
Hands-on session – Day 1

QUANTUM ESPRESSO on HPC systems

Oscar Baseggio and Aurora Ponzi

Efficient materials modelling on HPC
with QUANTUM ESPRESSO, Siesta and Yambo

obaseggi@sissa.it aponzi@sissa.it

mailto:obaseggi@sissa.it
mailto:aponzi@sissa.it

Covered topics are:

* optimisation of CPU-only runs,
* basic description of GPU acceleration,
* how to efficiently run calculations on GPU-accelerated architectures.

Exercise 1:** optimize CPU execution with npools

Exercise 2:** optimize CPU execution with ndiag

Exercise 3:** openMP acceleration

Exercise 4:** hands on the GPUs

Day 1 hands on
 RECAP

2

PWscf

KS Solvers
Davidson

CGParO
PPCG

RMM-DIIS

Diagonalization

this is achieved using a modular
organization of the code which
allows great flexibility and ease to
use external and internal numerical
libraries

cuSOLVER

Make KS potential
XClib cuFFT

cuBLAS

Input: molecular geometry

Output: chem/phys properties

Some preliminary notions
 PWscf FLOW

3

Open a shell on your Virtual Machine or on your laptop and connect to the HPC cluster
(LEONARDO):

 ssh USER@login.leonardo.cineca.it

Then clone the school repo and move there:

 git clone https://github.com/ENCCS/max-coe-workshop.git
 cd max-coe-workshop
 cd Day-1
 pwd

Check the result of pwd:

 /leonardo_scratch/large/userexternal/USER/max-coe-workshop/Day-1

Day 1 hands on
 GETTING the MATERIAL

4

https://github.com/ENCCS/max-coe-workshop.gitgit

QUANTUM ESPRESSO (QE) website:
https://www.quantum-espresso.org/

Download page for code and documentation:
https://www.quantum-espresso.org/download-page/

QE users forum:
https://www.quantum-espresso.org/users-forum/

Mailing list:
users@lists.quantum-espresso.org

Some preliminary notions
 USEFUL LINKS and DOCUMENTATION

5

https://www.quantum-espresso.org/
https://www.quantum-espresso.org/download-page/
https://www.quantum-espresso.org/users-forum/
mailto:users@lists.quantum-espresso.org

Exercise 0: first run with PW

6

 &control
 calculation='scf',
 tstress=.true.
 /
 &system
 Ibrav=1, ! Bravais lattice index
 Celldm(1)=10.0, ! dimension of the cell
 nat=1, ! 1 atom
 ntyp=1, ! 1 type of atom
 nbnd=6, ! 6 bands
 ecutwfc=25.0, ! cutoff energy for w.f.
 Ecutrho=200.0, ! “ “ density
 occupations='from_input',
 /
 &electrons
 mixing_beta=0.25,
 conv_thr=1.0e-8
 /
ATOMIC_SPECIES
O 15.99994 o_pbe_v1.2.uspp.F.UPF ! pseudo file
ATOMIC_POSITIONS alat
O 0.000000000 0.000000000 0.000000000
K_POINTS {gamma}
OCCUPATIONS ! occupations of individual states
2.0 1.3333333333 1.3333333333 1.3333333333 0.0 0.0

Exercise 0 – first run
 INPUT FILE

https://www.quantum-espresso.org/Doc/INPUT_PW.html

7

https://www.quantum-espresso.org/Doc/INPUT_PW.html

We only use pw.x for today hands-on. Go to exercise 0 (ex0-atom folder).
The executable of QEv7.2 for CPU is compiled in the directory:

 /leonardo_work/EUHPC_TD02_030/builds/qe7.2/bin

Check that the module works by submitting a quick serial test.
Fill the batch file for a serial run:

 export OMP_NUM_THREADS=...number of threads...
 mpirun -npnumber of MPI…. ${ESPRESSO_DIR}/pw.x -in ${INDIR}/atom-pbe.in >
atom-pbe.out

Some preliminary notions
 MODULE LOAD and FIRST RUN

8

Some preliminary notions
 MODULE LOAD and FIRST RUN

Basic SLURM commands

Submit a job:
sbatch <filename>

Check the job status:
squeue -u <username>

Cancel a job from the queue:
scancel <jobid>

Submit our first job:

 sbatch ex0-run.slurm

9

 Program PWSCF v.7.2 starts on 4Mar2024 at 15:30:35
 Git branch: heads/qe-7.2
 Last git commit: b4c5e8deeb7d1863e7553a87b45f8d22c21926a5
 Last git commit date: Mon Mar 27 16:12:09 2023 +0000
 Last git commit subject: Merge branch 'merge_fix_hubbard' into 'develop'

 This program is part of the open-source Quantum ESPRESSO suite
 for quantum simulation of materials; please cite
 "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
 "P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017);
 "P. Giannozzi et al., J. Chem. Phys. 152 154105 (2020);
 URL http://www.quantum-espresso.org",
 in publications or presentations arising from this work. More details at
 http://www.quantum-espresso.org/quote

 Parallel version (MPI & OpenMP), running on 1 processor cores
 Number of MPI processes: 1
 Threads/MPI process: 1

 MPI processes distributed on 1 nodes
 506166 MiB available memory on the printing compute node when the environment starts

Some preliminary notions
 FIRST RUN

10

Some preliminary notions
 FIRST RUN

11

 End of self-consistent calculation

 k = 0.0000 0.0000 0.0000 (1052 PWs) bands (ev):

 -23.3342 -8.2738 -8.2738 -8.2738 -0.5593 4.3552

 highest occupied, lowest unoccupied level (ev): -8.2738 -0.5593

! total energy = -31.73128866 Ry
 estimated scf accuracy < 4.1E-09 Ry

 The total energy is the sum of the following terms:
 one-electron contribution = -32.14523474 Ry
 hartree contribution = 17.37480263 Ry
 xc contribution = -6.74658554 Ry
 ewald contribution = -10.21427100 Ry

 convergence has been achieved in 7 iterations

 Computing stress (Cartesian axis) and pressure

 negative rho (up, down): 3.988E-05 0.000E+00
 total stress (Ry/bohr**3) (kbar) P= -39.12
 -0.00026593 0.00000000 0.00000000 -39.12 0.00 0.00
 0.00000000 -0.00026593 0.00000000 0.00 -39.12 0.00
 0.00000000 0.00000000 -0.00026593 0.00 0.00 -39.12

 Writing all to output data dir ./pwscf.save/

 vloc_psi : 0.02s CPU 0.02s WALL (43 calls)
 add_vuspsi : 0.00s CPU 0.01s WALL (43 calls)

 General routines
 calbec : 0.00s CPU 0.01s WALL (52 calls)
 fft : 0.04s CPU 0.08s WALL (98 calls)
 ffts : 0.00s CPU 0.00s WALL (16 calls)
 fftw : 0.01s CPU 0.01s WALL (186 calls)
 interpolate : 0.01s CPU 0.01s WALL (8 calls)

 Parallel routines

 PWSCF : 0.70s CPU 1.20s WALL

 This run was terminated on: 15:30:36 4Mar2024

=--=
 JOB DONE.
=--=

Some preliminary notions
 FIRST RUN

12

Exercise 1: parallelization with pools

13

Exercise 1
 PARALLELISM with POOLS

Kohn-Sham equations

14

Remember the distribution of
the wavefunction

Pool parallelism
What is happening?

Exercise 1
 PARALLELISM with POOLS

15

Remember the distribution of
the wavefunction

Pool parallelism
What is happening?

Exercise 1
 PARALLELISM with POOLS

16

Since operators are usually
applied to single orbitals, most
of the communications (e.g.
mp_sum) are usually done
along the NPW dimension

Pool parallelism
What is happening?

Exercise 1
 PARALLELISM with POOLS

17

When we parallelize over PW, all processes
need to communicate with each other

Rank
1

Rank
2

Rank
4

Rank
3

Pool parallelism
What is happening?

Exercise 1
 PARALLELISM with POOLS

18

Rank
1

Rank
2

Rank
4

Rank
3

When we parallelize with pools, we strongly
reduce communications among processes

Pool parallelism
What is happening?

Exercise 1
 PARALLELISM with POOLS

19

Exercise 1
 INPUT FILE - CuO

&control
 calculation='scf',
 outdir='./out'
 /
 &system
 ibrav = 0, nat=64, ntyp=2,
 ecutwfc = 35,
 ecutrho = 350,
 smearing='mp',
 occupations='smearing',
 degauss=0.01,
 nspin=2,
 starting_magnetization(1)=0.0,
 starting_magnetization(2)=0.5,
 /
 &electrons
 mixing_beta = 0.5,
 conv_thr = 1.0d-7,
 startingpot='atomic',
 startingwfc='atomic',
 electron_maxstep=6
 /
.
.
.
K_POINTS automatic
2 2 2 0 0 0 20

#!/bin/bash
#SBATCH --job-name=USERjob
#SBATCH --nodes 1
#SBATCH --exclusive
#SBATCH --time=00:20:00
#SBATCH --partition=boost_usr_prod
#SBATCH --qos=boost_qos_dbg
#SBATCH --ntasks-per-node=32
#SBATCH --cpus-per-task=1
#SBATCH --output=sysout.out
#SBATCH --error=syserr.err
#SBATCH --account=EUHPC_TD02_030
SBATCH --mail-user=YOUR_EMAIL - if you want

source ../environment-cpu.sh
export ESPRESSO_DIR=/leonardo_work/EUHPC_TD02_030/builds/qe7.2/bin

export EXDIR=${PWD}/..
export INDIR=${EXDIR}/inputs
export ESPRESSO_PSEUDO=${EXDIR}/../pseudo

export OMP_NUM_THREADS=1

for ip in ...
do
mpirun -np 32 ${ESPRESSO_DIR}/pw.x -npool "$ip" -ndiag 1 -i ${INDIR}/pw.CuO.scf.in > pw_CuO_${ip}pools.out
done

Exercise 1
 JOB SCRIPT

21

Try to predict which the best value for npool will be and verify it by performing a series of runs.

1. Open ex1-pools.slurm and customize the user-related SLURM options like job-name and
 mail-user (not essential);
 Replace the dots in the 'for' loop at the end of the file with a list of proper values for npool, e.g:

 for ip in 1 2 4 8
 do

2. Submit the job file:

 sbatch ex1-pools.slurm

3. Check the total WALL time at the end of the output file and plot it as a function of npool.
 Which seems to be the best npool value? Why?

Exercise 1
 SUBMIT JOB

22

For each output file collect the “WALL time” at end of the file:

 PWSCF : 3m31.00s CPU 3m36.57s WALL

NB: the CPU time is the amount of time spent by the CPU processing pw.x instructions, which
is a considerable portion of the whole execution time, but neglects, for example, I/O. For this
reason we use WALL time.

Exercise 1
 TIME PLOT

23

Pool parallelism

You should be able to produce a plot similar to this one (WALL time might differ):

Exercise 1
 TIME PLOT

24

Exercise 2: parallel diagonalization

25

PWscf

KS Solvers
Davidson

CGParO
PPCG

RMM-DIIS

Diagonalization

this is achieved using a modular
organization of the code which
allows great flexibility and ease to
use external and internal numerical
libraries

cuSOLVER

Make KS potential
XClib cuFFT

cuBLAS

Input: molecular geometry

Output: chem/phys properties

Some preliminary notions
 PWscf FLOW

26

Exercise 2
 PARALLEL DIAGONALIZATION

by PIETRO BONFA’ from MaX School 2021(ICTP meeting)

27

In this second exercise we want to speedup the code by solving the dense eigenvalue
problem using more than one core.

Set -npool to 4 and activate parallel diagonalization by setting -ndiag 4

mpirun -np 32 ${ESPRESSO_DIR}/pw.x -npool 4 -ndiag "$id" -i ${INDIR}/pw.CuO.scf.in >
pw_CuO_${id}diag.out

Inspect the beginning of the output file and look for this message

Subspace diagonalization in iterative solution of the eigenvalue problem:
one sub-group per band group will be used custom distributed-memory algorithm (size
of sub-group: 2* 2 procs)

Check the time to solution.

Exercise 2
 PARALLEL DIAGONALIZATION

28

Parallel diagonalization

You should be able to produce a plot similar to this one:

Exercise 2
 TIME PLOT

29

Please consider that:

1) pool parallelism can be much more effective than this, especially when the system size
is larger and calculations are distributed among multiple nodes, since it can strongly reduce
the slow inter-node communications;

2) the eigenvalue problem is too small in this case to fully take advantage of parallel
diagonalization;

3) other libraries, e.g. Scalapack or ELPA, usually provide better performance in parallel
diagonalization.

Please keep in mind that for larger systems, and using optimized libraries, the parallel
diagonalization is a powerful option to strongly reduce the computational time to solution.

Exercise 2
 PARALLEL DIAGONALIZATION

30

Exercise 3: openMP parallelization

31

Scaling (Amdahl Law) for QUANTUM ESPRESSO code for both MPI and OpenMP portions of
the code.
OMP parallelization is usually less efficient than MPI for QE, but involves less communications.

Exercise 3
 COMBINING with OPENMP

32

MPI and OMP threads can be combined to better exploit computational resources. OMP
parallelization is usually less efficient than MPI for QE, but involves less communications.

Exercise 3
 COMBINING with OPENMP

33

MPI and OMP threads can be combined to better exploit computational resources. OMP
parallelization is usually less efficient than MPI for QE, but involves less communications.

Exercise 3
 COMBINING with OPENMP

34

MPI and OMP threads can be combined to better exploit computational resources. OMP
parallelization is usually less efficient than MPI for QE, but involves less communications.

Exercise 3
 COMBINING with OPENMP

35

MPI and OMP threads can be combined to better exploit computational resources. OMP
parallelization is usually less efficient than MPI for QE, but involves less communications.

Exercise 3
 COMBINING with OPENMP

36

For large systems, OMP parallelization improves scaling because it allows to exploit many cores
without burdening the calculation with communications.

Exercise 3
 COMBINING with OPENMP

37

A smart combination of MPIs, OMP Threads,
and pools allows to achieve drastic reductions
of computational burden.

Exercise 3
 COMBINING with OPENMP

38

Find out how to best exploit the available CPU resources, by playing with the MPI related
parameters (number of tasks, npools) together with the number of threads.

Use the batch file ex3-omp.slurm to submit your jobs (modify it at your convenience).

Hints on how to proceed:

1. Know the size of your node, e.g. the amount of cores at your disposal
 (https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.2%3A+LEONARDO+UserGuide);
 See how the time scaling of your jobs goes just by varying the number of tasks at first (keep
 just 1 thread each at first). Adapt the npool parameter at each run.

2. Now you can start to explore the OpenMP parallelization (you can focus to range 2:8
 threads).

3. Check the total WALL time at the end of the output files and do multiple plots in function
 of the number of MPI tasks and OpenMP threads.
 What seems to be the best configuration for this exercise?

Exercise 3
 INSTRUCTIONS

39

https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.2%3A+LEONARDO+UserGuide

#!/bin/bash
#SBATCH --job-name=USERjob
#SBATCH --nodes 1
#SBATCH --exclusive
#SBATCH --time=00:20:00
#SBATCH --partition=boost_usr_prod
#SBATCH --qos=boost_qos_dbg
#SBATCH --ntasks-per-node= ...
#SBATCH --cpus-per-task= ...
#SBATCH --output=sysout.out
#SBATCH --error=syserr.err
#SBATCH --account=EUHPC_TD02_030
SBATCH --mail-user=YOUR_EMAIL - if you want

source ../environment-cpu.sh
export ESPRESSO_DIR=/leonardo_work/EUHPC_TD02_030/builds/qe7.2/bin

export EXDIR=${PWD}/..
export INDIR=${EXDIR}/inputs
export ESPRESSO_PSEUDO=${EXDIR}/../pseudo

export OMP_NUM_THREADS= ...

mpirun -np ... ${ESPRESSO_DIR}/pw.x -npool 4 -i ${INDIR}/pw.CuO.scf.in > pw_run...mpix...omp.out

Exercise 3
 JOB SCRIPT

40

Exercise 4: QE on GPUs

41

Three things to keep in mind when installing QE:

1) The compiler

2) The linear algebra libraries

3) The FFT libraries

nvfortran (ex-pgi)

cuBLAS

cuFFT

Exercise 4
 COMPILERS and LIBRARIES

42

When we use GPUs, each MPI process off-loads the calculation to one GPU:

Rank
1

Rank
2

GPU
2

GPU
1

It is convenient to use one
MPI per GPU

Exercise 4
 MPI and GPUs

43

When we use GPUs, each process off-loads
the calculation to one GPU

Rank
1

Rank
2

GPU
2

GPU
1

GPU parallelism
What is happening?

It is convenient to use one
MPI per GPU

Exercise 4
 MPI and GPUs

44

Adding more MPIs usually will not improve
performances, and might also be less efficient
because the communication burden increases

Rank
1

Rank
2

Rank
4

Rank
3

GPU
2

GPU
1

GPU parallelism
What is happening?

45

Exercise 4
 MPI and GPUs

Rank
1

Rank
2

Again, using pools will improve communications

GPU
2

GPU
1

GPU parallelism
What is happening?

Exercise 4
 CPU and GPUs

46

#!/bin/bash
#SBATCH --job-name=USERjob
#SBATCH --nodes 1
#SBATCH --exclusive
#SBATCH --time=00:10:00
#SBATCH --partition=boost_usr_prod
#SBATCH --qos=boost_qos_dbg
#SBATCH --ntasks-per-node=4
#SBATCH --cpus-per-task=8
#SBATCH --gres=gpu:4
#SBATCH --output=sysout.out
#SBATCH --error=syserr.err
#SBATCH --account=EUHPC_TD02_030
SBATCH --mail-user=YOUR_EMAIL - if you want

module purge
module load profile/chem-phys
module load quantum-espresso

export EXDIR=${PWD}/..
export INDIR=${EXDIR}/inputs
export ESPRESSO_PSEUDO=${EXDIR}/../pseudo
export OMP_NUM_THREADS=8

for ip in 1 2 4 8
do
mpirun -np 4 pw.x -npool "$ip" -i ${INDIR}/pw.CnSnI3.in > pw.CnSnI3.gpu.${ip}pools.out
done

Exercise 4
 MPI and GPUs – JOB SCRIPT

47

First, launch the GPU job as it is:

#SBATCH --ntasks-per-node = 4 # number of MPI per node
#SBATCH –cpus-per-task = 8 # number of HW threads per task
#SBATCH --gres = gpu:4

export OMP_NUM_THREADS = 8

mpirun ... ${PW} -i ${INDIR}/pw.CnSnI3.in > pw.CnSnI3.gpu.out

Exercise 4
 CPU vs GPUs

48

To get a (very) rough idea of the comparison between CPU nodes and GPU nodes, you can
run the same job on CPU and try to match the performance.

#SBATCH –ntasks-per-node=... # number of MPI per node
#SBATCH –cpus-per-task=... # number of HW threads per task

export OMP_NUM_THREADS=...

mpirun ${PW} -npool ... -ndiag ... -i ${INDIR}/pw.CnSnI3.in > pw.CnSnI3.cpu.out

Exercise 4
 CPU vs GPUs

49

You should be able to produce a plot similar to this one:

Evaluate the ratio between the best time to solution of your CPU and GPU tests.

Exercise 4
 CPU and GPUs

50

Final considerations
MINIMAL RECIPE

 1) Choose a number of MPI tasks depending on the system dimension
 (e.g. number of k-points).

 2) Use GPUs when present: - 1 GPU per MPI task;
 - combine with openMP when possible.

 3) Choose the number of pools depending on: - number of k-points;
 - number of MPI tasks;
 - number of nodes.

 4) Set the parallel diagonalization: - VERY large systems only (nbands>100).

 5) Choose the number of threads: - up to 4: advantageous;
 - 4 to 8: sometimes advantageous (but not too much);
 - >8: very rarely advantageous;
 - >>8: never advantageous.

51

Size (Ta2O5):
 el = 544
 Nat = 96
 Ecut = NC/130/520 Ry
 NPW = 477k
 Nbnd = 326
 Nks = 26

The larger the batch of data offloaded to the GPUs, the lesser the
communications, the faster, as far as you have memory for them
(memory on Ampere architecture up to 80GB).

At software level, versatile parallelization strategies based on multiple
data distribution schemes, allow an optimal exploitation of the
hardware architecture.

(4 DGX A100 nodes)

1 pool
per node

1 DGX A100

2 DGX A100

4 DGX A100

(8 pools)

1 2 4 1 2 4 8 16

Taken from L. Stuber (NVIDIA), I. Carnimeo (SISSA), P. Delugas (SISSA), F. Spiga (NVIDIA) unpublished benchmarks.
All calculations on A100 kindly provided by NVIDIA Corp.

Final considerations
 CPU and GPUs

52

Appl. Phys. Lett. 118, 121602 (2021);
Nano Lett. (2018) 18, 2268−2273

MPI = 16 48 32 96
NPOOLS = 4 6 4 12

Good scaling performances have been found
for large systems, by combining plane waves
and pools parallelization strategies.

Size:
 el = 4445
 Nat = 605
 Ecut = NC/75/300 Ry
 NPW = 994k
 Nbnd = 2688
 Nks = 12

(8 A100 GPUs per node)

Taken from L. Stuber (NVIDIA), I. Carnimeo (SISSA), P.
Delugas (SISSA), F. Spiga (NVIDIA) unpublished
benchmarks.
All calculations on A100 kindly provided by NVIDIA Corp.

Final considerations
 CPU and GPUs

53

The QUANTUM ESPRESSOTM codes have
been engineered to exploit exascale
computational facilities, through an extensive
porting to hybrid CPU-GPU architectures,
using mixed (CUDA Fortran/OpenACC,
OpenMP) offload schemes, in order to
enhance portability to hardware from
different vendors

Size:
 Electrons = 5232
 Atoms = 1532

GPU porting

Final considerations
 CPU and GPUs

54

Benchmark tests on a functionalized
Carbon Nanotube show that 24 GPUs of
the Ampere A100 (80 GB) architecture
perform as 144 Volta V100 (16 GB) and
much better than 3072 SkyLake cores

Size:
 el = 5232
 Nat = 1532
 Ecut = US/25/200 Ry
 NPW = 27M
 Nbnd = 2616
 Nks = Gamma only

(s)

Taken from L. Stuber (NVIDIA), I. Carnimeo (SISSA), P. Delugas (SISSA), F. Spiga (NVIDIA) unpublished benchmarks.
All calculations on A100 kindly provided by NVIDIA Corp.

Final considerations
 CPU and GPUs

55

Ivan Carnimeo

Fabrizio Ferrari Ruffino

Pietro Delugas

Acknowledgement

Hands-on session – Day 1

Thank you,
See you tomorrow

Efficient materials modelling on HPC
with QUANTUM ESPRESSO, Siesta and Yambo

58

Three things to select when installing QE (already available on our cluster):

1) The compilers

2) The linear algebra libraries

3) The FFT libraries

gfortran ifort nvfortran
(ex pgi)

openblas
mkl

(Intel, AMD CPU)

fftw3

flang
(ARM)

mkl
(Intel, AMD CPU)

(QE internal)

(QE internal)

Some preliminary notions
 COMPILERS AND LIBRARIES

59

