graph

$G=(V, E)$

what do the nodes represent?
problem dependent (manual choice)
node / vertex
properties:
id, label (optional), feature (optional)

What do edges represent?
problem dependent (manual choice)
edge
properties:
id, weight (optional), direction (optional),
label (optional), feature (optional)
any subgraph consisting of nodes that by
component
themselves would represent a connected graph

clique
subgraph that is complete (all possible connections exist between the nodes)
relative to a defined node/ vertex v ; $\mathrm{N}(\mathrm{v})$
neighborhood
subgraph that contains all nodes connected to node v (usually not containing v itself)

R1
V
Swedish
Research Research
Council

typically boolean or integer
label
not unique per node / edge
examples: toxicity, group assignment

\qquad
contains information about a node or edge
feature
d-dimensional vector (often of real numbers)

adjacency
matrix

$$
A=\left\{\begin{array}{llllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right\}
$$

EuroHPC
$\stackrel{\text { R }}{\text { 宛 }}$
unweighted:
all edges represented as "1" in adjacency
edge weights
matrix
weighted:
all real numbers possible

edge directions
(directed /
undirected graph)
examples undirected:
collaborations, friendships on facebook
examples directed:
phone calls, Instagram followers

(simplified) a set of adjacent edges that end on the same node they started on
(cyclic / acyclic graph)
directed graphs: travelling only allowed in the direction of the edges

\qquad
node connected to itself via an edge
self-loops
can either be allowed or not
example:

hyperlink networks

completeness

complete graph: a graph in which all possible connections exist

largest connected group = giant
component
disconnected graphs
can feature isolated nodes
leads to block-sparse adjacency matrix

EuroHPC
$\left[\begin{array}{l}\left.E^{\star}{ }^{\star}{ }^{\star} \star \star \star \star{ }^{\star}{ }^{\star}\right]\end{array}\right]$
Elont Uncertakiva

Swedish
Research
Research
Council
nodes can be divided in two sets: all edges only between the two sets, never within a bipartite graphs set
example:
actors and movies, authors and papers

strongly connected graph / component
applies to (components in) directed graphs
strongly connected $=$ there is a path from every node to every other node

multiple edges allowed between two nodes
difference to weighted graphs: each edge

multigraph

 can have its own label / feature / propertiesexample:
collaborations, phone calls

number of edges adjacent (i.e., connected) to a given node
node degrees
example:
node degree of the green node $=3$
average n . d . in a network: $\mathrm{k}=2 \mathrm{E} / \mathrm{N}$

applies only to directed graphs
number of incoming / outgoing edges to /
in- / out-degree
from a given node
example:
in degree of the green node $=1$
out degree of the green node $=2$

EuroHPC
Juarohipc

RE
\underline{V}
Swedish
Research
Research
Council
the shortest path between two nodes example:
shortest path
shortest path between the green nodes = 3
for weighted graphs, the sum of the weights along the path is used

longest shortest path between two nodes
calculate the shortest path for each pair of nodes in the graph, the longest one of these defines the graph parameter
example:
graph diameter $=4$

graph diameter
tree a graph without any cycles

	an edge-preserving bijection between two
graphs G and H exists	
graph	in other words:
each node in G has a corresponding node	
in H, and any two nodes in G are adjacent if	
and only if the corresponding nodes in H	
are also adjacent	

given two graphs G and H, a subgraph of G exists that is isomorphic to H

