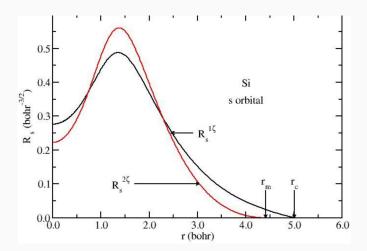
Basis set optimization


13/03/2024 - Federico Pedron

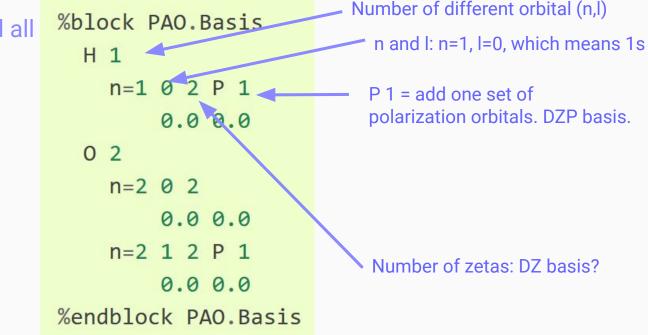
Key concepts

siesta can automatically generate basis sets, or you can provide whatever radial function you want.

Basis functions become strictly zero beyond a certain radius, *rcut*.

For multiple-z basis, the second-z orbital is equal to the first-z orbital beyond a matching radius *rmatch*.

Optimizing a Basis Set

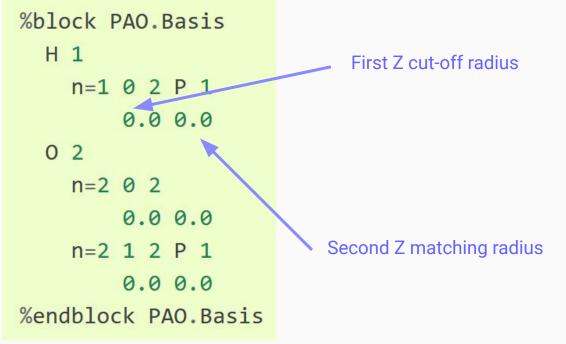

Exploring the PAO.Basis block

We have each species and all orbitals with different (n,l) separated.

For water:

H -> 1s

0 -> 2s, 2p


Exploring the PAO.Basis block

We have each species and all orbitals with different (n,l) separated.

For water:

H -> 1s

0 -> 2s, 2p

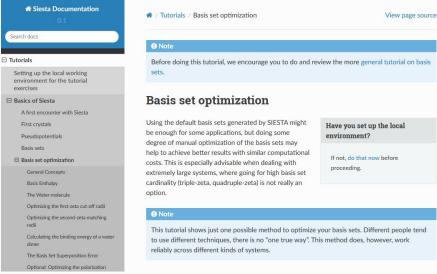
Basis Enthalpy

- We want to get a good energy for a set of orbitals.
- We don't want those orbitals to get needlessly large.

Basis Enthalpy = E_{total} + "P_{basis} . V_{orbitals}"

Basis Enthalpy

• Not a real physical magnitude, we choose it as a input value.


BasisPressure 0.2 GPa

• The **0.2 GPa** default works well for most cases, but for first- and second-row elements, it might result in very short orbitals. Use **0.02 GPa** instead.

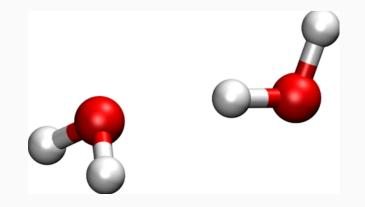
Go to 03-BasisSets, and visit:

https://docs.siesta-project.org/projects/siesta/en/latest/tutorials/basic/basisoptimization/index.html

Follow the first two practical sections: **Optimizing the First-Zeta cutoff radii**, and **Optimizing the Second-Zeta matching radii**.

Testing the Basis Set

Testing the optimized basis

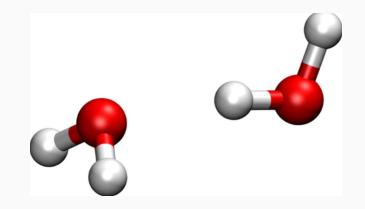

How do we know if we effectively have a better basis set than the default?

At least, three things are important to check:

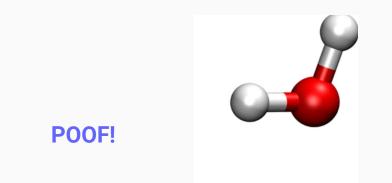
- Costs
- Quality
- Transferability

We need to test this in a slightly different system!

Binding energy of a water dimer


Testing the optimized basis

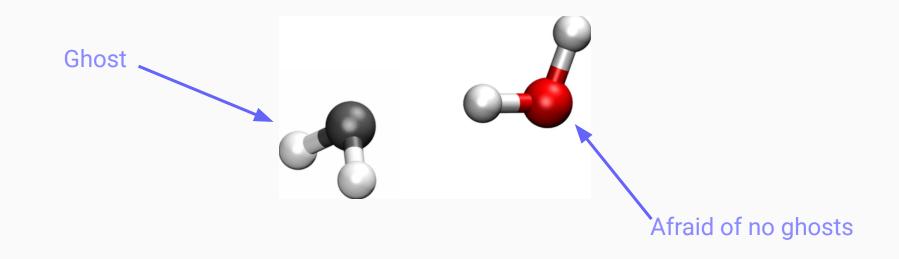
Run the third part of the tutorial, *Calculating the binding energy of a water dimer*.


Did we get better results with our optimized basis set?

Appendix: Ghost atoms

Basis Set Superposition Error

Basis Set Superposition Error


We lost the basis functions for the second molecule! What if they are important?

Ghost atoms

We add the basis functions that would belong to an atom, if the atom were there.

We do not add electrons or nuclei to the calculation!

Ghost atoms

Ghost atoms

To add ghost atoms, we just create a new species with **negative atomic number**.

```
NumberOfSpecies 4
%block ChemicalSpeciesLabel
1 8 0
2 1 H
3 -8 0_ghost
4 -1 H_ghost
%endblock ChemicalSpeciesLabel
```

Yes, this means we have to duplicate the pseudopotential files and add extra terms to the PAO.Basis block.