ENCCS Training Workshop

BigDFT Session

Flexibilities of wavelets as a computational basis set for large-scale electronic structure calculations

Luigi Genovese

L_Sim - CEA Grenoble - France

November 17, 2022

MaX Center of Excellence

Large-Scale DFT

Luigi Genovese

The BigDFT project

Poisson Solver Implicit Solvents

BigDFT compilation

erspectives
n Practice

Origin of the BigDFT project

Large-Scale DFT

uigi Genovese

STREP European project: BigDFT(2005-2008)

In the beginning: Four partners, 15 people

Now: around 10 active developers, Grenoble, Basel,

Bristol, Catania, Trieste, Kobe

Used in production since twelve years.

Aim: To develop an ab-initio DFT code based on Daubechies Wavelets, to be integrated in ABINIT.

BigDFT 1.0 → January 2008

Why have we done this?

- Test the potential advantages of a new formalism
- A lot of outcomes and interesting results
 - Future opportunities and ideas

project

Poisson Solver

BigDFT

erspectives

Daubechies wavelets

Large-Scale DFT

Wavelets

A basis with optimal properties for expanding localised information

- Localised in real space
- Smooth (localised in Fourier space)
- Orthogonal basis
- Multi-resolution basis
- Adaptive
- Systematic

Applied in several domains Interesting for DFT

The BigDFT project Wavelets

Poisson Solver

igDFT ompilation

erspectives Practice

A brief description of wavelet theory

Large-Scale DFT

uigi Genovese

A Multi-Resolution real space basis

All functions w/ compact support, centered on grid points. In the wavelet theory we have two kind of basis functions.

Scaling Functions

(SF)

Wavelets

(W)

The functions of low resolution level are a linear combination of high-resolution functions.

Contain the DoF needed to complete the information lacking due to the coarseness of the resolution.

$$= \frac{1}{2} \cdot \prod \cdot + \frac{1}{2} \cdot \prod \cdot$$

Increase the resolution without modifying grid space

SF + W = Degrees of Freedom of SF of higher resolution

Wavelets

Implicit Solvents

compilation

In Practice

Wavelet properties: adaptivity

uigi Genovese

Adaptivity

Resolution can be refined following the grid point.

The grid is divided in Low (1 DoF) and High (8 DoF) resolution points.
Points of different resolution belong to the same grid.

Empty regions must not be "filled" with basis functions.

Localization property, real space description

Optimal for big & inhomogeneous systems, highly flexible

The BigDFT project

Implicit Solvents

ompilation

Perspectives
In Practice

The absolute accuracy of the calculation is directly proportional to the number of the basis functions

Two parameters for tuning the basis

- The grid spacing hgrid
- The extension of the Low resolution points crmult

project Wavelets

Poisson Solver Implicit Solvents

BigDFT compilation

Perspectives
n Practice

Optimal for inhomogeneous systems

Large-Scale DFT

Poisson Solver Implicit Solvents

BigDFT compilation

Perspectives In Practice

Opportunitie

Enables a systematic approach for molecules

Considerably faster than Plane Waves codes. the above run :10 (5) times faster than ABINIT (CPMD) Charged systems can be treated explicitly with the same time

A DFT code conceived for HPC (www.bigdft.org)

- DFT calculations up to many thousands atoms
- An award-winning HPC code

 BigDFT has been conceived for massively parallel heterogeneous architectures since more than 10 years (MPI + OpenMP + GPU)

project Wavelets

Poisson Solver Implicit Solvents

BigDFT compilation

Perspectives
In Practice

Opportunities

Code able to run routinely on different architectures

- GPU accelerators since the advent of double-precision GPGPU (2009)
- Various large calculation projects since 10 years
- ✓ A code conceived for supercomputers

A flexible formalism

Large-Scale DFT

uigi Genovese

Flexible Boundary Conditions

- Isolated (free) BC
- Wires BC
- Surfaces BC
- Periodic (3D) BC

project

Wavelets

Poisson Solver

ligDFT ompilation

erspectives Practice

Opport

Systematic approach

Only relevant degrees of freedom are taken into account Boundary conditions can be implemented explicitly

E.g.: Surfaces BC

2D Periodic + 1D isolated Optimal to treat dipolar systems without corrections version 1.9.3

Large-Scale DFT

he BigDFT

Poisson Solver

BigDFT compilation

Perspectives

Opportunities

A code both for Solid-State and Quantum Chemistry

- 3D periodic, Surfaces and Free BC (← Poisson Solver)
- Very high precision (analytic KS operators)
- Usage of analytic HGH pseudopotentials
- AE accuracy, benchmarked in G2-1, S22, DeltaTest

Present functionalities

Traditional functionalities for GS Kohn-Sham DFT (including metals, Hybrid Functionals), LR-TDDFT, empirical VdW Exhaustive library of Structural Prediction, O(N) calculations

Available Functionalities

Large-Scale DFT

Luigi Genovese

Non-Exhaustive List of Functionalities

	$O\left(\mathcal{N}^3\right)$	$O(\mathcal{N})$	fragment
MPI and OpenMP	V	V	V
GPUs	V	×	×
free/wire/surface boundary conditions	V	V	V
periodic orthorhombic cells	V	V	V
periodic non-orthorhombic cells		in progress	
k-points	V	×	×
forces (geometry optimizations, MD)	V	V	×
metals	V	V	V
hybrid functionals (no k-points)	V	×	×
spin polarization	V	V	in progress
explicit charges (free BC only)	V	V	V
external electric field (free/surface BC only)	V	V	V
electrostatic embedding	V	V	~
structure searching	V	V	~
empirical Van der Waals (free BC only)	V	V	~
Raman spectra		in progress	
time-dependent DFT	~	×	X
constrained DFT (no spin or forces)	×	in progress	V

project

Wavelets

Implicit Solvents

BigDFT compilation

erspectives Practice

Interpolating SF Poisson Solver

Large-Scale DFT

_uigi Genovese

(Screened) Poisson Equation for any BC in vacuum

Non-orthorhombic cells (periodic, surface BC):

$$(\nabla^2 - \mu_0^2)V(x, y, z) = -4\pi \rho(x, y, z)$$

Machine-precision accuracy J. Chem. Phys. 137, 13 (2012)

Extended to implicit solvents (JCP 144, 014103 (2016))

Future developments

Range-separated

$$\frac{1}{r} \left[\operatorname{erf} \frac{r}{r_0} + \operatorname{erfc} \frac{r}{r_0} \right]$$

roject _{Wavelets}

Implicit Solvents

BigDFT compilation

erspectives

oportunities

Hybrid Functionals

(JPCM 30 (9),095901 (2018))

UO ₂ systems:			
Atoms	Orbitals		
12	200		
96	1432		
324	5400		
768	12800		
1029	17150		

project
Wavelets
Poisson Solver
Implicit Solvents

compilation Perspectives

nnortunities

Polarizable Continuum Models

Large-Scale DFT

uigi Genovese

Poisson solver for implicit solvents JCP 144, 014103 (2016)

Allows an efficient and accurate treatment of implicit solvents
The dielectric function determine the cavity where the solute is defined.

The cavity can be

- rigid (PCM-like)
- determined from the Electronic Density (SCCS approach)
- Can treat various BC (here TiO₂ surface)

roject Vavelets

Implicit Solvents

BigDFT compilation

Perspectives
In Practice

Performances in full SCF runs

uigi Genovese

Blackbox-like usage

The Generalized PS only needs few iterations of the vacuum poisson solver

Time-to-solution

Timings for the protein PDB ID: 1y49 (122 atoms) in water

- Full SCF convergence
 49 s
- Solvent/vacuum runtime ratio $\alpha = 1.16$

project Wavelets

Implicit Solvents

BigDFT compilation

Perspective
In Practice

Use locality of the basis set

uigi Genovese

Wavelets

an ideal basis for electronic structure calculations – flexible, systematic and localized

Linear-scaling DFT

allows us to access very large system sizes via the use of a localized minimal basis set

The BigDFT project
Wavelets

Poisson Solver
Implicit Solvents

BigDFT compilation

Perspectives
In Practice

pportunities

Combining the two is now possible!

Code release and distribution

Large-Scale DFT

uigi Genovese

Modularity first

BigDFT-suite: collection of different independent libraries with own build system.

Third-party libraries (green) and upstream modules (blue)

 Dependencies expressed easily in the jhbuild-based bundler. oroject Wavelets

Implicit Solvents

SigDF1 compilation

Perspective:

- Lots of possible options
- Very versatile
- Python configuration files can be shared, many provided

Implicit Solvents

Wavelets

In this training you will...

- Have an overview of BigDFT code API
- See how to employ some of the functionalities of this code from a local workstation
- Work to some pre/post processing of the code data/results
- Run some calculations BigDFT in a production environment (supercomputer)

In this training you will **not**...

- Perform a throughout overview of the functionalities
- Have lot of time to inspect code performance
- bring BigDFT back home!

From Cubic Scaling to Multiscale

Across Lengthscales

evel of Approximation

100

- extended orbitals $\rightarrow O(N^3)$
- exploit locality $\rightarrow O(N)$
- exploit repetition $\rightarrow \downarrow \cos O(N)$

Fragments

Localized Orbitals

10K

O(N) DFT

Number of Atoms

Fixed Basis

100K

- larger systems → increasing complexity
- → how to treat complex systems?

Implicit Solvents

Across Lengthscales with Wavelets

- ullet three methods in BigDFT with differing levels of approximation fragment o linear o cubic
- approximations are controllable can estimate or measure errors

Poisson Solver Implicit Solvents

ompilation

'erspectives

n Practice

A new mindset is emerging

Large-Scale DFT

Received: 28 April 2021

Revised: 31 August 2021 | Accepted: 1 September 2021

DOI: 101002/sucms 1574

ADVANCED REVIEW

WILFY

Density functional theory calculations of large systems: Interplay between fragments, observables, and computational complexity

William Dawson¹ Augustin Degomme² Martina Stella³ Takahito Nakajima¹ | Laura E. Ratcliff³ | Luigi Genovese²

¹RIKEN Center for Computational Science, Kobe, Japan

²Université Grenoble Alpes, INAC-MEM, L. Sim, Grenoble, France

3Department of Materials, Imperial College London, London, UK

Abstract

In the past decade, developments of computational technology around density functional theory (DFT) calculations have considerably increased the system sizes which can be practically simulated. The advent of robust high performance computing algorithms which scale linearly with system size has Wavelets

Implicit Solvents

Example: fragment in peptides

Large-Scale DFT

Luigi Genovese

project Wavelets

Poisson Solver
Implicit Solvents

compilation

erspectives

In Practice

Example 2: the same in protein

Large-Scale DFT

Luigi Genovese

rne BigDFT project Wavelets

Poisson Solver Implicit Solvents

igDFT ompilation

erspectives

In Practice

Opportunitie:

Large Uncertain Structure - - → Reduction To Core Pieces - - → Fitting The Picture Together

Automatic Fragmentation of Systems

Large-Scale DFT

uigi Genovese

Small Molecules - From Atoms Up

- Automatic: We can re-organize a system into fragments without prior knowledge.
- Robust: Non-expert DFT users can interpret the information coming out of DFT calculations.

project Wavelets

Implicit Solvents

ompilation

Practice

pportunities

Large Biomolecules

- Proteins are often already divided into fragments based on their Amino Acids.
- Yet not all amino acids are equally good fragments. We can combine them together to build a more coherent picture.

Lots of Systems of interest in Biology

Large-Scale DFT

uigi Genovese

Large systems are routinely accessible

Example: 1400 Residues (One Monoclonal Antibody); 22 thousand atoms: 1.2h of walltime on 32 nodes of IRENE-Rome Machine

Reduce (identify) the interactors in a biological system

project Wavelets

Implicit Solvents

ompilation

erspectives

Perspectives (QM/QM)

Large-Scale DFT

iigi Genovese

The BigDFT project _{Wavelets}

Poisson Solve Implicit Solvents

compilation

erspectives

Defective Graphene with Fragments

Luigi Genovese

The BigDFT project _{Wavelets}

Poisson Solver Implicit Solvents

mpilation

In Practice

Opportunities

close to the defect: strong perturbation

far from the defect: bulk-like behaviour

୬ ୧୯

Quantum Mechanics (DFT) may be needed

- Whenever DFT is necessary to study the electronic structure of the systems, it is important to provide the tools to interpret experimental data
- Need of new tools developed especially for the study of biological systems
- The BigDFT code provide a new paradigm of analysis

Main ingredients

- PDB files from neutron crystallography, Cryo-TEM, MD simulations, ...
- Remotely accessible (super) computing platform
- A post-processing infrastructure easy-to-use

oroject Wavelets

Poisson Solver
Implicit Solvents

ompilation

In Practice

Quantum-as-a-Service approach

Luigi Genovese

A dedicated Users' platform?
Collaboration L_Sim (CEA Grenoble) and CS Group (ILL)

PyBigDFT

Pre- and Postprocessing of simulations are performed via a Python module

HPC

(AiiDA

framework)

Calculations triggered remotely on a super-computer from a Jupyter notebook Userclub
Simulation can

be processed from a platform next to experimental data

(ILL User Club

access)

Database

Large databases of biological systems can be created project Wavelets

Implicit Solvents

compilation

In Practice

Opportunities

New insights for (neutron) data analysis

- Dedicated routine for neutron crystallography data interpretation
- Possible improvement from other structural (e.g. SANS)
 data

Summary

- DFT shouldn't be employed for large systems just on the hope of accuracy, but instead with the goal of insight.
- Complexity Reduction We have developed a way to use information from DFT to generate coarse-grained views of a system by defining reliable fragments and measuring their interaction.

project Wavelets

Poisson Solver
Implicit Solvents

BigDFT compilation

Perspectives
In Practice

)nnortunities

From Material Science to other communities

- The complexity reduction framework presented here originate from our expertise on Physics and Material Science.
- Postprocessing can be performed even by non-specialtists.
- This combination create interesting opportunities for interdisciplinar collaborations.

Interdisciplinary considerations

Large-Scale DFT

Luigi Genovese

Discussion with biologists

We are <u>not</u> referring to a set of established techniques:

- New objects, definitions, descriptors
- The Physico-Chemical outcome (and only this!) should be highlighted

Difference (I have found) in the approach: example

- For a Physicist the procedure is the ground basis for the result
- For Biologists the result is the ground basis for the procedure

Interdisciplinarity requires

Rigor, Trust, Vision, Committment The right guys

The BigDFT project Wavelets

Poisson Solver
Implicit Solvents

gDFT ompilation

rspectives Practice

Acknowledgments

Large-Scale DFT

igi Genovese

Bristol L. E. Ratcliff

Trieste M. Stella

Kobe W. Dawson, T. Nakajima

Boston M. Zaccaria, B. Momeni

Grenoble L. Beal, S. Dechamps, D. Caliste, LG

ILL V. Cristiglio

Rome M. Reverberi

Catania G. Fisicaro

project

Wavelets

Poisson Solver

igDFT

erspectives