4ik

• FortranCon2021: HIPFort: Present and Future Directions for Portable GPU Programming in Fortran

• Alessandro Fanfarillo, AMD staff

• https://www.youtube.com/watch?v=tunH_GUeiPg

Nov 29th, 2022 EuroCC National Competence Centre Sweden

https://github.com/ROCmSoftwarePlatform/hipfort
https://www.youtube.com/watch?v=RGDmu29T4ik
https://www.youtube.com/watch?v=tunH_GUeiPg

13 |

[Public]

NDA NOT REQUIRED | AMD PUBLIC

USE

OpenMP® Offloading

14 |

[Public]

OpenMP® Offload GPU Support

• ROCm™ and AOMP

• ROCm supports both HIP and OpenMP

• AOMP: the AMD OpenMP research compiler, it is used to prototype the new OpenMP features for ROCm

• Released version of AOMP is at /opt/rocm<-version>/llvm/bin in clang and flang compiler.

• Pre-release version of AOMP is at https://github.com/ROCm-Developer-Tools/aomp. This version, which is

undergoing testing for inclusion in ROCm, may have more features, but may also have some bugs.

• GNU compilers:

• Provide OpenMP and OpenACC offloading support for AMD GPUs

• GCC 11: Supports AMD GCN gfx908 (MI100)

• GCC 13: Supports AMD GCN gfx90a (MI200 series)

EuroCC National Competence Centre SwedenNov 29th, 2022

https://github.com/ROCm-Developer-Tools/aomp

15 |

[Public]

OpenMP® Offload GPU Support (continued)

• Siemens® Compilers (Sourcery CodeBench Lite – C/C++/Fortran)

• Siemen’s free GCC-based compilers

• Supports all GCC 11 features, enriched by OpenMP features from GCC’s

development branch and AMD GCN improvements such as support for offloading

debugging.

• https://sourcery.sw.siemens.com/GNUToolchain/release3586

• wget

https://sourcery.sw.siemens.com/GNUToolchain/package16406/public/x86_64-

none-linux-gnu/sourceryg++-2022.09-6-x86_64-none-linux-gnu-x86_64-linux-

gnu.bin

• The changes introduced in the Siemen's compiler are being upstreamed into

GCC.

List of OpenMP Compilers & Tools : https://www.openmp.org/resources/openmp-

compilers-tools/

https://sourcery.sw.siemens.com/GNUToolchain/release3586
https://sourcery.sw.siemens.com/GNUToolchain/package16406/public/x86_64-none-linux-gnu/sourceryg++-2022.09-6-x86_64-none-linux-gnu-x86_64-linux-gnu.bin
https://www.openmp.org/resources/openmp-compilers-tools/

16 |

[Public]

Compilers for AMD/HPE GPU Programming

• If you are on an AMD/HPE HPC system, there are additional options

• Cray Compilers (HPE compilers)

• Provide offloading support to AMD GPUs (OpenMP®, HIP, OpenACC)

• Note that the Cray Fortran has their original OpenMP® and OpenACC implementations

• C/C++ is based on LLVM™ and has support for OpenMP® and OpenACC through LLVM

17 |

[Public]

Understanding the hardware options

• rocminfo

• 110 CUs

• Wavefront of size 64

• 4 SIMDs per CU

Options for !omp teams target

• num_teams(220): Multiple number of workgroups with regards the

compute units

• thread_limit(256): Threads per workgroup

• Thread limit is multiple of 64

• Teams * thread_limit should be multiple or a divisor of the trip count of

a loop

EuroCC National Competence Centre SwedenNov 29th, 2022

18 |

[Public]

Examples -- Fortran vecadd with OpenMP®

program main

integer :: i, n = 100000

real(8),dimension(:),allocatable :: a, b, c

real(8) :: sum

allocate(a(n), b(n), c(n))

do i=1,n

a(i) = sin(dble(i)*1.0d0)*sin(dble(i)*1.0d0)

b(i) = cos(dble(i)*1.0d0)*cos(dble(i)*1.0d0)

enddo

!$omp target teams distribute parallel do simd map(to: a(1:n),b(1:n)) map(from: c(1:n))

do i=1,n

c(i) = a(i) + b(i)

enddo

sum = 0.0d0

do i=1,n

sum = sum + c(i)

enddo

sum = sum/dble(n)

write(*,'("Final result: ",f10.6)') sum

deallocate(a, b, c)

end program

Nov 29th, 2022 EuroCC National Competence Centre Sweden

19 |

[Public]

Examples -- Fortran vecadd with OpenMP® -- environment
module load aomp

export FC=${AOMP}/bin/flang

The makefile uses the ${FC} environment variable so that different Fortran compilers can be used

The ROCm™ module may need to be loaded for the calculation to be able to run on the GPU.

If there is no module, this is what is necessary to set.

Note that there is a version of AOMP installed at /opt/rocm<-version>/llvm/bin

export AOMP=<path_to_aomp install>

export PATH=${AOMP}/bin:${PATH}

export FC=${AOMP}/bin/flang

For more verbose debugging output during run

export LIBOMPTARGET_KERNEL_TRACE=1

export LIBOMPTARGET_INFO=$((0x20 | 0x02 | 0x01 | 0x10))

Nov 29th, 2022 EuroCC National Competence Centre Sweden

20 |

[Public]

Examples -- Fortran vecadd with OpenMP® -- Makefile
default: vecadd

all: vecadd

ROCM_GPU ?= $(strip $(shell rocminfo |grep -m 1 -E gfx[^0]{1} | sed -e 's/ *Name: *//'))

ifeq ($(notdir $(FC)), flang)

OPENMP_FLAGS = -fopenmp --offload-arch=$(ROCM_GPU)

FREE_FORM_FLAG = -Mfreeform

else ifeq ($(notdir $(FC)), amdflang)

OPENMP_FLAGS = -fopenmp --offload-arch=$(ROCM_GPU)

FREE_FORM_FLAG = -Mfreeform

else ifeq ($(notdir $(FC)), ftn)

OPENMP_FLAGS = -homp #the craype-accel-amd-gfx* module sets the architecture

FREE_FORM_FLAG = -ffree

else

OPENMP_FLAGS = -fopenmp -foffload=-march=${ROCM_GPU} -fopt-info-optimized-omp

FREE_FORM_FLAG = -ffree-form

endif

FFLAGS = -g -O3 ${FREE_FORM_FLAG} ${OPENMP_FLAGS}

LDFLAGS = ${OPENMP_FLAGS}

vecadd: vecadd.o

$(FC) $(LDFLAGS) $^ -o $@

clean:

rm -f *.o vecadd *.mod

Nov 29th, 2022 EuroCC National Competence Centre Sweden

21 |

[Public]

Summary of OpenMP® offloading across AMD compilers

• For AOMP LLVM™ compiler:

• Compile succeeded, ran on the GPU

• For GCC compiler:

• Compile succeeded, did not run on the GPU

• For Siemens® GCC compiler:

• Compile succeeded, ran on the GPU

• For HPE compiler:

• Compile succeeded, ran on the GPU

Note that the GCC compiler is not built to run the calculations on the AMD GPU and just ran on the CPU.

The other three compilers successfully compiled and ran the calculation on the AMD GPU.

Exercises:

• Try modifying the program to put the initialization of the arrays on the GPU

• Test your own OpenMP Fortran application and report any issues with any of these compilers

Nov 29th, 2022 EuroCC National Competence Centre Sweden

22 |

[Public]

NDA NOT REQUIRED | AMD PUBLIC

USE

OpenACC

23 |

[Public]

OpenACC compilers

• OpenMP is the primary directive-based language for AMD

• But compilers based on GCC can be set up with OpenACC support

• Siemen's® sourcery compiler is one option

• Cray Fortran compilers have support for OpenACC version 2.6 + a little???

• LLVM™ based compilers are focusing on OpenMP but have said they will support an OpenACC to

OpenMP® translation

Nov 29th, 2022 EuroCC National Competence Centre Sweden

24 |

[Public]

Examples -- Fortran vecadd with OpenACC
program main

integer :: i, n = 100000

real(8),dimension(:),allocatable :: a, b, c

real(8) :: sum

allocate(a(n), b(n), c(n))

do i=1,n

a(i) = sin(dble(i)*1.0d0)*sin(dble(i)*1.0d0)

b(i) = cos(dble(i)*1.0d0)*cos(dble(i)*1.0d0)

enddo

!$acc parallel loop copyin(a(1:n),b(1:n)), copyout(c(1:n))

do i=1,n

c(i) = a(i) + b(i)

enddo

sum = 0.0d0

do i=1,n

sum = sum + c(i)

enddo

sum = sum/dble(n)

write(*,'("Final result: ",f10.6)') sum

deallocate(a, b, c)

end program

Nov 29th, 2022 EuroCC National Competence Centre Sweden

Only change from

OpenMP version

25 |

[Public]

Examples -- Fortran vecadd with OpenACC -- environment
module load rocm sourceryg++

export FC=<path-to-siemens>/bin/x86_64-none-linux-gnu-gfortran

The makefile uses the ${FC} environment variable so that different Fortran compilers can be used

The ROCm™ module may need to be loaded for the calculation to be able to run on the GPU.

If there is no module, this is what is necessary to set.

export PATH=<path-to-siemens>/bin:${PATH}

export INCLUDE=<path-to-siemens>/include:${INCLUDE}

export LD_LIBRARY_PATH=<path-to-siemens>/lib64:/opt/rocm<-version>/lib:${LD_LIBRARY_PATH}

export MANPATH=<path-to-siemens>/bin:${MANPATH}

export FC=<path-to-siemens>/bin/x86_64-none-linux-gnu-gfortran

Yes, that is really the compiler name. We've soft linked it to srcy-gfortran for ease of use.

For more verbose debugging output during run

export GCN_SUPPRESS_HOST_FALLBACK=true

export GCN_DEBUG=1

Nov 29th, 2022 EuroCC National Competence Centre Sweden

26 |

[Public]

Examples -- Fortran vecadd with OpenACC -- Makefile
default: vecadd

all: vecadd

ROCM_GPU ?= $(strip $(shell rocminfo |grep -m 1 -E gfx[^0]{1} | sed -e 's/ *Name: *//'))

UNAMEP = $(shell uname -p)

ROCM_CPUTARGET = $(UNAMEP)-pc-linux-gnu

ROCM_GPUTARGET ?= amdgcn-amd-amdhsa

ifeq ($(notdir $(FC)), ftn)

OPENMP_FLAGS = -hacc #the craype-accel-amd-gfx* module sets the architecture

FREE_FORM_FLAG = -ffree

else

OPENACC_FLAGS = -fopenacc -foffload=-march=${ROCM_GPU} -fopt-info-optimized-omp

FREE_FORM_FLAG = -Mfreeform

endif

FFLAGS = -g -O3 ${FREE_FORM_FLAG} ${OPENACC_FLAGS}

LDFLAGS = ${OPENACC_FLAGS}

vecadd: vecadd.o

$(FC) $(LDFLAGS) $^ -o $@

clean:

rm -f *.o vecadd *.mod

Nov 29th, 2022 EuroCC National Competence Centre Sweden

27 |

[Public]

Summary of OpenACC across AMD compilers

• For Siemens® GCC compiler:

• Compile succeeded, ran on the GPU

• For HPE compiler:

• Compile succeeded, ran on the GPU

Only the Siemens® GCC and HPE compilers work for the OpenACC code for AMD GPUs

Using CRAY_ACC_DEBUG=[1,2,3] can help expose what is happening with the application while running

• –hlist=aimd and –hmsgs will give more detail during the compilation

Exercises:

• Try modifying the program to put the initialization of the arrays on the GPU

• Test your own OpenACC Fortran application and report any issues with any of these compilers

Nov 29th, 2022 EuroCC National Competence Centre Sweden

Summary

EuroCC National Competence Centre SwedenNov 29th, 2022

29 |

[Public]

OpenMP® offloading and OpenACC

• Many features are still being added to Fortran compilers

• Use the latest compiler version

• Expect features to be added with every release

• HPE Fortran compilers are more mature and may be the best choice if they are available, especially in the

short term

• OpenMP is getting stronger development support

• May want to transition from OpenACC to OpenMP in the longer term

• Please report any compiler issues so that they can continue to be improved

EuroCC National Competence Centre SwedenNov 29th, 2022

30 |

[Public]

Some common error reports

Nov 29th, 2022 EuroCC National Competence Centre Sweden

Host region (7ffc4df0dd20 to 7ffc4df1dd20) overlaps present region (7ffc4df19e80

to 7ffc4df22e80 index 42) but is not contained for A in source.f90

Data is mapped to device but is not deleted/released!

HSA_STATUS_ERROR_MEMORY_FAULT: Agent attempted to access an

inaccessible address. code: 0x2b

Data is not present on GPU!

Thank you!

EuroCC National Competence Centre SwedenNov 29th, 2022

32 |

[Public]

Disclaimer
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions,

and typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons, including

but not limited to product and roadmap changes, component and motherboard version changes, new model and/or product releases,

product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has

risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to update or otherwise correct

or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the content hereof

without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS

HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS

INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS

FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT,

SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD

IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

AMD, the AMD Arrow logo, ROCm and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this

publication are for identification purposes only and may be trademarks of their respective companies.

The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board.

Git and the Git logo are either registered trademarks or trademarks of Software Freedom Conservancy, Inc., corporate home of the Git Project, in

the United States and/or other countries

HPE is a registered trademark of Hewlett Packard Enterprise Company and/or its affiliates.

LLVM is a trademark of LLVM Foundation

Siemens is a registered trademark of Siemens Product Lifecycle Management Software Inc., or its subsidiaries or affiliates, in the United States

and in other countries

© 2022 Advanced Micro Devices, Inc. All rights reserved.

EuroCC National Competence Centre SwedenNov 29th, 2022

