

MaX: Materials Design at the Exascale [Advacing electronic structure community codes in HPC]

Andrea Ferretti [CNR-NANO, Modena, Italy]

MaX "Materials Design at the Exascale", has received funding from the European Union's Horizon 2020 project call H2020-INFRAEDI-2018-1, grant agreement 824143

the exascale challenge

in high performance computing

- 10^18 flops/s
- 10^18 Bytes
- abrupt technology changes
- action is needed for full exploitation
- heterogeneous machines (multiple HW and SW stacks)

MareNostrum V

Ser Ser Source of the second s

Frontier (@ORNL): HDE+AMD => 1100 PFlops

Leonardo: Atos + NVIDIA A100 (CUDA backend) => 250 PFlops

LUMI: CRAY + AMD cards (ROCm, HIP) => 550 PFlops

exascale opportunity: complexity

- Graphene / Transition Metal / Ir (111)
- clear experimental evidence for moire' pattern (lattice mismatch) and Gr corrugation
- 10x10 Graphene, 9x9 Iridium => 605 atoms / unit cell
- Precise treatment of the structure is crucial for modelling

- Avvisati et al, Nano Lett. 18, 2268 (2018)
- Calloni et al, J. Chem. Phys. **153**, 214703 (2020)
- Cardoso et al, Phys. Rev. Mat. 5, 014405 (2021)
- Pacile' et al, Appl. Phys. Lett. **118**, 121602 (2021)

exascale opportunity: accuracy

pubs.acs.org/NanoLet

Bright Electroluminescence from Single Graphene Nanoribbon Junctions

Michael C. Chong,[†][©] Nasima Afshar-Imani,[†] Fabrice Scheurer,[†] Claudia Cardoso,[‡] Andrea Ferretti,[‡] Deborah Prezzi,^{*,‡} and Guillaume Schull^{*,†}[©]

- clear experimental evidence of tip-induced photoluminescence from suspended ribbons
- tip needs to be in chemical contact with the ribbon (C-term.)
- excitation energy significantly smaller than extended GNR => GNR termination
- Use of manybody perturbation theory methods (MBPT) (GW and BSE) to describe spsectroscopy

A monolayer transition-metal dichalcogenide as a topological excitonic insulator

Daniele Varsano 1, Maurizia Palummo², Elisa Molinari^{1,3} and Massimo Rontani ¹

- computational search and detection of the long-sought **excitonic insular phase**
- **MBPT required** to describe the physics of the problem
- extreme accuracy needed

high-throughput screening

Singh et al, Nature Commun **10**, 443 (2019)

in materials science

Mounet, Gibertini, et al, Nature Nanotech **13** (2018)

nature nanotechnology

Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds

Nicolas Mounet^{©1*}, Marco Gibertini^{©1}, Philippe Schwaller^{©1}, Davide Campi¹, Andrius Merkys^{©12}, Antimo Marrazzo^{©1}, Thibault Sohier^{©1}, Ivano Eligio Castelli^{©1}, Andrea Cepellotti¹, Giovanni Pizzi^{©1} and Nicola Marzari^{1*}

ab initio materials modelling

- parallel optimization and performance portability are key to keep exploiting HPC resources
- All MaX flagship codes released for production with GPU support

Yambo

&AiiDA

Yambo

- leverage the convergence of HPC with automated high throughput computing and high-performance data analytics
- hardware-software codesign in practice

- widely used open source, community codes in electronic structure
- parallel optimization and performance portability are key to keep exploiting HPC resources
- All MaX flagship codes released for production with GPU support
- large effort on education and training: hands-on schools and hackathons

training material available !

http://www.max-centre.eu/

Yambo parallel performance

heterogeneous architectures: **MPI** + OpenMP + CUDA

optimisation of MPI+OpenMP

parallelism

working at scale (bottleneck identification and solution)

system size: 72+1 atoms, 2000 bands, 6 Ry for Xo repr (N=1317); ~290 occ states, 8 kpts.

data available at: <u>http://www.gitlab.com/</u> max-centre/Benchmarks

Yambo: performance (GPU)

heterogeneous architectures: **MPI + OpenMP + CUDA**

x14 wrt SKL (10 nodes) GPU: P9+**V100**

x1.4 wrt V100 (2 nodes)

complete GW workflow for defected TiO2 (rutile)

- small system, stress test
- I MPI task/GPU
- data obtained on Marconi100, 4 V100 GPUs/node
 and DGX arch, 8 A100 GPUs/node

system size: 72+1 atoms, 2000 bands, 6 Ry for Xo repr (N=1317); ~290 occ states, 8 kpts.

data available at: <u>http://www.gitlab.com/</u> <u>max-centre/Benchmarks</u>

Yambo: performance (GPU)

Juwels-Booster: 4 Nvidia A100 / node

runs: up to 360 J-B nodes about 40% of the whole machine (960 nodes)

data available at: <u>http://www.gitlab.com/</u> max-centre/Benchmarks

electronic structure

INSIGHT | REVIEW ARTICLE https://doi.org/10.1038/s41563-021-01013-3

Check for updates

Electronic-structure methods for materials design

Nicola Marzari¹², Andrea Ferretti² and Chris Wolverton³

Density functional theory (DFT):

- applications ranging from materials modelling, to quantum chemistry and drug design
- compatible with high performance computing and highthroughput screening

beyond DFT:

nature

materials

- multiple hierarchies can be climbed
 - wavefunction-based methods
 - many-body perturbation theory and spectral methods
 - ▶ time-dependent and non-equilibrium methods

Thanks !

company/max-centre/

http://www.max-centre.eu/

youtube/channel/MaX Centre eXascale