L3

Overview of different QC approaches

Göran Wendin Chalmers

- Superconducting, trapped ions, semiconductors
- QC types (digital, analogue, adiabatic, annealing)
- Hybrid HPC+QC systems
- How the non-QC-expert end-user will benefit.

- Superconducting, trapped ions, semiconductors
- QC types (digital, analogue, adiabatic, annealing)
- Hybrid HPC+QC systems
- How the non-QC-expert end-user will benefit

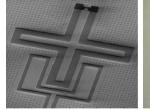
Superconducting

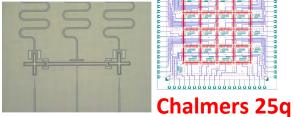
Ion traps

Neutral atoms

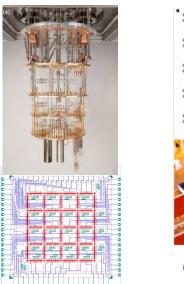
Semiconductor

Photonic

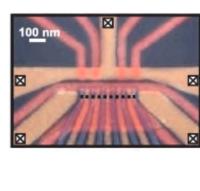


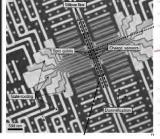


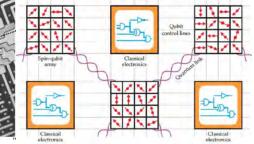
Quantum computer architectures

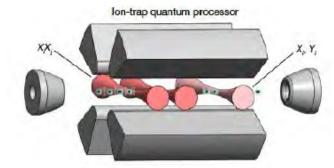


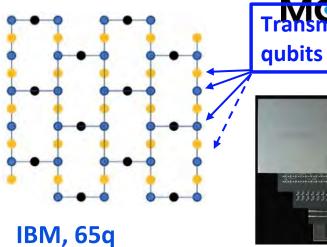
Google 53q
Sycamore

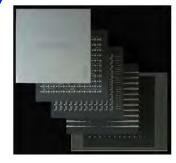


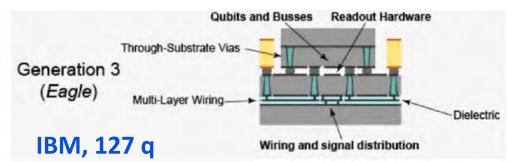


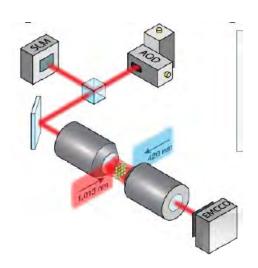












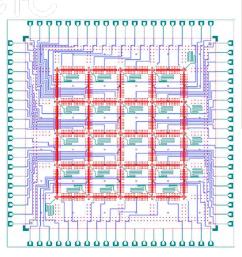
Sweden's quantum technology programme

Wallenberg Centre for Quantum Technologies WACQT, 2018-2029 MC2, Chalmers U of Tech, Sweden

12 years, 150 M€

Mission: to build a quantum processor with 100+ superconducting qubits by 2025

Cryostat ≈ 10 mK

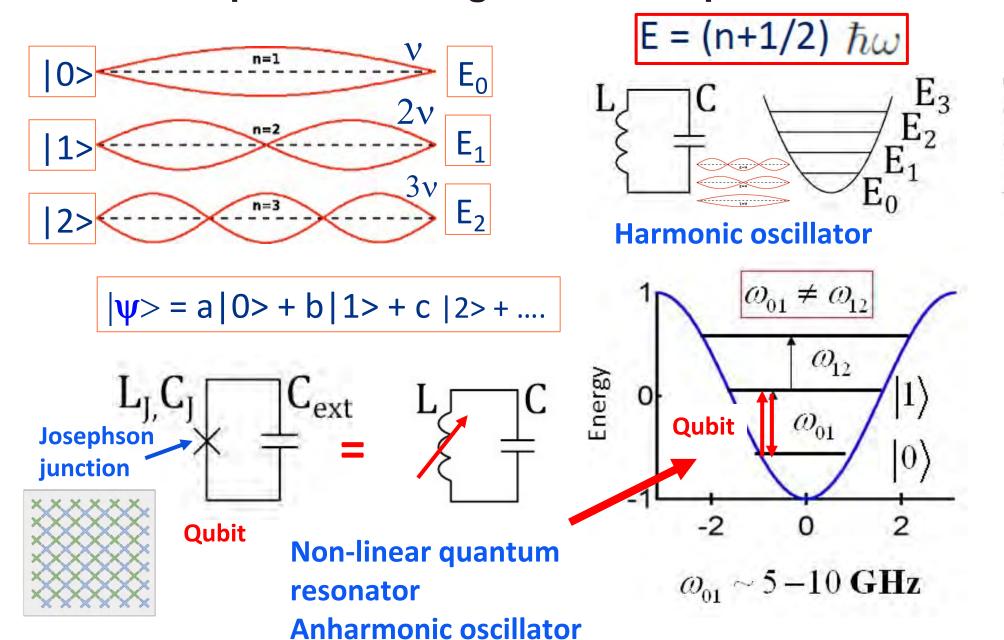


25 25

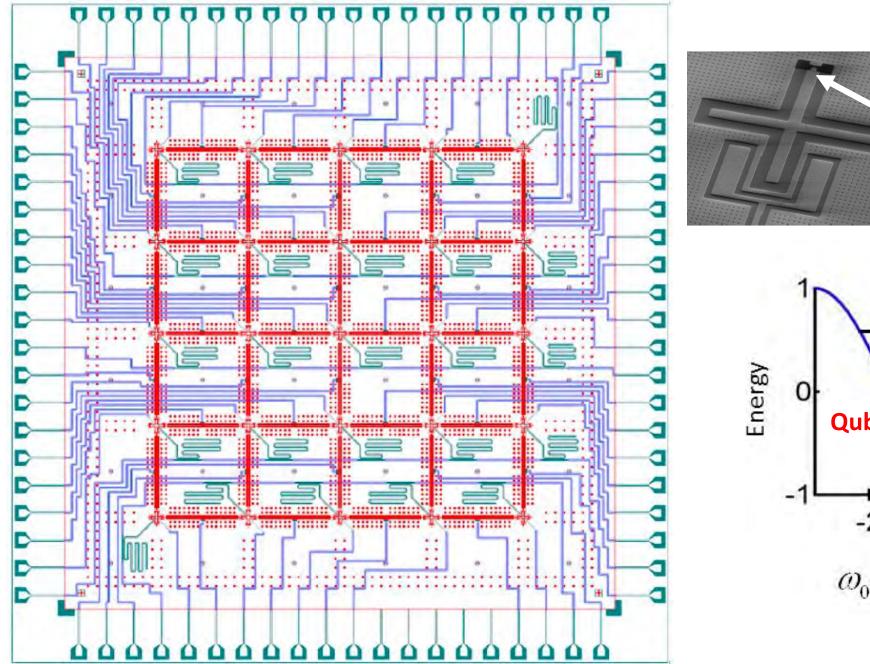
25q Transmon chip under testing

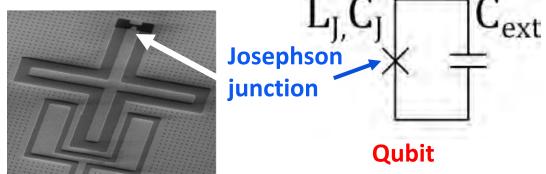
https://www.chalmers.se/en/centres/wacqt/Pages/default.aspx

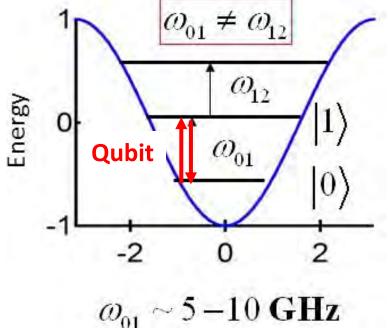
QC/QPU: Superconducting Transmon qubit



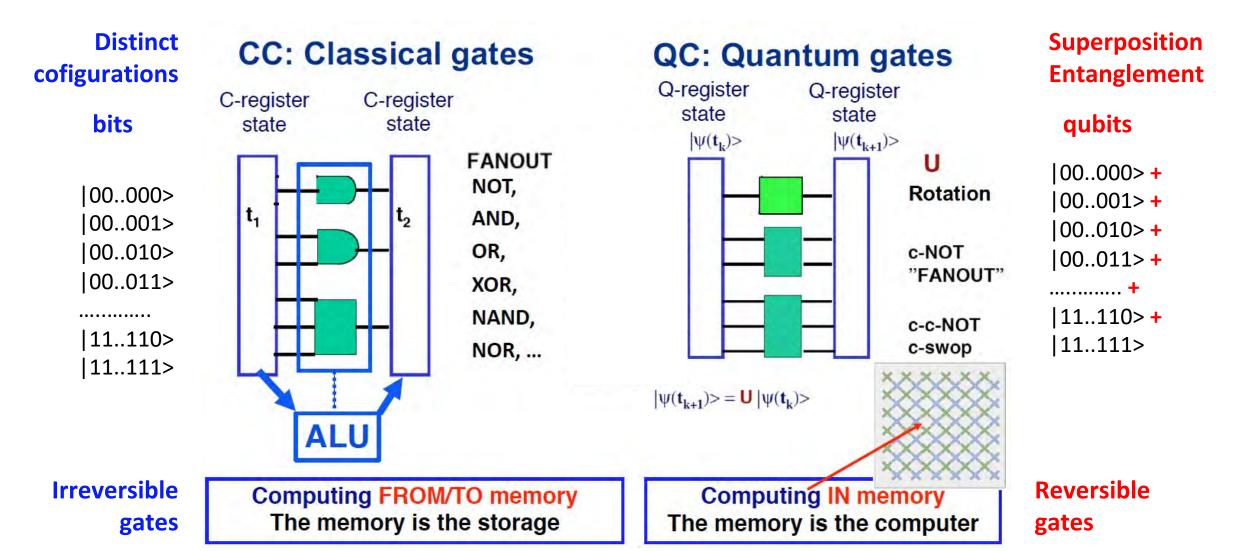
QC/QPU: Superconducting Transmon qubit



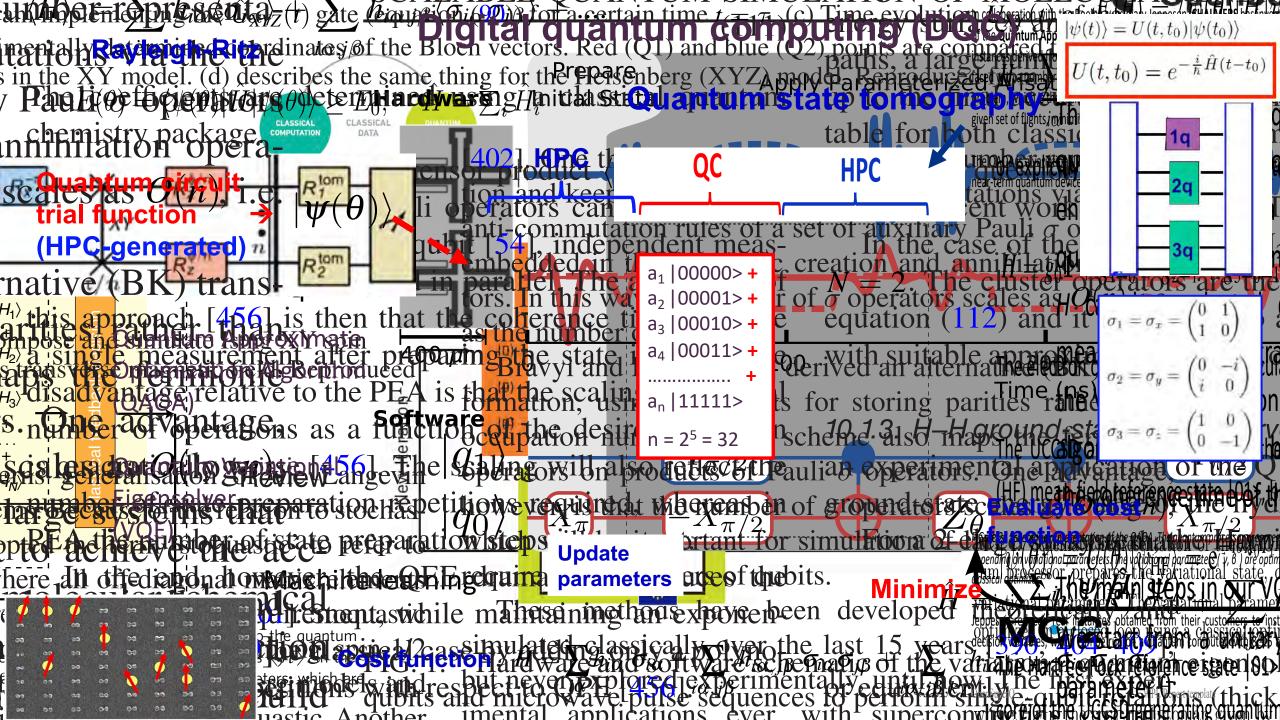




How does QC differ from classical HPC?



- Superconducting, trapped ions, semiconductors
- QC types (digital, analogue, adiabatic, annealing)
- Hybrid HPC+QC systems
- How the non-QC-expert end-user will benefit



QAOA

Quantum Approximate **Optimization Algorithm**

Evaluate cost function

Minimize

$$\sum_i ra{\psi|\hat{H}_i|\psi}$$

$$\sigma_1 = \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

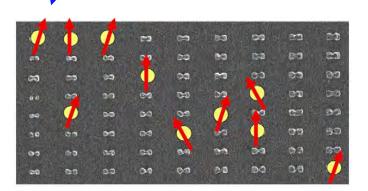
$$\sigma_2 = \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

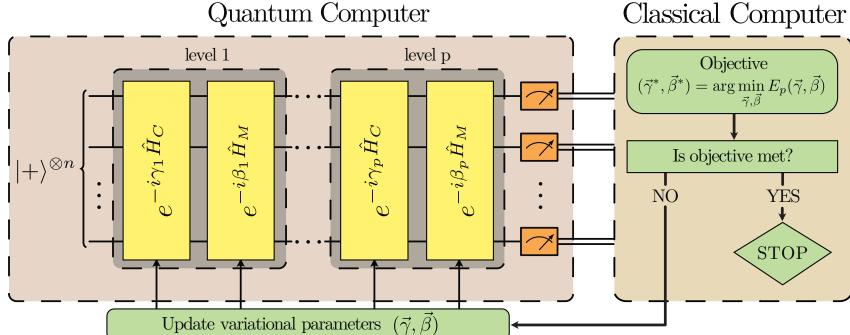
$$\sigma_3 = \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Minimize
$$\sum_i \langle \Psi | H_i | \Psi \rangle$$
 $\sigma_1 = \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ Cost function $\hat{H} = \sum_{i\alpha} h_{i\alpha} \ \sigma_{i\alpha} + \sum_{i\alpha,j\beta} h_{i\alpha,j\beta} \ \sigma_{i\alpha} \sigma_{j\beta} + \sum_{i\alpha,j\beta,k\gamma} h_{i\alpha,j\beta,k\gamma} \ \sigma_{i\alpha} \sigma_{j\beta} \ \sigma_{k\gamma} + \dots$ $\sigma_3 = \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Tune parameters to to model material $h_{ilpha,jeta} \ h_{ilpha,jeta,koldsymbol{\gamma}}$ systems

$$h_{i\alpha,j\beta,k\gamma}$$





Digital-analogue (DAQC) methods

Evaluate cost function

Minimize

$$\sum_i raket{\psi|\hat{H}_i|\psi}$$

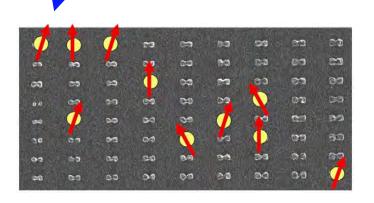
$$\sigma_1 = \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

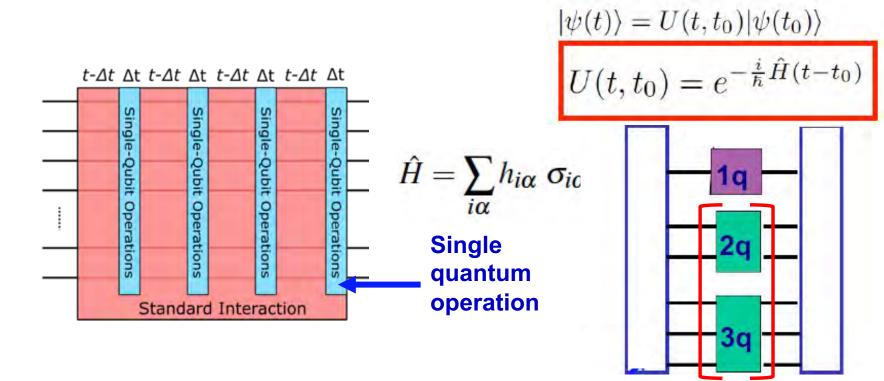
$$\sigma_2 = \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

$$\sigma_3 = \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

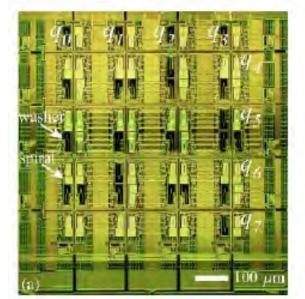
$$\textbf{Cost function} \quad \hat{H} = \sum_{i\alpha} h_{i\alpha} \; \sigma_{i\alpha} + \sum_{i\alpha,j\beta} h_{i\alpha,j\beta} \; \sigma_{i\alpha} \sigma_{j\beta} + \sum_{i\alpha,j\beta,k\gamma} h_{i\alpha,j\beta,k\gamma} \; \sigma_{i\alpha} \sigma_{j\beta} \sigma_{k\gamma} + \dots$$

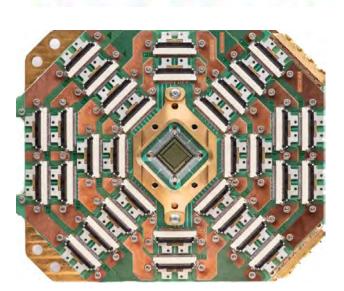
 h_{ilpha} Tune parameters to $h_{ilpha,jeta}$ to model material systems $h_{ilpha,jeta,k\gamma}$

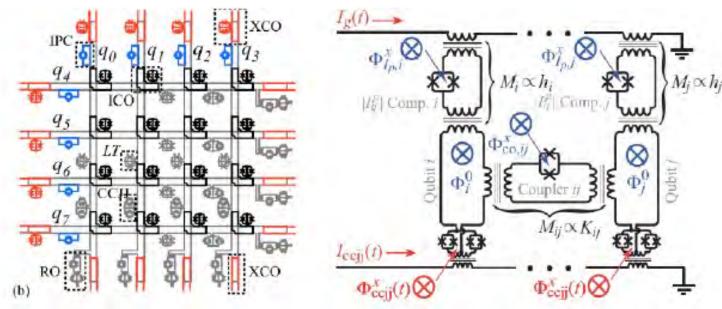




Analogue/adiabatic methods/quantum annealing







The **D-Wave 2Q** processor contains 2000 coupled flux qubits (connectivity 6) at 20 mk using SFQ (classical) circuit technology. The machine is a **Quantum Annealer**. It aims at Adiabatic Quantum Computing, but is not a coherent quantum computer.

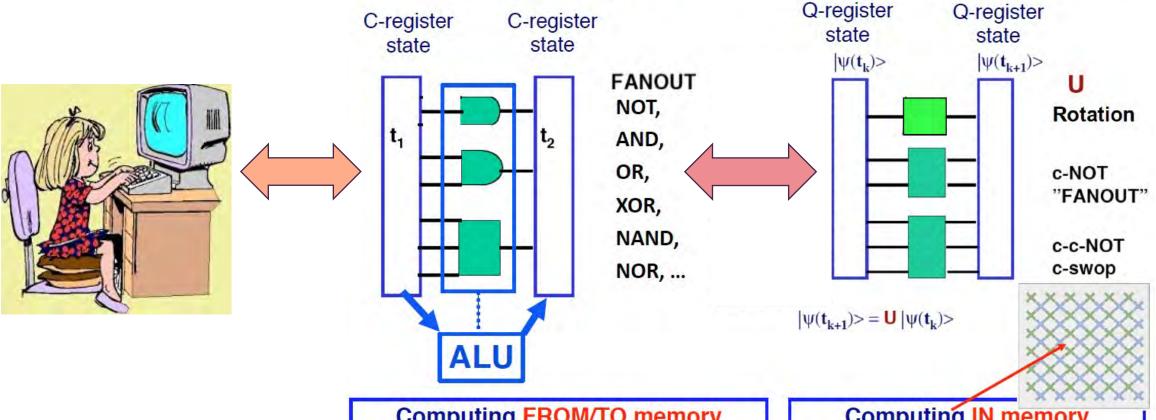
The **D-Wave Advantage** processor contains 5000 coupled flux qubits (connectivity 15).

- Superconducting, trapped ions, semiconductors
- QC types (digital, analogue, adiabatic, annealing)
- Hybrid HPC+QC systems
- How the non-QC-expert end-user will benefit

HPC-QC = Classical computer + Q-accelerator

CC: Classical gates

QC: Quantum gates



Computing FROM/TO memory

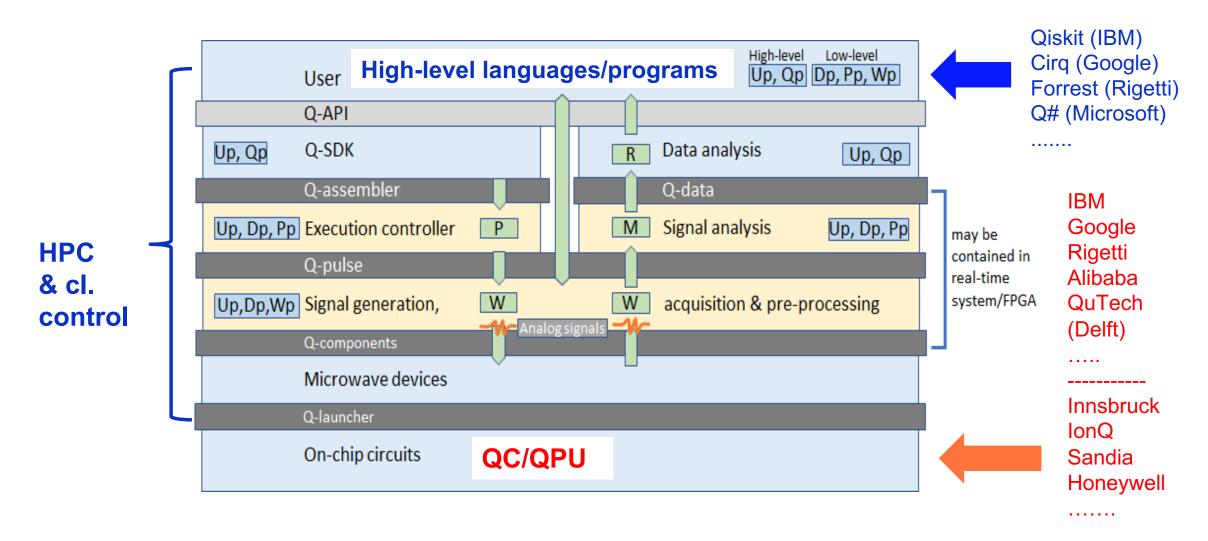
The memory is the storage

Computing IN memory

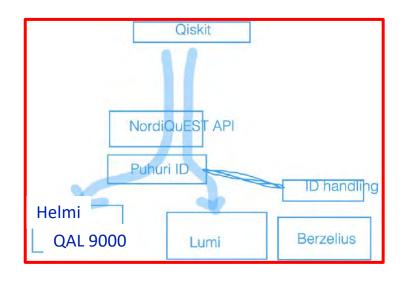
The memory is the computer

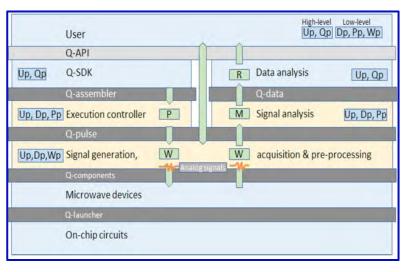
HPC-Q hybrid computer

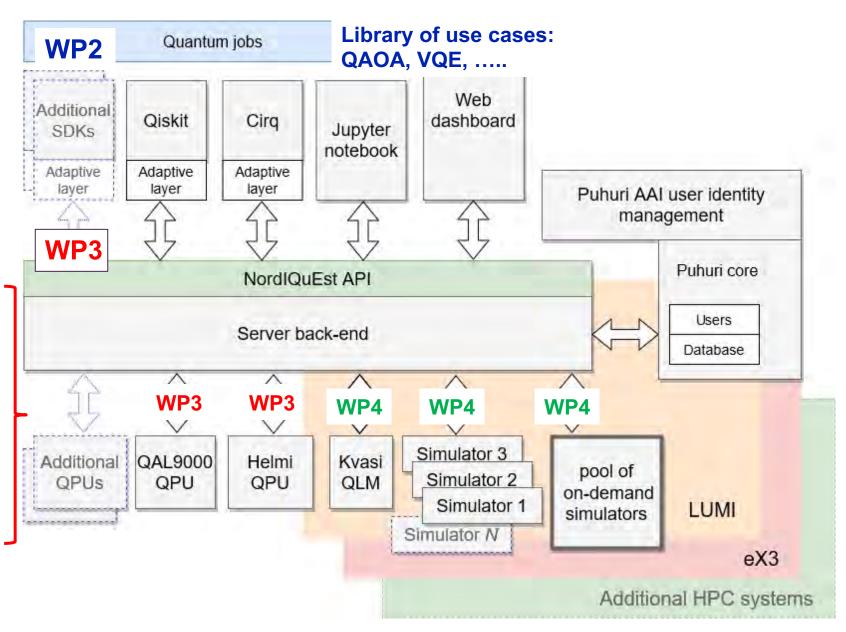
HPC (mainframe/control) + QC (accelerator/subroutines)



NordiQuEst in a nutshell







- Superconducting, trapped ions, semiconductors
- QC types (digital, analogue, adiabatic, annealing)
- Hybrid HPC+QC systems
- How the non-QC-expert end-user will benefit

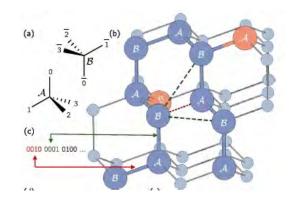
How the non-QC-expert end-user will benefit

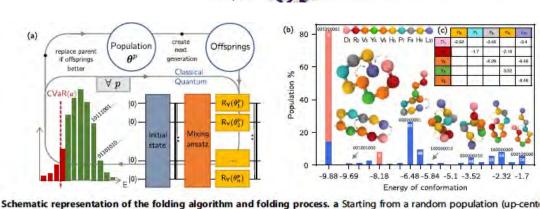
K. Michelsen and coworkers, FZ Jülich (2020)

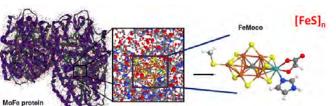
Use cases:

- Optimisation (Logistics, scheduling,)
- Chemistry (catalytic molecules, pharma, ...)
- Materials science

Life science







Resource-efficient quantum algorithm for protein folding Anton Robert, Panagiotis KI. Barkoutsos, Stefan Woerner and Ivano Tavernelli npj Quantum Information (2021) 7:38; https://doi.org/10.1038/s41534-021-00368-4

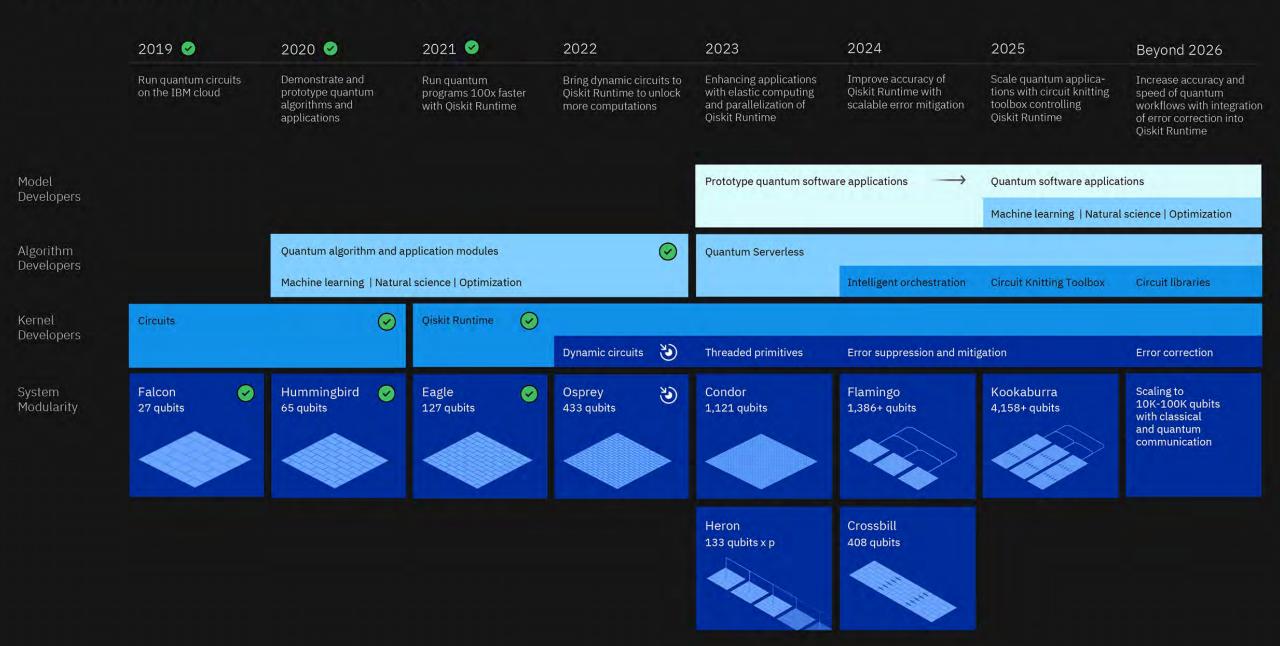
HPC-QC roadmaps 2022-2029

- Horizon Europe
- IBM

Development Roadmap

Executed by IBM
On target

IBM Quantum



Globally, much work is dedicated to comparing HPC simulation of different QAOA implementations, as well as comparing QAOA and quantum annealing with classical optimization algorithms implemented on HPC.

- Guerreschi and Matsuura [2019] found that the QAOA needs several hundred qubits to reach crossover and beat state-of-the-art classical algorithms.
- Lidar and coworkers [Kowalsky 2022] found that the **SATonGPU** algorithm was **superior to D-Wave Advantage (DWA)** solving SAT-problems.
- FZJ [Willsch et al. 2021] found that the DWA quantum annealer was superior to HPC simulation of the QAOA on the maxcut problem describing flight logistics
- But DWA is inferior to the classical SATonGPU on similar optimisation problems !!

QAOA for Max-Cut requires hundreds of qubits for quantum speed-up

G. G. Guerreschi & A. Y. Matsuura, Scientific Reports 9:6903 (2019)

GPU-accelerated simulations of quantum annealing and the quantum approximate optimization algorithm

D. Willsch, M. Willsch, F. Jin, K. Michielsen, and H. De Raedt; arXiv:2104.03293

Benchmarking Advantage and D-Wave 2000Q quantum annealers with exact cover problems

D. Willsch, M. Willsch, C. D. Gonzalez Calaza, F. Jin, H. De Raedt, M. Svensson, and K. Michielsen; arXiv:2105.02208

3-regular three-XORSAT planted solutions benchmark of classical and quantum heuristic optimizers

Matthew Kowalsky, Tameem Albash, Itay Hen and Daniel A Lidar, Quantum Sci. Technol. 7 (2022) 025008

3-regular three-XORSAT planted solutions benchmark of classical and quantum heuristic optimizers

Matthew Kowalsky, Tameem Albash , Itay Hen and Daniel A Lidar, Quantum Sci. Technol. 7 (2022) 025008

Solver	Parallel tempering	Fujitsu digital annealer unit
Hardware	Single CPU	ASIC
Connectivity	Full, dense	Full, dense
Max QUBO size n	RAM-limited, 10 000	8192/4096/2048, *precision dependent
Precision	64 bit float \approx 10 ^{−16}	$16/32/64$ bit (signed int) $\approx 10^{-4}/10^{-9}/10^{-19}$
Parallelization	1 per CPU core	8 per DA
Accessed via	USC-UNM code	DA Center Japan 4/25/2020

Toshiba simulated bifurcation machine Single GPU small n: full, dense; large n: full, sparse $10\,000$ max, $10^6 J_{ij} \neq 0$ 64 bit float $\approx 10^{-16}$ 40 per GPU Amazon Web Services [51] 8/20/2020

D-Wave advantage 1.1
Superconducting qubits
Pegasus (Deg. 15)
Clique: 128, 3R3X: \approx 256, native: 5436
Noise-limited. \approx 5 bit or 10^{-2} $\lfloor n_{\text{max}}/n \rfloor$ replicas *connectivity dependent
LEAP cloud 10/31/2020

SATonGPU
Single GPU
Full, dense
RAM-limited, >10 000
64 bit float $\approx 10^{-16}$ 327680 replicas
n/a

3-regular three-XORSAT planted solutions benchmark of classical and quantum heuristic optimizers

Matthew Kowalsky, Tameem Albash, Itay Hen and Daniel A Lidar, Quantum Sci. Technol. 7 (2022) 025008

