Setup
Local installation
Since this lesson is taught using an HPC cluster, no software installation on your own computer is needed.
Running on LUMI
Interactive job, 1 node, 1 GPU, 1 hour:
$ salloc -A project_465001310 -N 1 -t 1:00:00 -p standard-g --gpus-per-node=1
$ srun <some-command>
Exit interactive allocation with exit
.
Interacive terminal session on compute node:
$ srun --account=project_465001310 --partition=standard-g --nodes=1 --cpus-per-task=1 --ntasks-per-node=1 --gpus-per-node=1 --time=1:00:00 --pty bash
$ <some-command>
Corresponding batch script submit.sh
:
#!/bin/bash -l
#SBATCH --account=project_465001310
#SBATCH --job-name=example-job
#SBATCH --output=examplejob.o%j
#SBATCH --error=examplejob.e%j
#SBATCH --partition=standard-g
#SBATCH --nodes=1
#SBATCH --gpus-per-node=1
#SBATCH --ntasks-per-node=1
#SBATCH --time=1:00:00
srun <some_command>
Submit the job:
sbatch submit.sh
Monitor your job:
squeue --me
Kill job:
scancel <JOB_ID>
Running Julia on LUMI
In order to run Julia with AMDGPU.jl
on LUMI, we use the following directory structure and assume it is our working directory.
.
├── Project.toml # Julia environment
├── script.jl # Julia script
└── submit.sh # Slurm batch script
An example of a Project.toml
project file.
[deps]
AMDGPU = "21141c5a-9bdb-4563-92ae-f87d6854732e"
For the submit.sh
batch script, include additional content to the batch script mentioned above.
#SBATCH --cpus-per-task=2
#SBATCH --mem-per-cpu=1750
module use /appl/local/csc/modulefiles
module load julia
module load julia-amdgpu
julia --project=. -e 'using Pkg; Pkg.instantiate()'
julia --project=. script.jl
An example of the script.jl
code is provided below.
using AMDGPU
A = rand(2^9, 2^9)
A_d = ROCArray(A)
B_d = A_d * A_d
println("----EOF----")
Running on Google Colab
Google Colaboratory, commonly referred to as “Colab”, is a cloud-based Jupyter notebook environment which runs in your web browser. Using it requires login with a Google account.
This is how you can get access to NVIDIA GPUs on Colab:
Visit https://colab.research.google.com/ and sign in to your Google account
In the menu in front of you, click “New notebook” in the bottom right corner
After the notebook loads, go to the “Runtime” menu at the top and select “Change runtime type”
Select “GPU” under “Hardware accelerator” and choose an available type of NVIDIA GPU (e.g. T4)
Click “Save”. The runtime takes a few seconds to load - you can see the status in the top right corner
After the runtime has loaded, you can type
!nvidia-smi
to see information about the GPU.You can now write Python code that runs on GPUs through e.g. the numba library.
Access to code examples
Some exercises in this lesson rely on source code that you should download and modify in your own home directory on the cluster. All code examples are available in the same GitHub repository as this lesson itself. To download it you should use Git:
$ git clone https://github.com/ENCCS/gpu-programming.git
$ cd gpu-programming/content/examples/
$ ls