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Covered topics are:

* optimisation of CPU-only runs,
* basic description of GPU acceleration,
* how to efficiently run calculations on GPU-accelerated architectures.

Exercise 1:** optimize CPU execution with npools

Exercise 2:** optimize CPU execution with ndiag

Exercise 3:** openMP acceleration

Exercise 4:** hands on the GPUs

Day 1 hands on
 RECAP
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PWscf

KS Solvers
Davidson

CGParO
PPCG

RMM-DIIS

Diagonalization

this is achieved using a modular 
organization of the code which 
allows great flexibility and ease to 
use external and internal numerical 
libraries

cuSOLVER

Make KS potential
XClib cuFFT

cuBLAS

Input: molecular geometry

Output: chem/phys properties

Some preliminary notions
 PWscf FLOW
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Open a shell on your Virtual Machine or on your laptop and connect to the HPC cluster 
(LEONARDO):

   ssh USER@login.leonardo.cineca.it

Then clone the school repo and move there: 

  git clone https://github.com/ENCCS/max-coe-workshop.git
  cd max-coe-workshop
  cd Day-1
  pwd

Check the result of pwd: 

  /leonardo_scratch/large/userexternal/USER/max-coe-workshop/Day-1

Day 1 hands on
 GETTING the MATERIAL
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QUANTUM ESPRESSO (QE) website:
https://www.quantum-espresso.org/

Download page for code and documentation:
https://www.quantum-espresso.org/download-page/

QE users forum:
https://www.quantum-espresso.org/users-forum/

Mailing list:
users@lists.quantum-espresso.org

Some preliminary notions
 USEFUL LINKS and DOCUMENTATION
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Exercise 0: first run with PW
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 &control
    calculation='scf',
    tstress=.true.
 /
 &system
   Ibrav=1,                                                 ! Bravais lattice index
   Celldm(1)=10.0,                                     ! dimension of the cell
   nat=1,                                                    ! 1 atom
   ntyp=1,                                                  ! 1 type of atom
   nbnd=6,                                                 ! 6 bands
   ecutwfc=25.0,                                        ! cutoff energy for w.f.
   Ecutrho=200.0,                                      !     “         “           density 
   occupations='from_input',
 /
 &electrons
   mixing_beta=0.25,
   conv_thr=1.0e-8
 /
ATOMIC_SPECIES
O     15.99994   o_pbe_v1.2.uspp.F.UPF                ! pseudo file
ATOMIC_POSITIONS alat
O   0.000000000   0.000000000   0.000000000
K_POINTS {gamma}
OCCUPATIONS                                                      ! occupations of individual states
2.0 1.3333333333 1.3333333333 1.3333333333 0.0 0.0

Exercise 0 – first run
 INPUT FILE

https://www.quantum-espresso.org/Doc/INPUT_PW.html
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We only use pw.x for today hands-on. Go to exercise 0 (ex0-atom folder).
The executable of QEv7.2 for CPU is compiled in the directory:

    /leonardo_work/EUHPC_TD02_030/builds/qe7.2/bin

Check that the module works by submitting a quick serial test.
Fill the batch file for a serial run:

    export OMP_NUM_THREADS=...number of threads...
    mpirun  -np ....number of MPI….   ${ESPRESSO_DIR}/pw.x   -in ${INDIR}/atom-pbe.in > 
atom-pbe.out

Some preliminary notions
 MODULE LOAD and FIRST RUN
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Some preliminary notions
 MODULE LOAD and FIRST RUN

Basic SLURM commands 

Submit a job: 
sbatch <filename>

Check the job status:
squeue -u <username>

Cancel a job from the queue:
scancel <jobid>

Submit our first job:

    sbatch ex0-run.slurm
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 Program PWSCF v.7.2 starts on  4Mar2024 at 15:30:35
    Git branch: heads/qe-7.2
    Last git commit: b4c5e8deeb7d1863e7553a87b45f8d22c21926a5
    Last git commit date: Mon Mar 27 16:12:09 2023 +0000
    Last git commit subject: Merge branch 'merge_fix_hubbard' into 'develop'

 This program is part of the open-source Quantum ESPRESSO suite
 for quantum simulation of materials; please cite
     "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
     "P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017);
     "P. Giannozzi et al., J. Chem. Phys. 152 154105 (2020);
      URL http://www.quantum-espresso.org",
 in publications or presentations arising from this work. More details at
 http://www.quantum-espresso.org/quote

 Parallel version (MPI & OpenMP), running on   1 processor cores
 Number of MPI processes:             1
 Threads/MPI process:                 1

 MPI processes distributed on 1 nodes
 506166 MiB available memory on the printing compute node when the environment starts

Some preliminary notions
 FIRST RUN
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Some preliminary notions
 FIRST RUN
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 End of self-consistent calculation

      k = 0.0000 0.0000 0.0000 (  1052 PWs)   bands (ev):

   -23.3342  -8.2738  -8.2738  -8.2738  -0.5593   4.3552

 highest occupied, lowest unoccupied level (ev): -8.2738   -0.5593

! total energy          = -31.73128866 Ry
 estimated scf accuracy <      4.1E-09 Ry

 The total energy is the sum of the following terms:
 one-electron contribution = -32.14523474 Ry
 hartree contribution  =  17.37480263 Ry
 xc contribution       =  -6.74658554 Ry
 ewald contribution    = -10.21427100 Ry

 convergence has been achieved in   7 iterations

 Computing stress (Cartesian axis) and pressure

 negative rho (up, down):  3.988E-05 0.000E+00
      total   stress  (Ry/bohr**3)               (kbar) P=  -39.12
  -0.00026593   0.00000000   0.00000000      -39.12     0.00     0.00
   0.00000000  -0.00026593   0.00000000         0.00  -39.12     0.00
   0.00000000   0.00000000  -0.00026593         0.00     0.00  -39.12

 Writing all to output data dir ./pwscf.save/



 vloc_psi :  0.02s CPU  0.02s WALL (  43 calls)
 add_vuspsi     :  0.00s CPU  0.01s WALL (  43 calls)

 General routines
 calbec   :  0.00s CPU  0.01s WALL (  52 calls)
 fft      :  0.04s CPU  0.08s WALL (  98 calls)
 ffts     :  0.00s CPU  0.00s WALL (  16 calls)
 fftw     :  0.01s CPU  0.01s WALL (           186 calls)
 interpolate  :  0.01s CPU  0.01s WALL (     8 calls)
 
 Parallel routines
 
 PWSCF    :  0.70s CPU  1.20s WALL

 
   This run was terminated on:  15:30:36   4Mar2024        

=------------------------------------------------------------------------------=
   JOB DONE.
=------------------------------------------------------------------------------=

Some preliminary notions
 FIRST RUN
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Exercise 1: parallelization with pools
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Exercise 1
 PARALLELISM with POOLS

Kohn-Sham equations
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Remember the distribution of 
the wavefunction

Pool parallelism
What is happening?

Exercise 1
 PARALLELISM with POOLS
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Remember the distribution of 
the wavefunction

Pool parallelism
What is happening?

Exercise 1
 PARALLELISM with POOLS
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Since operators are usually 
applied to single orbitals, most 
of the communications (e.g. 
mp_sum) are usually done 
along the NPW dimension

Pool parallelism
What is happening?

Exercise 1
 PARALLELISM with POOLS
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When we parallelize over PW, all processes 
need to communicate with each other

Rank 
1

Rank 
2

Rank 
4

Rank 
3

Pool parallelism
What is happening?

Exercise 1
 PARALLELISM with POOLS
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Rank 
1

Rank 
2

Rank 
4

Rank 
3

When we parallelize with pools, we strongly 
reduce communications among processes

Pool parallelism
What is happening?

Exercise 1
 PARALLELISM with POOLS
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Exercise 1
 INPUT FILE - CuO

&control
    calculation='scf',
    outdir='./out'
 /
 &system
    ibrav = 0, nat=64, ntyp=2,
    ecutwfc = 35,
    ecutrho = 350,
    smearing='mp',
    occupations='smearing',
    degauss=0.01,
    nspin=2,
    starting_magnetization(1)=0.0,
    starting_magnetization(2)=0.5,
 /
 &electrons
    mixing_beta = 0.5,
    conv_thr =  1.0d-7,
    startingpot='atomic',
    startingwfc='atomic',
    electron_maxstep=6
 /
.
.
.
K_POINTS automatic
2 2 2 0 0 0 20



#!/bin/bash
#SBATCH --job-name=USERjob
#SBATCH --nodes 1
#SBATCH --exclusive
#SBATCH --time=00:20:00
#SBATCH --partition=boost_usr_prod
#SBATCH --qos=boost_qos_dbg
#SBATCH --ntasks-per-node=32
#SBATCH --cpus-per-task=1
#SBATCH --output=sysout.out
#SBATCH --error=syserr.err
#SBATCH --account=EUHPC_TD02_030
# # SBATCH --mail-user=YOUR_EMAIL - if you want

source ../environment-cpu.sh
export ESPRESSO_DIR=/leonardo_work/EUHPC_TD02_030/builds/qe7.2/bin

export EXDIR=${PWD}/..
export INDIR=${EXDIR}/inputs
export ESPRESSO_PSEUDO=${EXDIR}/../pseudo

export OMP_NUM_THREADS=1

for ip in ...
do
mpirun -np 32 ${ESPRESSO_DIR}/pw.x -npool "$ip" -ndiag 1 -i ${INDIR}/pw.CuO.scf.in > pw_CuO_${ip}pools.out
done

Exercise 1
 JOB SCRIPT
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Try to predict which the best value for npool will be and verify it by performing a series of runs.

1. Open ex1-pools.slurm and customize the user-related SLURM options like job-name and 
    mail-user (not essential);  
    Replace the dots in the 'for' loop at the end of the file with a list of proper values for npool, e.g:
       
        for ip in 1 2 4 8   
        do

2. Submit the job file:

        sbatch ex1-pools.slurm

3. Check the total WALL time at the end of the output file and plot it as a function of npool.  
    Which seems to be the best npool value? Why?

Exercise 1
 SUBMIT JOB
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For each output file collect the “WALL time” at end of the file:

    PWSCF        :   3m31.00s CPU   3m36.57s WALL

NB: the CPU time is the amount of time spent by the CPU processing pw.x instructions, which 
is a considerable portion of the whole execution time, but neglects, for example, I/O. For this 
reason we use WALL time.

Exercise 1
 TIME PLOT
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Pool parallelism

You should be able to produce a plot similar to this one (WALL time might differ):

Exercise 1
 TIME PLOT
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Exercise 2: parallel diagonalization

25



PWscf

KS Solvers
Davidson

CGParO
PPCG

RMM-DIIS

Diagonalization

this is achieved using a modular 
organization of the code which 
allows great flexibility and ease to 
use external and internal numerical 
libraries

cuSOLVER

Make KS potential
XClib cuFFT

cuBLAS

Input: molecular geometry

Output: chem/phys properties

Some preliminary notions
 PWscf FLOW
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Exercise 2
 PARALLEL DIAGONALIZATION

by PIETRO BONFA’ from MaX School 2021(ICTP meeting)

27



In this second exercise we want to speedup the code by solving the dense eigenvalue 
problem using more than one core.

Set -npool to 4 and activate parallel diagonalization by setting -ndiag 4 

mpirun -np 32 ${ESPRESSO_DIR}/pw.x -npool 4 -ndiag "$id" -i ${INDIR}/pw.CuO.scf.in > 
pw_CuO_${id}diag.out

Inspect the beginning of the output file and look for this message

Subspace diagonalization in iterative solution of the eigenvalue problem:
one sub-group per band group will be used custom distributed-memory algorithm (size 
of sub-group:  2*  2 procs)

Check the time to solution.

Exercise 2
 PARALLEL DIAGONALIZATION
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Parallel diagonalization

You should be able to produce a plot similar to this one:

Exercise 2
 TIME PLOT
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Please consider that: 

1)  pool parallelism can be much more effective than this, especially when the system size 
is larger and calculations are distributed among multiple nodes, since it can strongly reduce 
the slow inter-node communications; 
 

2)  the eigenvalue problem is too small in this case to fully take advantage of parallel 
diagonalization;
 

3)  other libraries, e.g. Scalapack or ELPA, usually provide better performance in parallel 
diagonalization.

Please keep in mind that for larger systems, and using optimized libraries, the parallel 
diagonalization is a powerful option to strongly reduce the computational time to solution.

Exercise 2
 PARALLEL DIAGONALIZATION
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Exercise 3: openMP parallelization
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Scaling (Amdahl Law) for QUANTUM ESPRESSO code for both MPI and OpenMP portions of 
the code. 
OMP parallelization is usually less efficient than MPI for QE, but involves less communications.

Exercise 3
 COMBINING with OPENMP
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MPI and OMP threads can be combined to better exploit computational resources. OMP 
parallelization is usually less efficient than MPI for QE, but involves less communications.

Exercise 3
 COMBINING with OPENMP
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MPI and OMP threads can be combined to better exploit computational resources. OMP 
parallelization is usually less efficient than MPI for QE, but involves less communications.

Exercise 3
 COMBINING with OPENMP
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MPI and OMP threads can be combined to better exploit computational resources. OMP 
parallelization is usually less efficient than MPI for QE, but involves less communications.

Exercise 3
 COMBINING with OPENMP
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MPI and OMP threads can be combined to better exploit computational resources. OMP 
parallelization is usually less efficient than MPI for QE, but involves less communications.

Exercise 3
 COMBINING with OPENMP
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For large systems, OMP parallelization improves scaling because it allows to exploit many cores 
without burdening the calculation with communications.

Exercise 3
 COMBINING with OPENMP

37



A smart combination of MPIs, OMP Threads, 
and pools allows to achieve drastic reductions 
of computational burden.

Exercise 3
 COMBINING with OPENMP
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Find out how to best exploit the available CPU resources, by playing with the MPI related 
parameters (number of tasks, npools) together with the number of threads.

Use the batch file ex3-omp.slurm to submit your jobs (modify it at your convenience).  

Hints on how to proceed:

1. Know the size of your node, e.g. the amount of cores at your disposal 
    (https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.2%3A+LEONARDO+UserGuide);  
    See how the time scaling of your jobs goes just by varying the number of tasks at first (keep
    just 1 thread each at first). Adapt the npool parameter at each run.

2. Now you can start to explore the OpenMP parallelization (you can focus to range 2:8
    threads). 

3. Check the total WALL time at the end of the output files and do multiple plots in function
    of the number of MPI tasks and OpenMP threads.
    What seems to be the best configuration for this exercise?

Exercise 3
 INSTRUCTIONS
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#!/bin/bash
#SBATCH --job-name=USERjob
#SBATCH --nodes 1
#SBATCH --exclusive
#SBATCH --time=00:20:00
#SBATCH --partition=boost_usr_prod
#SBATCH --qos=boost_qos_dbg
#SBATCH --ntasks-per-node= ...
#SBATCH --cpus-per-task= ...
#SBATCH --output=sysout.out
#SBATCH --error=syserr.err
#SBATCH --account=EUHPC_TD02_030
# # SBATCH --mail-user=YOUR_EMAIL - if you want

source ../environment-cpu.sh
export ESPRESSO_DIR=/leonardo_work/EUHPC_TD02_030/builds/qe7.2/bin

export EXDIR=${PWD}/..
export INDIR=${EXDIR}/inputs
export ESPRESSO_PSEUDO=${EXDIR}/../pseudo

export OMP_NUM_THREADS= ...

mpirun -np ... ${ESPRESSO_DIR}/pw.x -npool 4 -i ${INDIR}/pw.CuO.scf.in > pw_run...mpix...omp.out

Exercise 3
 JOB SCRIPT
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Exercise 4: QE on GPUs
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Three things to keep in mind when installing QE:

1)  The compiler

 
2)  The linear algebra libraries

 

3)  The FFT libraries

nvfortran (ex-pgi)

cuBLAS

cuFFT

Exercise 4
 COMPILERS and LIBRARIES
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When we use GPUs, each MPI process off-loads the calculation to one GPU:

Rank 
1

Rank 
2

GPU 
2

GPU 
1

It is convenient to use one 
MPI per GPU

Exercise 4
 MPI and GPUs
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When we use GPUs, each process off-loads 
the calculation to one GPU

Rank 
1

Rank 
2

GPU 
2

GPU 
1

GPU parallelism
What is happening?

It is convenient to use one 
MPI per GPU

Exercise 4
 MPI and GPUs
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Adding more MPIs usually will not improve 
performances, and might also be less efficient 
because the communication burden increases

Rank 
1

Rank 
2

Rank 
4

Rank 
3

GPU 
2

GPU 
1

GPU parallelism
What is happening?

45

Exercise 4
 MPI and GPUs



Rank 
1

Rank 
2

Again, using pools will improve communications

GPU 
2

GPU 
1

GPU parallelism
What is happening?

Exercise 4
 CPU and GPUs
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#!/bin/bash
#SBATCH --job-name=USERjob
#SBATCH --nodes 1
#SBATCH --exclusive
#SBATCH --time=00:10:00
#SBATCH --partition=boost_usr_prod
#SBATCH --qos=boost_qos_dbg
#SBATCH --ntasks-per-node=4
#SBATCH --cpus-per-task=8
#SBATCH --gres=gpu:4
#SBATCH --output=sysout.out
#SBATCH --error=syserr.err
#SBATCH --account=EUHPC_TD02_030
# # SBATCH --mail-user=YOUR_EMAIL - if you want

module purge
module load profile/chem-phys
module load quantum-espresso

export EXDIR=${PWD}/..
export INDIR=${EXDIR}/inputs
export ESPRESSO_PSEUDO=${EXDIR}/../pseudo
export OMP_NUM_THREADS=8

for ip in 1 2 4 8
do
mpirun -np 4 pw.x -npool "$ip" -i ${INDIR}/pw.CnSnI3.in > pw.CnSnI3.gpu.${ip}pools.out
done

Exercise 4
 MPI and GPUs – JOB SCRIPT
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First, launch the GPU job as it is:

#SBATCH --ntasks-per-node = 4      # number of MPI per node
#SBATCH –cpus-per-task = 8           # number of HW threads per task
#SBATCH --gres = gpu:4

export OMP_NUM_THREADS = 8

mpirun ...  ${PW} -i ${INDIR}/pw.CnSnI3.in > pw.CnSnI3.gpu.out

Exercise 4
 CPU vs GPUs
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To get a (very) rough idea of the comparison between CPU nodes and GPU nodes, you can 
run the same job on CPU and try to match the performance.

#SBATCH –ntasks-per-node=...      # number of MPI per node
#SBATCH –cpus-per-task=...          # number of HW threads per task

export OMP_NUM_THREADS=...

mpirun  ${PW} -npool ... -ndiag ... -i ${INDIR}/pw.CnSnI3.in > pw.CnSnI3.cpu.out

Exercise 4
 CPU vs GPUs
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You should be able to produce a plot similar to this one:

Evaluate the ratio between the best time to solution of your CPU and GPU tests.

Exercise 4
 CPU and GPUs
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Final considerations 
MINIMAL RECIPE

 
 1) Choose a number of MPI tasks depending on the system dimension 
     (e.g. number of k-points).
 
 2) Use GPUs when present:   - 1 GPU per MPI task;
                                                 - combine with openMP when possible.

 3) Choose the number of pools depending on:  - number of k-points;
                                                                             - number of MPI tasks;
                                                                             - number of nodes.

 4) Set the parallel diagonalization: - VERY large systems only (nbands>100).
 
 5) Choose the number of threads:  - up to 4: advantageous;
                                                          - 4 to 8: sometimes advantageous (but not too much);
                                                          - >8: very rarely advantageous;
                                                          - >>8: never advantageous.
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Size (Ta2O5):
  el = 544
  Nat = 96
  Ecut = NC/130/520 Ry
  NPW = 477k
  Nbnd = 326
  Nks  = 26 

The larger the batch of data offloaded to the GPUs, the lesser the 
communications, the faster, as far as you have memory for them 
(memory on Ampere architecture up to 80GB). 
 
At software level, versatile parallelization strategies based on multiple 
data distribution schemes, allow an optimal exploitation of the 
hardware architecture.

(4 DGX A100 nodes)

1 pool 
per node

1 DGX A100

2 DGX A100

4 DGX A100

(8 pools)

1                  2                 4 1          2          4           8        16  

Taken from L. Stuber (NVIDIA), I. Carnimeo (SISSA), P. Delugas (SISSA), F.  Spiga (NVIDIA) unpublished benchmarks.
All calculations on A100 kindly provided by NVIDIA Corp.

Final considerations 
 CPU and GPUs
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Appl. Phys. Lett. 118, 121602 (2021);
Nano Lett. (2018) 18, 2268−2273

MPI =                 16            48            32            96
NPOOLS  =        4               6              4             12

Good scaling performances have been found 
for large systems, by combining plane waves 
and pools parallelization strategies.

Size:
  el = 4445
  Nat = 605
  Ecut = NC/75/300 Ry
  NPW = 994k
  Nbnd = 2688
  Nks  = 12

(8 A100 GPUs per node)

Taken from L. Stuber (NVIDIA), I. Carnimeo (SISSA), P. 
Delugas (SISSA), F.  Spiga (NVIDIA) unpublished 
benchmarks.
All calculations on A100 kindly provided by NVIDIA Corp.

Final considerations 
 CPU and GPUs
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The QUANTUM ESPRESSOTM codes have 
been engineered to exploit exascale 
computational facilities, through an extensive 
porting to hybrid CPU-GPU architectures, 
using mixed (CUDA Fortran/OpenACC, 
OpenMP) offload schemes, in order to 
enhance portability to hardware from 
different vendors

Size:
  Electrons = 5232
  Atoms = 1532

GPU porting

Final considerations 
 CPU and GPUs
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Benchmark tests on a functionalized 
Carbon Nanotube show that 24 GPUs of 
the Ampere A100 (80 GB) architecture 
perform as 144 Volta V100 (16 GB) and 
much better than 3072 SkyLake cores

Size:
  el = 5232
  Nat = 1532
  Ecut = US/25/200 Ry
  NPW = 27M
  Nbnd = 2616
  Nks  = Gamma only

(s)

Taken from L. Stuber (NVIDIA), I. Carnimeo (SISSA), P. Delugas (SISSA), F.  Spiga (NVIDIA) unpublished benchmarks.
All calculations on A100 kindly provided by NVIDIA Corp.

Final considerations 
 CPU and GPUs
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Hands-on session – Day 1

Thank you,
See you tomorrow

Efficient materials modelling on HPC 
with QUANTUM ESPRESSO, Siesta and Yambo
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Three things to select when installing QE (already available on our cluster):

1)  The compilers

 
2)  The linear algebra libraries

 

3)  The FFT libraries

gfortran ifort nvfortran
(ex pgi)

openblas
mkl

(Intel, AMD CPU)

fftw3

flang
(ARM)

mkl
(Intel, AMD CPU)

(QE internal)

(QE internal)

Some preliminary notions
 COMPILERS AND LIBRARIES
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