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  What is “exact” in the EMTO method?

PRB Referee report (2004):

“…The use of the term “exact” in connection with the EMTO label I find 
inappropriate and unfortunate, although I recognize that by this time it is 
written in stone. No significant aspect of any modern band structure 
method is exact…”

The Schrödinger equation is solved “exactly” for the MT potential

• “exact” kinetic energy

• “exact” charge density



Density Functional Theory
Consider a system of N interacting 
electrons. The total energy is: 

Total energy is a functional of the electron 
density n(r)

W. KohnP.C. Hohenberg

1964



Minimizing the total energy functional



Restructuring the total energy functional

We separate the known parts of E[n]
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known terms (large terms)

kinetic energy of non-interacting electrons

Hartree potential

external potential

[n]Exc exchange-correlation energy
and the rest (small terms)



From the original interacting system to 
the non-interacting model system

Interacting electrons in external 
potential: 
(original many-body problem) Ve([n];r)

δn(r)
[n]δEr)([n];v(r)vr)v([n]; xc

He ++= V([n];r)

Non-interacting electrons moving in an effective potential:
Note: the potential involves the functional derivative of the xc energy



We can solve the non-interacting system which by construction leads to the same 
density as the real system 
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Self consistent solution:

input = output

Effective potential:

Kohn-Sham equations

In KS scheme, the 
wave function 
depends only on 
the position of 
one single electron 

Compare with 
Schrödinger eq.
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Two methods to get Kohn-Sham orbitals:

1. Solve Kohn-Sham equation directly on a real-space grid (grid methods). 

2. Use some basis functions for representation of Kohn-Sham orbitals:  

ψ p(r) = Cpiϕi
i
∑ ;               ϕi  are basis functions

The choice of the basis functions in principle does not matter for the final result, 
however, if it is done in a clever way, it makes calculations efficient.

The great variety of first-principles methods is about this point: optimization of the basis. 
Our computers are not powerful enough even to solve accurately Kohn-Sham equations 
without using special numerical tricks. 



ψ = ciϕi
i
∑ ψ H ψ = ci

*cjHij     where Hij = drϕi
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In general (if the basis functions are not orthonormal): 
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Here, ci are the coefficients to be found. δ ci
*cjHij
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cj Hij − εSij( ) = 0
j
∑ This is a homogeneous set of linear equations for c and ε

det H − εS[ ] = 0

δ ψ H ψ − E ψ ψ − N( )⎡⎣ ⎤⎦ δψ = 0

it is called overlap matrix

It has non-trivial (not 0) solutions only if the determinant vanishes: 
This equation gives the one electron energies (ε)



The EMTO method,
Implementation 

(1998-2001)
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The EMTO formalism
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Local free electron solution (constant potential)
Partial wave (solution of the
spherical Schrödinger eq.)



Solutions for the constant potential (Bessel and Neumann functions):
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Boundary conditions require a multi-center form:



The screened spherical waves

Linear combinations of the Bessel and Neumann functions:

Screening matrix:
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The local free electron solution
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The kink cancellation condition

It is solution for the full Schrödinger equation if the second and third terms vanish:

Overlap matrix :

The Exact Muffin-Tin Orbitals:



Slope matrix



The effect of the hard (screening) sphere radius



Parametrization of the slope matrix

Slope matrix and first derivative (3rd order single-center expansion)



Parametrization of the slope matrix

Slope matrix and first derivative (6th order single-center expansion)



Parametrization of the slope matrix

Slope matrix and first derivative (6+6th order two-center expansion)



Accuracy: slope matrix and charge density



Optimized Overlapping Muffin-Tin potential

O. K. Andersen, et al. (1994)

vFP(r)@vmt(r)

vmt(r)=v0+SR[vR(rR)-v0]



Optimized Overlapping Muffin-Tin potential
Examples: Fe-C



Coherent Potential Approximation

Soven, Győrffy
1960’, 1970’ CPA 

effective 
medium

A1 A3A2

A1, A2, A3, A4, A5,... , AN

We solve N single impurity problems
(order-N in terms of alloy components)



The EMTO-CPA method for alloys

Similar like in EMTO but now it includes the impurity potentials and Green’s functions.

Impurity Green’s function (Dyson eq.)

Kink cancelation for the effective medium

Effective medium Green’s function

Self-consistent solution is needed.



Total energy in EMTO/EMTO-CPA 
(The Full Charge Density method) 

After we solve the KS equation

we construct the total charge density 

and then compute the 
total energy (valid both 
for ordered and disordered 
systems):

The last term is a “small” correction for random alloys (if CPA is involved).
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ci is the concentration for alloy component i



Annex: All integrations over the Wigner-Seitz cells are computed using the 
shape function technique

Most of the 3D integrals are reduced to 1D integrals.

W is the WS cell, 
sc is the circumscribed sphere 
radius



Kinetic energy is computed from the Kohn-Sham wave functions or 
one-electron energies minus a potential dependent term:

The second equation comes from the Kohn-Sham equation.

The first term is the one electron energy or band energy.

Total energy: kinetic energy 



Intracell energy is the Coulomb energy 
between electrons within the unit cell:

Total energy: intracell energy



Intercell (Madelung) energy is the Coulomb energy 
between electrons within different unit cell:

Mutipole moment of the charge density:

Qlm=0 moments for fcc (111) surface

Total energy: intercell energy



Exchange and correlation energy from 3D integration:

Very slow convergence with respect to 
the number of angular mesh points and 
l-truncation.

Total energy: xc energy



Demonstration

Pioneering test 
calculations 



Bulk properties



Surface properties: stress



Demonstration 

Alloys



Elastic properties



Elastic properties



Crystal structure, transformations



Paramagnetic Fe



Paramagnetic Fe



Paramagnetic Fe



Paramagnetic FeCrNi alloys 
(stainless steel)
Stacking-fault energy

•paramagnetic metals
•Tmag~50-100 K
•fcc structure

Fe0.72Cr0.2Ni0.08

Stainless steels



High Entropy Alloys



Theoretical and experimental phase
boundaries in NiCoFeCrAlx-based HEAs

Phase stability of HEAs

AlxCrFeCoNi AlxCrMnFeCoNi

fcc bcc fcc bcc

x 0.651 1.277 0.488 1.658

cAl (%) 13.4 24.2 8.9 24.9

VEC 7.52 6.98 7.56 6.75



Phase stability of HEAs



Theoretical prediction

Elastic properties of HEAs



EMTO-CPA versus VASP-SQS

LLD histograms 
VASP-SQS (bcc NN)Elastic parameters

Mixing energy



Magnetism in HEAs

Modeling based on
Heisenberg Hamiltonian
in combination with
ab initio magnetic exchange
parameters



Magnetism in HEAs



Longitudinal spin fluctuations in HEAs



Thermal properties of HEAs



HEA phase stability, precipitates



Binder phase in hard metals



Plasticity, stacking fault energy of HEAs



(1) EMTO-CPA reproduces well the experimentally observed values and trends 
of the structural and mechanical properties of ordered and random systems

(2) special attention must be paid to the MT potential and 
        single-site approximation

Important features:

•  Localized MT orbitals (similar to the screened KKR)

• Smooth energy dependence of S(e,k)

•  Optimized overlapping MT potential

•  Proper normalization

•  Accurate Full Charge Density

•  Accurate kinetic and total energy

Summary


