

Efficient Materials Modelling on HPC

March 14, 2024

Analysis tools

Miguel Pruneda

Charge analysis

Background

$$n(r) = \sum_{i}^{N} |\psi_{i}^{KS}(r)|^{2}$$

Basis Expansion:

$$|\psi_i\rangle = \sum_{\mu=1}^{M} c_{i,\mu} |\mu\rangle$$

$$\int_{\Omega} n(r) = N = \sum_{i}^{N} \langle \psi_{i} | \psi_{i} \rangle = \sum_{i} \sum_{\mu\nu} c_{i\mu}^{*} c_{i\nu} \langle \mu | \nu \rangle = \sum_{\mu\nu} \rho_{\mu\nu} S_{\mu\nu}$$

Density matrix

$$\rho_{\mu\nu} = \sum_{i} c_{i\mu}^* c_{i\nu} \qquad S_{\mu\nu} = \langle \mu | \nu \rangle$$

Overlap matrix

$$S_{\mu\nu} = \langle \mu | \nu \rangle$$

Charge analysis

$$n(r) = \sum_{i}^{N} |\psi_{i}^{KS}(r)|^{2}$$

Basis Expansion:

$$|\psi_i\rangle = \sum_{\mu=1}^{M} c_{i,\mu} |\mu\rangle$$

$$\int_{\Omega} n(r) = N = \sum_{i}^{N} \langle \psi_{i} | \psi_{i} \rangle = \sum_{i} \sum_{\mu\nu} c_{i\mu}^{*} c_{i\nu} \langle \mu | \nu \rangle = \sum_{\mu\nu} \rho_{\mu\nu} S_{\mu\nu}$$

$$N = \sum_{I} q_{I} = \sum_{I} \sum_{\mu \in I} \sum_{\nu} \rho_{\mu\nu} S_{\mu\nu}$$

Mulliken charges

WriteMullikenPop

0/1/2/3

Charge analysis

$$\int_{\Omega} n(r) = N = \sum_{I} n(r)$$

Voronoi charges

Write.VoronoiPop

$$q_I = \int_{\Omega} dr \frac{\rho_{atom}^I(r)}{\sum_J \rho_{atom}^J(r)} n(r) \quad \text{Hirshfeld charges}$$

Write.HirsfeldPop

True

 $N_1 \times N_2 \times N_3$ mesh points... $F(i,j,k) \longrightarrow F(n)$

Possible F(n)?

PRHO
$$\rho(r) = \sum_{\mu,\nu} \rho_{\mu\nu} \phi_{\mu}(r) \phi_{\nu}(r)$$

$$\mu,\nu$$
 DRHO
$$\delta\rho(r) = \rho_{SCF}(r) - \rho_{atom}(r)$$

$$V_{SCF}(r)$$

$$\delta V_H(r)$$

SaveRho

▶ SaveDeltaRho

▶ SaveTotalPotential

▶ SaveElectrostaticPotential

 $N_1 \times N_2 \times N_3$ mesh points... $F(i,j,k) \longrightarrow F(n)$

Possible F(n)?

$$n(\epsilon, r) = \sum_{n} |\psi_{n}(r)|^{2} \delta(\epsilon - \epsilon_{n})$$

$$LDOS(r) = \int_{\epsilon_{1}}^{\epsilon_{2}} n(\epsilon, r)$$

%block LocalDensityOfStates

EF -3.50 0.00 eV

%endblock LocalDensityOfStates

Wavefunctions

$$|\psi_n(r)|^2$$

$$\psi_n(r)$$

Real, Imag, Mod, Phase

 $N_1 \times N_2 \times N_3$ mesh points... $F(i,j,k) \longrightarrow F(n)$

Utils that might be useful

- ▶ Util/Grid/
 - grid2cdf, cdf2grid
 - cdf2xsf
 - cdf diff
 - cdf_laplacian
 - grid2val
 - grid2cube
 - grid_rotate

- Util/Contour
 - grid1d (?)
 - grid2d
- Util/Plrho

Dtil/Denchar/

https://docs.siesta-project.org/projects/siesta/en/

school-2021/reference/denchar.html#reference-denchar

SISL

Utils that might be useful

- Util/Contrib/FElMellouhi
 - Conversion to openDX format
- Util/Contrib/APostnikov
 - rho2xsf
 - (+ eig2bxsf + vib2xsf + etc)

Visualisation GUI tools

X-window CRYstalline Structures and DENsities

Home | About | Description | Documentation | Download | News | Links

Terms of use

Description Soft. Requirement

Documentation

<u>HOWTOs</u> **FAQs**

Download License

XCrySDen

XCrySDen is a crystalline and molecular structure visualisation program aiming at display of isosurfaces and contours, which can be superimposed on crystalline structures and interactively rotated and manipulated. It runs on GNU/Linux.

XCrySDen has been also ported to Mac OS (requires X11) and Windows (requires either CYGWIN or

The name of the program stands for *Crystalline Structures and Densities* and *X* because it runs under the X-Window environment.

Read more... | See screenshots ...

Latest version: 1.6.2

XCrySDen mailing list

XCrySDen mailing list is an open mailing list where XCrySDen related issues can be discussed among users.

Subscribe | Archives

The GDIS Home Page

Sean Fleming

Introduction

GDIS is a GTK based program for the display and manipulation of isolated molecules and periodic systems. It is in development, but is nonetheless fairly functional. It has the following features:

- Support for several file types (CIF, BIOSYM, XYZ, XTL, MARVIN, and GULP)
- OpenGL rendering (requires gtkglarea)
- Assorted tools for visualization (measurements, ribbons, polyhedral display)
- Useful manipulation tools, including matrix transformations and periodic image display.
- Powerful surface generation and crystal morphology tools.
- Animation of BIOSYM and GULP trajectory files

GDIS also allows you to perform the following functions through other packages:

- Model rendering (courtesy of <u>POVRay</u>)
- Energy minimization (courtesy of GULP)
- Morphology calculation (courtesy of <u>cdd</u>)
- Space group processing (courtesy of <u>SgInfo</u>)
- View the Periodic Table (courtesy of GPeriodic)
- Load additional filetypes, such as PDB (courtesy of Babel)

Although developed on a RedHat Linux platform, GDIS has been successfully compiled under IRIX, Solaris, OpenBSD, and OS-X. I've even built a Window's executable using the mingw32 cross-

The source code is released under the GPL.

Main

Gallery

Kinichilite

Topaz

Download

Documentation

Presentations

Video tutorials

Install

Build

Platforms

OpenBabel

Citing

Molekel

Molekel is an open-source multiplatform molecular visualization program.

Gallery

(citation info)

Some of the features available in the new version are:

- Multiplatform: Mac OS X, Windows, Linux
- Different methods to speed-up rendering of molecules with
- support for billboards and view-dependent level of detail techniques

Click on image to enlarge

User Guide

- Programmable shaders; standard shaders to enhance rendering quality, outline contours and perform sketch-like renderings are provided
- Visualization of residues (ribbon or schematic)

10-zgnr

%block DM.InitSpin
Cedge1 +
Cedge2 %endblock DM.InitSpin

$$N = \sum_{i} f_{i} < \Psi_{i} | \Psi_{i} > = \sum_{i} f_{i} \sum_{\mu\nu} c_{\mu}^{i} c_{\nu}^{i} S_{\mu\nu}$$

Density of States (DOS)

$$g(\varepsilon) = \sum_{i} \delta(\varepsilon - \varepsilon_{i}) = \sum_{i} \sum_{\mu} \sum_{\nu} c_{i\mu} c_{i\nu} S_{\mu\nu} \delta(\varepsilon - \varepsilon_{i})$$

Projected DOS on orbital µ

$$g_{\mu}(\varepsilon) = \sum_{i} \sum_{\nu} c_{i\mu} c_{i\nu} S_{\mu\nu} \delta(\varepsilon - \varepsilon_{i})$$

10-zgnr

DOS

PDOS

Fatbands!!

PDOS

Analysis tools

Questions?

