A first encounter with siesta

13/03/2024 - Federico Pedron

Tutorial files

Source this file:

/leonardo_work/EUHPC_TD02_030/softwares/siesta-5.0beta1/siestarc.sh

This will add SIESTA and all utilities to the path.

Tutorial files

Each day, you should copy the tutorial folder available at

/leonardo_work/EUHPC_TD02_030/siesta-tutorials/day3-Wed

Each tutorial contains a sample submission script (run.sh). Edit it at your own convenience.

Tutorials themselves

You can find all tutorials at:

https://docs.siesta-project.org/projects/siesta/en/latest/tutorials/index.html

A Siesta Documentation	🎓 » Tutorials	😽 Edit on GitLab
earch docs		
	Tutorials	
stalling SIESTA		
utorials	This set of tutorials will guide you in the exploration of Siesta's feature	res.
Setting up the local working environment for the tutorial exercises	Before you do anything else, start here. You need to set up your loca follow the tutorial.	al working environment to
Basics of Siesta		
Intermediate and Advanced Topics	Setting up the local working environment for the tutorial exercise	25
Advanced applications	Design of Gianta	
SISL, Lua and scripting	Basics of Siesta	
ost processing	This section is recommended for all beginners, and also as a refreshe	er for more experienced users.
echnical reference	Set failed in the set of the set	
	 A First Encounter - Part 1: Running SIESTA 	
	 A First Encounter - Part 2: Choosing your level of theory. 	

Submitting a job

```
#!/bin/bash
#SBATCH -J firstEncounterI
#SBATCH -n 8
#SBATCH -t 0:30:00
#SBATCH -o %x-%j.out
#SBATCH -e %x-%j.err
#SBATCH -e %x-%j.err
#SBATCH --partition=boost_usr_prod
#SBATCH --account=EUHPC_TD02_030
#SBATCH -D .
```

```
# DO NOT CHANGE THIS LINE
source /leonardo_work/EUHPC_TD02_030/softwares/siesta-5.0beta1/siestarc.sh
```

```
# EDIT THE CORRECT INPUT AND OUTPUT FILES.
srun -n 8 siesta < ch4.fdf > ch4.out
```

GPUs tomorrow!

The SIESTA method itself is very efficient, so for small systems (less than a 100 atoms), using a GPU is actually detrimental.

Tomorrow we will cover a few solvers for cases with **hundreds** or **thousands** of atoms, in which using accelerators becomes very beneficial.

A look at the inputs

Your first encounter!

Tutorial description:

https://docs.siesta-project.org/projects/siesta/en/latest/tutorials/basic/first-e ncounter/index.html

Tutorial folder:

day3-Wed/01-FirstEncounter_I

What are the main ingredients?

For most basic SIESTA calculations, we need at least two inputs:

• Pseudo potential files (e.g. available in PSML format from <u>http://www.pseudo-dojo.org</u>, or a PSF created with ATOM).

• An fdf file with the input options.

What's in the FDF?

The fdf file contains all relevant input options for our simulation: geometry information, atomic species information, level of theory, basis set information, and a plethora of fine-tuning options.

Let's have a look at the first fdf for this tutorial...

What's in the FDF? System information

What's in the FDF? System geometry

#Unit cell LatticeCon %block Lat 1.000 0. 0.000 1	for the cal stant 15 Ang ticeVectors 000 0.000	lculation		Multiplies the units. The la	all lattice vectors by a constant. Note
0.000 0.	000 1.000				
%endblock	LatticeVecto	ors			
#Atomic co	ordinates				Unit for the stancing an andirectory block. One
AtomicCoor	dinatesForma	at Ang <			Unit for the atomic coordinates block. Can
%block Ato	micCoordinat	tesAndAtom	icSpecies	i	also be "fractional".
0.000	0.000	0.000	1		
1.219	-0.284	-0.377	2		
-0.284	1.219	-0.377	2		Atomic coordinates and species index
-0.140	-0.140	1.219	2		(1 for C 2 for H)
-0.833	-0.833	-0.503	2		(11010, 21011).
%endblock	AtomicCoordi	inatesAnd#	tomicSpecies		

What's in the FDF? Other options

Let's have a look at the outputs...

0_NORMAL_EXIT	H.ion.nc	ch4.FA
BASIS_ENTHALPY	H.ion.xml	ch4.KP
BASIS_HARRIS_ENTHALPY	H.psf	ch4.ORB_INDX
C.gga.psf	INPUT_TMP.45433	ch4.STRUCT_OUT
C.ion	MESSAGES	ch4.XV
C.ion.nc	OUTVARS.yml	ch4.alloc
C.ion.xml	PARALLEL_DIST	ch4.bib
C.psf	TIMES	ch4.contrib.EPSIMG
CLOCK	ch4.BONDS	ch4.fdf
FORCE_STRESS	ch4.BONDS_FINAL	ch4.out
H.gga.psf	ch4.DM	ch4.times
H.ion	ch4.EIG	fdf.20230921T093943.534.log

What are all of these files???

Density Matrix Restart	Forces on atoms	Coordinate Restart
0_NORMAL_EXIT	H.ion.nc	ch4.FA
BASIS_ENTHALPY	H.ion.xml	ch4.KP
BASIS_HARRIS_ENTHALPY	H.psf	ch4.ORB_INDX
C.gga.psf	INPUT_TMP.45433	ch4_STRUCT_OUT
C.ion	MESSAGES	ch4.XV
C.ion.nc	OUTVARS.yml	ch4.alloc
C.ion.xml	PARALLEL_DIST	ch4.bib
C.psf	TIMES	ch4.contrib.EPSIMG
CLOCK	ch4.BONDS	ch4.fdf
FORCE_STRESS	ch.BONDS_FINAL	ch4.out
H.gga.psf	ch4.DM	ch4.times
H.ion	ch4.EIG	fdf.20230921T093943.534.log
	1	
Forces and Stress		
KS eigenv	alues	Timing information

What are all of these files???

_NORMAL_EXIT	H.ion.nc	ch4.FA
BASIS_ENTHALPY	H.ion.xml	ch4.KP
BASIS_HARRIS_ENTHALPY	H.psf	ch4.ORB_INDX
C.gga.psf	INPUT_TMP.45433	ch4.STRUCT_OUT
.ion	MESSAGES	ch4.XV
.ion.nc	OUTVARS.yml	ch4.alloc
.ion.xml	PARALLEL_DIST	ch4.bib
C.psf	TIMES	ch4.contrib.EPSIMG
CLOCK	ch4.BONDS	ch4.fdf
ORCE_STRESS	ch4.BONDS_FINAL	ch4.out
l.gga.psf	ch4.DM	ch4.times
l.ion	ch4.EIG	fdf.20230921T093943.534.log

General Output file: log, out, you name it

Installation and run info, Start Time

```
Architecture
Compiler version: GNU-11.3.0
Compiler flags : -fallow-argument-mismatch;-O3 -march=native
PP flags
                 ____
Libraries
               . ____
Parallelisations: MPI
GEMM3M support
NetCDF support
NetCDF-4 support
Lua support
Runtime information:
* Directory : /home/fnpedron/siesta-docs/work-files/tutorials/basic/first-encounter/CH4
* Running on 4 nodes in parallel.
>> Start of run: 21-SEP-2023
                              9:39:43
                          ******
                            WELCOME TO SIESTA
```

Outputs	**************************************
Things we have in our FDF file	NumberOfAtoms 5 NumberOfAtoms 5 NumberOfAtoms 5 NumberOfAtoms 5 NumberOfAtoms 5 NumberOfAtoms 2 %block ChemicalSpeciesLabel 1 6 C # Species index, atomic number, species label %endblock ChemicalSpeciesLabel #Unit cell for the calculation LatticeConstant 15 Ang %block LatticeVectors 1.000 0.000 0.000 0.000 0.000 1.000 %endblock LatticeVectors #Atomic coordinates AtomicCoordinatesFormat Ang %block LatticeVectors #AtomicCoordinatesAndAtomicSpecies 0.000 0.000 1 1.219 -0.284 -0.377 2 -0.284 1.219 -0.377 2 -0.140 -0.140 1.219 2 -0.833 -0.833 -0.503 2 %endblock AtomicCoordinatesAndAtomicSpecies # Basis set definition PAO.EnergyShift 250 meV PAO.SplitNorm 0.15 PAO.BasisSize SZ #Real space grid Meshcutoff 125.0 Ry # Convergence of SCF MaxSCFIterations 50 DM.MixingWeight 0.4 DM.NumberPulay 2 # Type of solution

initatom: Reading input for the pseudopotentials and atomic orbitals ------Species number: 1 Atomic number: 6 Label: C Species number: 2 Atomic number: 1 Label: H

---- Processing specs for species: C Ground state valence configuration: 2502 2p02 Reading pseudopotential information in formatted form from: C.psf

---- Processing specs for species: H Ground state valence configuration: 1s01 Reading pseudopotential information in formatted form from: H.psf

---- Pseudopotential check for C

Pseudized shells: 2s(2.00) rc: 1.29 2p(2.00) rc: 1.29 3d(0.00) rc: 1.29 4f(0.00) rc: 1.29 Valence configuration for ps generation: (assumed as above)

---- Pseudopotential check for H

Pseudized shells: 1s(1.00) rc: 1.25 2p(0.00) rc: 1.25 3d(0.00) rc: 1.25 Valence configuration for ps generation: (assumed as above) For C, standard SIESTA heuristics set lmxkb to 2 (one more than the basis l, including polarization orbitals). Use PS.lmax or PS.KBprojectors blocks to override. For H, standard SIESTA heuristics set lmxkb to 1 (one more than the basis l, including polarization orbitals). Use PS.lmax or PS.KBprojectors blocks to override.

Species and pseudopotential information

atom: -----

atom: SANKEY-TYPE ORBITALS:

SPLIT: Orbitals with angular momentum L= θ

SPLIT: Basis orbitals for state 2s

SPLIT: PAO cut-off radius determined from an SPLIT: energy shift= 0.018374 Ry

izeta = 1

lambda	1.000000
rc	4.191849
energy	-0.983900
kinetic	0.912099
<pre>potential(screened)</pre>	-1.895999
potential(ionic)	-5.500930

SPLIT: Orbitals with angular momentum L= 1

SPLIT: Basis orbitals for state 2p

SPLIT: PAO cut-off radius determined from an SPLIT: energy shift= 0.018374 Ry

izeta = 1

```
lambda = 1.000000
rc = 4.993604
energy = -0.381878
kinetic = 2.577411
potential(screened) = -2.959289
potential(ionic) = -6.460511
atom: Total number of Sankey-type orbitals: 4
```

atm_pop: Valence configuration (for local Pseudopot. screening): 2s(2.00) 2p(2.00) Vna: chval, zval: 4.00000 4.00000

Vna: Cut-off radius for the neutral-atom potential: 4.993604

Basis set generation (next session!)

Coordinates and selected options

coor: Atomic-coordinates input format = Cartesian coordinates (in Angstroms) coor: (in Angstroms) siesta: Atomic coordinates (Bohr) and species siesta: 0.00000 0.00000 siesta: 0.00000 0.00000 siesta: 2.30358 -0.71243 2 siesta: -0.53668 2.30358 -0.71243 3 siesta: -0.53668 2.30358 2 4 siesta: -0.26456 -0.95053 2 5	
siesta: Atomic coordinates (Bohr) and species siesta: 0.00000 0.00000 0.00000 1 1 siesta: 2.30358 -0.53668 -0.71243 2 2 siesta: -0.53668 2.30358 -0.71243 2 3 siesta: -0.26456 -0.26456 2.30358 2 4 siesta: -1.57414 -1.57414 -0.95053 2 5	
Siesta: Atomic coordinates (Bohr) and species siesta: 0.00000 0.00000 0.00000 1 1 siesta: 2.30358 -0.53668 -0.71243 2 2 siesta: -0.53668 2.30358 -0.71243 2 3 siesta: -0.26456 -0.26456 2.30358 2 4 siesta: -1.57414 -1.57414 -0.95053 2 5	
51esta: 0.00000 0.00000 0.00000 1 1 siesta: 2.30358 -0.53668 -0.71243 2 2 siesta: -0.53668 2.30358 -0.71243 2 3 siesta: -0.26456 -0.26456 2.30358 2 4 siesta: -1.57414 -1.57414 -0.95053 2 5	
siesta: 2.30358 -0.53668 -0.71243 2 2 siesta: -0.53668 2.30358 -0.71243 2 3 siesta: -0.26456 -0.26456 2.30358 2 4 siesta: -1.57414 -1.57414 -0.95053 2 5	
siesta: -0.53668 2.30358 -0.71243 2 3 siesta: -0.26456 -0.26456 2.30358 2 4 siesta: -1.57414 -1.57414 -0.95053 2 5	
siesta: -0.26456 -0.26456 2.30358 2 4 siesta: -1.57414 -1.57414 -0.95053 2 5	
siesta: -1.57414 -1.57414 -0.95053 2 5	
siesta: System type = molecule	
initatomlists: Number of atoms, orbitals, and projectors: 5 8 25	
siesta: ************************ Simulation parameters ************************************	***
siesta: The following are some of the parameters of the simulation.	
siesta: A complete list of the parameters used, including default values,	
siesta: can be found in file out.fdf	
siesta:	
redata: Spin configuration = none	
redata: Number of spin components = 1	
redata: Time-Reversal Symmetry = T	
redata: Spin spiral = F	
redata: Long output = F	
redata: Number of Atomic Species = 2	
redata: Charge density info will appear in .RHO file	
redata: Write Mulliken Pop. = NO	
redata: Matel table size (NRTAB) = 1024	
redata: Mesh Cutoff = 125.0000 Ry	
redata: Net charge of the system = 0.0000 e	
redata: Min. number of SCF Iter = 0	
redata: Max. number of SCF Iter = 50	
redata: SCF convergence failure will abort job	
redata: SCF mix quantity = Hamiltonian	
redata: Mix DM or H after convergence = F	
redata: Recompute H after scf cycle = F	
redata: Mix DM in first SCF step = T	
redata: Write Pulay info on disk = F	

______ Single-point calculation outcell: Unit cell vectors (Ang): 15.000000 0.000000 0.000000 0.000000 15.000000 0.000000 0.000000 0.000000 15.000000 outcell: Cell vector modules (Ang) 15.000000 15.000000 15.000000 outcell: Cell angles (23,13,12) (deg): 90.0000 90.0000 90.0000 outcell: Cell volume (Ang**3) 3375.0000 <dSpData1D:S at geom step 0 <sparsity:sparsity for geom step 0</pre> nrows_g=8 nrows=2 sparsity=.2500 nnzs=16, refcount: 7> <dData1D:(new from dSpData1D) n=16, refcount: 1> refcount: 1> new_DM -- step: Initializing Density Matrix... DM filled with atomic data: <dSpData2D:DM initialized from atoms <sparsity:sparsity for geom step 0</pre> nrows_g=8 nrows=2 sparsity=.2500 nnzs=16, refcount: 8> <dData2D:DM n=16 m=1, refcount: 1> refcount: 1> No. of atoms with KB's overlaping orbs in proc θ. Max # of overlaps: 5 InitMesh: MESH = 108 x 108 x 108 = 1259712 InitMesh: Mesh cutoff (required, used) = 125.000 143.274 Ry New grid distribution [1]: sub = 2 New grid distribution [2]: sub = 2 New grid distribution [3]: sub = 2 Setting up quadratic distribution...

stepf: Fermi-Dirac step function

Type of run, cell information.

Sparsity information.

8

Mesh information (later!)

siesta:	Program'	s	energy decomposition	(eV)
siesta:	Ebs	=	-86.773862	
siesta:	Eions	=	383.324493	
siesta:	Ena	=	115.426770	
siesta:	Ekin	=	143.738590	
siesta:	Enl	Ξ	-16.728728	
siesta:	Eso	=	0.00000	
siesta:	Edftu	=	0.00000	
siesta:	DEna	Ξ	1.592579	
siesta:	DUscf	=	0.349516	
siesta:	DUext	=	0.00000	
siesta:	Ex	=	-64.874822	
siesta:	Ec	=	-10.703118	
siesta:	Exc	Ξ	-75.577940	
siesta:	EbV	=	0.00000	
siesta:	eta*DQ	Ξ	0.00000	
siesta:	Emadel	Ξ	0.00000	
siesta:	Emeta	=	0.00000	
siesta:	Emolmec	Ŧ	0.00000	
siesta:	Ekinion	Ξ	0.00000	
siesta:	Eharris	=	-223.671697	
siesta:	Etot	Ξ	-214.523706	
siesta:	FreeEng	=	-214.523706	

Initial, non-SCF energy decomposition.

iscf Eharris(eV) E_KS(eV) FreeEng(eV) dDmax Ef(eV) dHmax(eV)										
scf:	1	-223.671697	-214.523706	-214.523706	1.090911	-7.083002	1.436999			
timer: Ro	utine,C	alls,Time,% = It	erSCF 1	0.133 2	9.48					
scf:	2	-214.585551	-214.573147	-214.573147	0.040577	-6.647325	0.203018			
scf:	3	-214.573456	-214.573477	-214.573477	0.004139	-6.585363	0.150120			
scf:	4	-214.573442	-214.573493	-214.573493	0.002062	-6.424159	0.074339			
scf:	5	-214.573514	-214.573506	-214.573506	0.000928	-6.476298	0.003034			
scf:	6	-214.573506	-214.573506	-214.573506	0.000039	-6.474131	0.000389			
SCF Convergence by DM+H criterion max DM_out - DM_in : 0.0000385344 max H_out - H_in (eV) : 0.0003888059 SCF cycle converged after 6 iterations Using DM_out to compute the final energy and forces No. of atoms with KB's overlaping orbs in proc 0. Max # of overlaps: 5 8 siesta: E_KS(eV) = -214.5735 siesta: E_KS - E_eggbox = -214.5735										
siesta: A	tomic f	orces (eV/Ang):								
 Tot	0.0000	66 0.000066 	 -0.001085 							
Max	2.3520	06								
Res	1.1269	56 sqrt(Sum	f_i^2 / 3N)							
Max	2.3520	06 constraine	d							
Stress tensor Voigt[x,y,z,yz,xz,xy] (kbar): 1.99 1.99 0.95 -0.20 (Free)E + p*V (eV/cell) -218.0329 Target enthalpy (eV/cell) -214.5735										

SCF cycle information

Converged KS energy

Converged total forces and cell stress

Final energy decomposition

	siesta:	Program'	s enei	rgy	decomposition	(eV):
	siesta:	Ebs			-90.137390	
	siesta:	Eions		3	383.324493	
	siesta:	Ena		1	115.426770	
	siesta:	Ekin		3	41.310823	
	siesta:	Enl			-16.669337	
	siesta:	Eso			0.00000	
	siesta:	Edftu			0.00000	
	siesta:	DEna			3.517376	
	siesta:	DUscf			0.257037	
	siesta:	DUext			0.00000	
	siesta:	Ex			-64.416938	
	siesta:	Ec			-10.674744	
	siesta:	Exc			-75.091682	
	siesta:	EbV			0.00000	
	siesta:	eta*DQ			0.00000	
	siesta:	Emadel			0.00000	
	siesta:	Emeta			0.00000	
	siesta:	Emolmec			0.00000	
	siesta:	Ekinion			0.00000	
	siesta:	Eharris		2	214.573506	
	siesta:	Etot		-2	214.573506	
	siesta:	FreeEng		-2	214.573506	
	siesta:	Final en	ergy ((eV)):	
	siesta:	Band St	ruct.		-90.137390	
	siesta:	Ki	netic		141.310823	
	siesta:	Ha	rtree		282.193258	
	siesta:		Edftu		0.00000	
	siesta:	Es	0		0.00000	
	siesta:	Ext.	field		0.00000	
	siesta:		Exch.		-64.416938	
	siesta:		Corr.		-10.674744	
	siesta:	Bulk	bias		0.00000	
	siesta:	Exch	corr.		-75.091682	
	siesta:	Ion-ele	ctron		-697.792327	
	siesta:	Io	n-ion		134.806422	
	siesta:	Ek	inion		0.00000	
	siesta:	D3 dispe	rsion		0.00000	
	siesta:		Total		-214.573506	
	siesta:		Fermi		-6.474131	
_						

Final forces

Final stress/pressure

Electric dipole

siesta:	Atomic -	Forces (eV/Ar	ıg):			
siesta:	1	0.152980	0.152980	-1.05368	2	
siesta:	2	-2.352006	0.483512	0.76155	3	
siesta:	3	0.483512	-2.352006	0.76155	3	
siesta:	4	0.342189	0.342189	-0.971719	9	
siesta:	5	1.373392	1.373392	0.50121	1	
siesta:						
siesta:	Tot	0.000066	0.000066	-0.00108	5	
siesta:	Stress t	tensor (stati	ic) (eV/Ang*	*3):		
siesta:	0.00	91241 -0.00	00019 -0.0	00128		
siesta:	-0.00	00019 0.00	91241 -0.0	00128		
siesta:	-0.00	00128 -0.00	0.00128	00593		
siesta:	Cell vo	Lume =	3375.000000	Ang**3		
siesta:	Pressure	e (static):				
siesta:		Solid	i	Molecule	Units	
siesta:		-0.00001116	5 0	.0000003	Ry/Bohr**3	
siesta:		-0.00102500	9 0	.00000251	eV/Ang**3	
siesta:		-1.64224685	5 0	.00402704	kBar	
(Free)E	+ p_basi	s*V_orbitals	= -	214.071102		
(Free)E	harris+	p_basis*V_ort	oitals =	-214.0	971102	
siesta:	Electri	c dipole (a.u	ι.) = -0.	011992 -	9.011992	0.008053
siesta:	Electri	c dipole (Deb	oye) = −0.	030480 -	9.030480	0.020469

Primary bibliography, and end-of-run time

cite: Please see "ch4.bib" for an exhaustive BiBTeX file. cite: Please clearly indicate Siesta version in published work: cite: This calculation has made use of the following articles cite: which are encouraged to be cited in a published work. Primary SIESTA paper DOI: www.doi.org/10.1088/0953-8984/14/11/302

>> End of run: 21-SEP-2023 9:39:44 Job completed

A look into the level of theory

General considerations

Before doing a production run with SIESTA:

- Choose an appropriate XC functional.
- Test the pseudopotentials (not covered here)
- Test the basis sets
- Converge the mesh cut-off for calculations
- Converge the k-point sampling

General considerations

Before doing a production run with SIESTA:

- Choose an appropriate XC functional.
- Test the pseudopotentials (not covered here)
- Test the basis sets
- Converge the mesh cut-off for calculations
- Converge the k-point sampling

This tutorial

Tutorial description:

https://docs.siesta-project.org/projects/siesta/en/latest/tutorials/basic/first-e ncounter-theorylevel/index.html

Tutorial folder:

day3-Wed/02-FirstEncounter_II

Choosing an XC functional

Which functional to choose will depend on what you want to do and the system you are running. **Read the literature!**

Telling SIESTA what functional to use is easy enough:

XC.functional GGA XC.authors PBE

Choosing an XC functional

XC.functional and XC.authors must be consistent!

XC.functional GGA XC.authors PBE

You should also choose appropriate pseudopotentials.

Key concepts on basis sets

SIESTA can automatically generate basis sets, or you can provide whatever radial function you want.

Basis functions become strictly zero beyond a certain radius, *rcut*.

For multiple-z basis, the second-z orbital is equal to the first-z orbital beyond a matching radius *rmatch*.

Global basis set options

Cardinality: amount of basis functions per atom (SZ, SZP, DZ, DZP, TZP).

PAO.BasisSize DZP

Energy-shift: controls the cut-off radii of all atoms in a cohesive way.

PAO.EnergyShift 0.01 Ry

Global basis set options

Split Norm: controls the matching radii for all multiple-zeta orbitals.

PAO.Splitnorm 0.15

Soft confinement: Use a soft confinement potential when creating the basis orbitals.

PAO.SoftDefault T

For XC functional options, check CH4-XC-Functional

For the basis sets, go into CH4-Basis

Take note of how the **total energy (from output)**, **bond lengths (ch4.BONDS file)**, and **total time (from ch4.times)** change in this cases:

- When changing the basis set between SZ, SZP, and DZP. Use an energy shift of 100 meV.
- 2) For **DZP**, changing the energy shift between **10 meV**, **50 meV**, and **100 meV**.

Budgeting

Both increasing the cardinality (SZ -> SZP -> DZP -> TZP) and reducing the energy-shift increase the quality of results and the computational costs.

Costs are affected differently though:

- Cardinality increases the cost of diagonalization (~N³)
- Energy shift/Cut-off radius increase the cost of grid operations (~N).

For small systems (a few N), grid operations are the dominant part of the calculation. Meanwhile, for large systems (large N), diagonalization becomes dominant.

This means that for very large systems (300-800 atoms), increasing the cut-off radii does not greatly increase computational costs.

Optimizing the basis set?

SIESTA can benefit greatly from manually optimizing our basis set a bit further. This increases the **quality** of our result **without really sacrificing computational cost**.

The only real issue here is the **time spent optimizing** the basis set.