

Basics and some details of the SIESTA method

Emilio Artacho

Nanogune, Ikerbasque & DIPC, San Sebastian, Spain

Theory of Condensed Matter, Department of Physics Cavendish Laboratory, University of Cambridge

Outline

Main characteristics

- Standard DFT
- Fast for large systems => Order-N
- From quick & dirty to highly accurate

Methods and approximations

- Norm-conserving pseudopotentials
- Basis of numerical atomic orbitas
- Uniform real-space grid
- Order-N functional (solver)

Introduction to basics only

(SIESTA can do many more things than presented here!)

The physics of low-energy matter

Made of electrons & nuclei (interacting with photons)

matter at T up to several millon K

(except for nuclear fission and radioactive decay)

- Atomic & molecular physics
- Condensed matter physics (solids, liquids)
- Plasma physics

Low energy in the sense of not probing inner structure of nuclei

 $\ensuremath{\mathbb{C}}$ Shutterstock, LiveScience

Ali Yazdani's group, Princeton

First principles

Quantum Mechanics

$$H\Psi(s_1, s_2 \dots s_N, t) = i\hbar \,\partial_t \Psi(s_1, s_2 \dots s_N, t)$$
$$s_i = (\mathbf{r}_i, \sigma_i)$$

$$H = -\sum_{i}^{N} \frac{\hbar^2}{2m_i} \nabla_i^2 + \sum_{i,j < i}^{N} \frac{q_i q_j}{r_{ij}}$$

Just electrons and nuclei

Just electrons and nuclei

The underlying physical laws necessary for the mathematical theory of . . . the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble.

Paul Dirac, 1929

=> Approximations

Born-Oppenheimer approximation

 $m_n \gg m_e$

 \Rightarrow Nuclei are much slower than electrons

Decoupling of electrons and nuclei

Many electrons: Density-Functional Theory (DFT)

Ground state theory for the electronic problem

• Twist on variational principle

$$E[\Psi] = \min_{\Psi} \langle \Psi | \hat{H} | \Psi \rangle \longrightarrow \min_{n} E[n]$$

Hohenberg-Kohn theorems. *No longer exponential complexity!*

• Map $\min_n E[n]$ into solving mean-field-like problem

Kohn-Sham formulation. Self-consistent single-particle as in HF

Kohn-Sham DFT

Non-interacting electrons in a self-consistent effective potential

$$h^{\mathrm{KS}} = -rac{1}{2}
abla^2 + V_{\mathrm{ext}}(\mathbf{r}) + \Phi(\mathbf{r}) + V_{\mathrm{xc}}(\mathbf{r})$$

$$\Phi(\mathbf{r}) = \int d^3 \mathbf{r}' \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \quad V_{\rm XC}(\mathbf{r}) = \frac{\delta E[n(\mathbf{r})]}{\delta n(\mathbf{r})}$$

$$h^{\mathrm{KS}}\psi_n(\mathbf{r}) = \epsilon_n\psi_n(\mathbf{r}) \qquad n(\mathbf{r}) = \sum_n^{\mathrm{occ}} |\psi_n(\mathbf{r})|^2$$

 $\sim \sim \sim$

Local density approximation (LDA)

Generalized gradient approximation (GGA): $V_{xc}(n(\mathbf{r}), \nabla n(\mathbf{r}))$

Van der Waals xc functionals: $V_{xc}(n(\mathbf{r}), \nabla n(\mathbf{r}); n(\mathbf{r}'), \nabla n(\mathbf{r}'))$

Expand KS states in a basis

Basis set: { $|e_{\mu}\rangle$, $\mu = 1...N$ } $\phi_{\mu}(\mathbf{r}) = \langle \mathbf{r}|e_{\mu}\rangle$

Schrödinger (Kohn-Sham) eq. $H|\psi_n\rangle = E_n|\psi_n\rangle$ becomes

$$\sum_{\nu} H_{\mu\nu} C_{\nu n} = E_n \sum_{\nu} S_{\mu\nu} C_{\nu n}$$

where

$$|\psi_n\rangle = \sum_{\mu} |e_{\mu}\rangle C_{\mu n}, \quad H_{\mu\nu} = \langle e_{\mu}|H|e_{\nu}\rangle, \text{ and } S_{\mu\nu} = \langle e_{\mu}|e_{\nu}\rangle,$$

$$n(\mathbf{r}) = \sum_{n}^{\text{occ}} |\psi_n(\mathbf{r})|^2 = \sum_{n}^{\text{occ}} \psi_n(\mathbf{r}) \psi_n^*(\mathbf{r}) = \sum_{n}^{\text{occ}} \sum_{\mu,\nu} C_{\mu n} \phi_\mu(\mathbf{r}) C_{\nu n}^* \phi_\nu^*(\mathbf{r})$$
$$= \sum_{\mu,\nu} \rho_{\mu\nu} \phi_\mu(\mathbf{r}) \phi_\nu^*(\mathbf{r}) \quad \text{where} \quad \rho_{\mu\nu} \equiv \sum_{n}^{\text{occ}} C_{\mu n} C_{\nu n}^*$$

Linear Scaling KEY: LOCALITY

Large system

x 2

"Divide and Conquer"

W. Yang, Phys. Rev. Lett. 66, 1438 (1992)

Basis set – LCAO – atomic orbitals

Numerical (pseudo)atomic orbitals (PAOs) & real spherical harmonics

$$\phi_{\zeta lm}(r,\theta,\varphi) = R_{\zeta}(r)Y_{lm}(\theta,\varphi)$$

$$Y_{lm}(\theta,\varphi) = C_{lm}P_{l}^{m}(\cos\theta) \times \begin{cases} \sin(m\varphi) & \text{if } m < 0\\ \cos(m\varphi) & \text{if } m \ge 0 \end{cases}$$

$$l = 1, \ m = -1, 0, +1 \implies p_{y}, p_{z}, p_{x}$$

Finite-support atomic orbitals as basis

Strictly localised (zero beyond cut-off radius) Hard vs smooth confinement

Finite-support atomic orbitals as basis

Only 2 conditions

1. $\phi_{\zeta lm}(r,\theta,\varphi) = R_{\zeta}(r)Y_{lm}(\theta,\varphi)$

2. Finite range

User decides

d 峉

S

- How many centres
- Where to put them (on atoms or not)

- How many angular momenta
 - How many for each angul momentum
- Each radial shape

Finite-support atomic orbitals as basis

Finite-range basis orbitals – Multiple zeta

• First ζ : $\Delta \epsilon_{PAO} \Rightarrow R_{c}$

• Second ζ : Split-valence \Rightarrow Split-norm

O. F. Sankey and D. J. Niklewski, *Phys. Rv. B* **40**, 3979 (1989)

E. Artacho et al, Phys. Stat. Sol (b) 215, 809 (1999)

Polarization orbitals

3d orbitals of Si

NaCl.ORB_INDX file

18	В	18 =	orbi	tals	in	uni	t c	ell	and	supercell.	See end	of	fil	e.	
io	ia	is	spec	iao	n	1	m	7	n	svm	rc		isc		iuo
1		1	Na	1	3	0	0	1	F	s s	11.046	0	0	0	1
2	1	1	Na	2	3	õ	0	2	F	s	8.821	0	õ	0	2
3	1	1	Na	3	3	1 -	-1	1	Т	Ppv	11.046	0	0	0	3
4	1	1	Na	4	3	1	0	1	Т	Ppz	11.046	0	0	0	4
5	1	1	Na	5	3	1	1	1	т	Ppx	11.046	0	0	0	5
6	2	2	C۱	1	3	0	0	1	F	s	4.912	0	0	0	6
7	2	2	C۱	2	3	0	0	2	F	S	3.212	0	0	0	7
8	2	2	C۱	3	3	1 ·	-1	1	F	ру	6.152	0	0	0	8
9	2	2	C۱	4	3	1	0	1	F	pz	6.152	0	0	0	9
10	2	2	Cl	5	3	1	1	1	F	рх	6.152	0	0	0	10
11	2	2	Cl	6	3	1 ·	-1	2	F	ру	3.594	0	0	0	11
12	2	2	Cl	7	3	1	0	2	F	pz	3.594	0	0	0	12
13	2	2	Cl	8	3	1	1	2	F	рх	3.594	0	0	0	13
14	2	2	Cl	9	3	2 ·	-2	1	Т	Pdxy	6.152	0	0	0	14
15	2	2	Cl	10	3	2 ·	-1	1	Т	Pdyz	6.152	0	0	0	15
16	2	2	Cl	11	3	2	0	1	Т	Pdz2	6.152	0	0	0	16
17	2	2	Cl	12	3	2	1	1	Т	Pdxz	6.152	0	0	0	17
18	2	2	Cl	13	3	2	2	1	Т	Pdx2-y2	6.152	0	0	0	18
Column	codes														
io =	Orbital index in supercell														
ia =	Atom to which orbital belongs														
is =	Atomic species index														
spec =	Atomic species label														
iao =	Orbital index within atom														
n =	Principal quantum number														
l =	Angular mumentum quantum number														
m =	Magnet	tic q	uantur	n nur	nbe	r of	(r	eal) orl	bital:					
	m<0 =>	> sin	(m*ph:	i), r	n>=(ð =>	CO)s(m>	kphi)					
z =	Zeta index of orbital														
p =	Is th:	is a	polar:	izat	ion	orb	ita	ıl?	(Fal	se True)					
sym =	Symmet	Symmetry name of real orbital													
rc =	Cutof	f rad	ius of	for	oita	al (I	Boh	ir)							
isc =	Unit d	cell	indexe	es to	o wi	nich	or	bita	albo	elongs:		<i>.</i> .			
	center	r(io)	= cer	nter	(iu) +	su.	ım_(:	1=1:3	3) cell_vec	(i) * is	c(i)		
iuo =	Equiva	alent	orbi	tal :	in :	firs	t u	init	cel	l					

Basis set convergence

J. Junquera et al. Phys. Rev. B, 64, 235111 (2001)

1. Building: Computing H (and S)

$$H = T + V_{ion}(\mathbf{r}) + V_{nl} + V_{H}(\mathbf{r}) + V_{xc}(\mathbf{r})$$
Long range

 $V_{na}(r) = V_{ion}(r) + V_{H}[\rho_{o}(r)]$ Neutral-atom potential $\delta V_{H}(\mathbf{r}) = V_{H}[\rho_{SCF}(\mathbf{r})] - V_{H}[\rho_{o}(\mathbf{r})]$

$$H = T + V_{nl} + V_{na}(\mathbf{r}) + \delta V_{H}(\mathbf{r}) + V_{xc}(\mathbf{r})$$

Two-center
integrals
Grid integrals

1. Building (a) **Two-center** integrals **Convolution theorem** $S(\mathbf{R}) \equiv \left\langle \phi_1 \middle| \phi_2 \right\rangle = \int \phi_1(\mathbf{r}) \,\phi_2(\mathbf{r} - \mathbf{R}) \,d\mathbf{r}$ $\phi(\mathbf{k}) = \frac{1}{(2\pi)^{2/3}} \int \phi(\mathbf{r}) e^{-i\mathbf{k}\mathbf{r}} d\mathbf{r}$ $S(\mathbf{R}) = \int \phi_1(\mathbf{k}) \, \phi_2(\mathbf{k}) \, e^{i\mathbf{k}\mathbf{R}} d\mathbf{k}$

 $T = -(1/2) \nabla^2$ $V_{\rm nl} = \sum_{\alpha} |\chi_{\alpha} > \varepsilon_{\alpha} < \chi_{\alpha}| \text{ Kleinman-Bylander}$

(From $V_{\text{PS}} = V_{\text{ion}}(r) + V_{\text{nl}}$, but not $V_{\text{ion}}(r) \rightarrow -Z_{\text{val}}/r$)

1. Building (b): on a real-space grid (discretise space)

$$\psi_{i}(\mathbf{r}) = \sum_{\mu} c_{i\mu} \phi_{\mu}(\mathbf{r})$$

$$\rho_{\mu\nu} = \sum_{i} c_{i\mu} c_{i\nu}$$

$$\rho(\mathbf{r}) = \sum_{i} \psi_{i}^{2}(\mathbf{r}) = \sum_{\mu\nu} \rho_{\mu\nu} \phi_{\mu}(\mathbf{r}) \phi_{\nu}(\mathbf{r})$$

$$\delta\rho(\mathbf{r}) = \rho_{SCF}(\mathbf{r}) - \rho_{atoms}(\mathbf{r})$$

$$p(r) = \rho_{SCF}(r) - \rho_{atoms}(r)$$

$$p(r) \rightarrow V_{xc}(r)$$

$$\delta\rho(r) \xrightarrow{FFT} \delta V_{H}(r)$$

Poisson equation

$$\begin{aligned} \nabla^2 V_H(r) &= -4\pi \ \rho(r) \\ \rho(r) &= \sum_G \rho_G \ e^{iGr} \implies V_H(r) = \sum_G V_G \ e^{iGr} \\ V_G &= -4\pi \ \rho_G \ / \ G^2 \end{aligned}$$

$$\rho(r) \xrightarrow{FFT} \rho_G \rightarrow V_G \xrightarrow{FFT} V_H(r)$$

- SIESTA (nrmally) uses periodic boundary conditions
- Net charge compensated by uniform background
- Spurious interactions between 'images'

GGA

$$v_{xc}(r) = \frac{\delta E_{GGA}[\rho(r'), |\nabla \rho(r')|]}{\delta \rho(r)}$$
$$= V_{GGA}(\rho(r), |\nabla \rho(r)|, \nabla^2 \rho(r), \nabla \rho(r) \bullet \nabla |\nabla \rho(r)|)$$

$$\frac{\partial \rho}{\partial x} \equiv \frac{\rho_{i+1} - \rho_{i-1}}{x_{i+1} - x_{i-1}} \implies E_{xc} \equiv E_{GGA}(\rho_1, \rho_2, ...)$$
$$\implies v_{xc}(r_i) \equiv \frac{\partial E_{xc}}{\partial \rho_i}$$

Grid fineness: 'mesh cutoff'

Egg-box effect

Higher effects on forces than on energy Grid-cell sampling

Grid fineness convergence

$$E_{cut} = (\pi / \Delta x)^2$$

2. Solving: Linear scaling

Localised solutions

R_c

k-point sampling (fineness of grid in k-space)

 L_c = 'length cutoff'

Moderated by electronic temperature

Pulay mixing

$$\rho_n(\mathbf{r}) \rightarrow \rho_{out}(\mathbf{r})$$

$$\delta \rho_n(\mathbf{r}) = \rho_{out}(\mathbf{r}) - \rho_n(\mathbf{r})$$

The physics of low-energy matter

Behind properties and processes in

- Chemistry
- Biomedicine (biochem, biophys, molecular bio)
- Geo (geophyiscs, geochemistry)
- Lots of astrophysics (planets, exoplanets)
- Engineering (materials, electronics ...)
- Energy research
- Nanoscience and technlogy

Earth's inerior © ASX CAnada

Liquid water © MV Fernandez-Serra

Exoplanets © NASAJPL Caltech, FINESSE Project

Pain receptors in the brain © Univ Bochum

© Getty Images

Thank you

'Molecular' vs 'solid' pressure

Internal supercell

