graph	a set of nodes and edges G = (V, E)	
node / vertex	what do the nodes represent? problem dependent (manual choice) properties: id, label (optional), feature (optional)	
edge	What do edges represent? problem dependent (manual choice) properties: id, weight (optional), direction (optional), label (optional), feature (optional)	
component	any subgraph consisting of nodes that by themselves would represent a connected graph	
clique	subgraph that is complete (all possible connections exist between the nodes)	
neighborhood	relative to a defined node/ vertex v; N(v) subgraph that contains all nodes connected to node v (usually not containing v itself)	

EuroHPC

RI. SE

ΙΝΝΟνΛ Sweden's Innovation Agency

edge weights	unweighted: all edges represented as "1" in adjacency matrix weighted: all real numbers possible	
edge directions (directed / undirected graph)	examples undirected: collaborations, friendships on facebook examples directed: phone calls, Instagram followers	
cycle (cyclic / acyclic graph)	(simplified) a set of adjacent edges that end on the same node they started on directed graphs: travelling only allowed in the direction of the edges	
self-loops	node connected to itself via an edge can either be allowed or not example: hyperlink networks	8
completeness	complete graph: a graph in which all possible connections exist	
disconnected graphs	largest connected group = giant component can feature isolated nodes leads to block-sparse adjacency matrix	

bipartite graphs	nodes can be divided in two sets: all edges only between the two sets, never within a set example: actors and movies, authors and papers	
strongly connected graph / component	applies to (components in) directed graphs strongly connected = there is a path from every node to every other node	
weakly connected graph / component	applies to (components in) directed graphs weakly connected = there only is a path from every node to every other node if we disregard the edge directions	
multigraph	multiple edges allowed between two nodes difference to weighted graphs: each edge can have its own label / feature / properties example: collaborations, phone calls	
node degrees	number of edges adjacent (i.e., connected) to a given node example: node degree of the green node = 3 average n. d. in a network: k = 2E / N	
in- / out-degree	applies only to directed graphs number of incoming / outgoing edges to / from a given node example: in degree of the green node = 1 out degree of the green node = 2	

VINNOVA Sweden's Innovation Agency

shortest path	the shortest path between two nodes example: shortest path between the green nodes = 3 for weighted graphs, the sum of the weights along the path is used	
graph diameter	longest shortest path between two nodes calculate the shortest path for each pair of nodes in the graph, the longest one of these defines the graph parameter example: graph diameter = 4	
tree	a graph without any cycles	
minimum spanning tree	applies to connected, weighted, undirected graphs spanning tree = tree connecting all of the graph's nodes MST = spanning tree with the smallest sum of edge weights	
graph isomorphism	an edge-preserving bijection between two graphs G and H exists in other words: each node in G has a corresponding node in H, and any two nodes in G are adjacent if and only if the corresponding nodes in H are also adjacent	
subgraph isomorphism	given two graphs G and H, a subgraph of G exists that is isomorphic to H	

