Introduction to Quantum Computing & Hybrid HPC-QC Systems

The HPC-QC landscape

Göran Wendin Chalmers

How does QC differ from classical HPC? What is the relation between HPC and QC for the foreseeable future?

NeIC = Nordic e-Infrastructure Collaboration

ENCCS = European National Competence Centre Sweden

NordIQuEst = Nordic-Estonian Quantum Computing e-Infrastructure Quest

Wed 8 June 2022		Thu 9 June 2022	
			Introducti
The HPC-OC landscape: how does	9-9:45	The hybrid HPC-QC approach	TILLOQUCTI
QC differ from classical HPC? What is the relation between HPC and QC for the foreseeable future?	L5	Systems: HPC-QC integration, facts and fiction. Co-located and distributed systems. Software control of quantum error mitigation and correction.	Quantum Co
Introduction to digital QC:	10-10:45	Overview of the software stack	👃 нургіа н
quantum states, qubits, logic gates, quantum algorithms.	L6	ranging from ready-made Q-libraries for common tasks to circuit level	
Overview of different QC hardware		assembly and hardware-level couling.	
approaches (superconducting, trapped ions, semiconductors) and	11-11:45	Hybrid classical/quantum algorithms	a Competence Centre S
QC types (digital, analogue, adiabatic, annealing). Hybrid HPC+QC systems, how the	L7	Methods: Optimisation and variational methods: QAOA/QUBO, VQE, and more	EuroCC National Competence
non-expert end-user will benefit.		Applications: Introduction to use cases for quantum chemistry, optimisation and finance.	NordIOuEs
Lunch			
Introduction to high-level	12-13	Lunch	
languages for QC (Qiskit, Cirq, Q#) How to download program packages: Qiskit:	13-16 E2	Hands-on experience with 13-14 - quantum software testing on simulator including downloading	
Hands-on experience with quantum gates and quantum circuits: - Downloading quantum programming environments: Qiskit - Execution of simple examples		the tool and using it to test quantum circuits in Qiskit. 14-15 - Qiskit applied to use cases for optimisation 15-16 - Qiskit applied to use cases for	
	The HPC-QC landscape: how does QC differ from classical HPC? What is the relation between HPC and QC for the foreseeable future? Introduction to digital QC: quantum states, qubits, logic gates, quantum algorithms. Overview of different QC hardware approaches (superconducting, trapped ions, semiconductors) and QC types (digital, analogue, adiabatic, annealing). Hybrid HPC+QC systems, how the non-expert end-user will benefit. Lunch Introduction to high-level languages for QC (Qiskit, Cirq, Q#) How to download program packages: Qiskit: Hands-on experience with quantum gates and quantum circuits: Downloading quantum programming environments: Qiskit - Execution of simple examples	Weak of state 2012The HPC-QC landscape: how does QC differ from classical HPC? What is the relation between HPC and QC for the foreseeable future?9-9:45Introduction to digital QC: quantum states, qubits, logic gates, quantum algorithms.10-10:45Overview of different QC hardware approaches (superconducting, trapped ions, semiconductors) and QC types (digital, analogue, adiabatic, annealing). Hybrid HPC+QC systems, how the non-expert end-user will benefit.11-11:45Lunch12-13Introduction to high-level languages for QC (Qiskit, Cirq, Q#) How to download program packages: Qiskit:12-13Hands-on experience with quantum gates and quantum programming environments: Qiskit - Execution of simple examples12-13	ProductionThe HPC-QC landscape: how does QC differ from classical HPC? What is the relation between HPC and QC for the foreseeable future?9-9:45The hybrid HPC-QC approachIntroduction to digital QC: quantum states, qubits, logic gates, quantum algorithms.10-10:45Systems: HPC-QC integration, facts and fiction. Co-located and distributed systems. Software control of quantum error mitigation and correction.Overview of different QC hardware approaches (superconducting, trapped ions, semiconductors) and QC types (digital, analogue, adiabatic, annealing).10-10:45Overview of the software stack, ranging from ready-made Q-libraries for common tasks to circuit level assembly and hardware-level coding.Introduction to high-level languages for QC (Qiskit, Cirq, Q#) How to download program packages: Qiskit:12-13LunchIntroduction to high-level languages and quantum circuits:13-1613-14- quantum software testing on simulator including downloading the tool and using it to test quantum circuits in Qiskit.Hands-on experience with quantum gates and quantum circuits:13-16- Qiskit applied to use cases for optimisation- Downloading quantum programming environments: Qiskit - Execution of simple examples- Qiskit applied to use cases for optimisation

on to mputing PC-QC Systems

weden

NordIQuEst

Nordic-Estonian Quantum Computing e-Infrastructure Quest

Institution	Country	Contact person	Position
CHALMERS	Sweden	Miroslav Dobsicek	Research Scientist
CSC	Finland	Mikael Johansson	Quantum Strategist
DTU	Denmark	Sven Karlsson	Assoc. prof.
SINTEF	Norway	Franz Fuchs	Research Scientist
SRL	Norway	Shaukat Ali	Professor
UTartu	Estonia	Dirk Oliver Theis	Assoc. prof.
VTT	Finland	Ville Kotovirta	Research Team Leader

NordIQuEst group leaders and Lecturers

How does QC differ from classical HPC?

Reversible/coherent – irreversible/incoherent computing !!

Reversible - irreversible computing

Quantum computer, COHERENT,

HPC-QC = Classical computer + Q-accelerator

CC: Classical gates

The memory is the computer

What is the relation between HPC and QC for the foreseeable future?

Superconducting
qubits
Cloud service

IBM Google Rigetti Alibaba QuTech (Delft)

.

Semiconductor qubits Cloud service

Ion trap qubits Cloud service Innsbruck IonQ Sandia Honeywell Amazon

Photonic qubits Cloud service Not yet ?

••••

.....

Development Roadmap | Executed by IBM Contarget Contarget

IBM Quantum

	2019 🤡	2020 🤡	2021 오	2022	2023	2024	2025	Beyond 2026
	Run quantum circuits on the IBM cloud	Demonstrate and prototype quantum algorithms and applications	Run quantum programs 100x faster with Qiskit Runtime	Bring dynamic circuits to Qiskit Runtime to unlock more computations	Enhancing applications with elastic computing and parallelization of Qiskit Runtime	Improve accuracy of Qiskit Runtime with scalable error mitigation	Scale quantum applica- tions with circuit knitting toolbox controlling Qiskit Runtime	Increase accuracy and speed of quantum workflows with integration of error correction into Qiskit Runtime
Model					Prototype quantum software applications		Quantum software applications	
Developers							Machine learning Natural	science Optimization
Algorithm		Quantum algorithm and ap	plication modules	\bigcirc	Quantum Serverless			
Developers		Machine learning Natural science Optimization				Intelligent orchestration	Circuit Knitting Toolbox	Circuit libraries
Kernel	Circuits	\odot	Qiskit Runtime 🥪					
Developers			Dynamic circuits 👌		Threaded primitives	Error suppression and mitigation Error correction		Error correction
System Modularity	Falcon 27 qubits	Hummingbird 65 qubits	Eagle 127 qubits	Osprey 433 qubits	Condor 1,121 qubits	Flamingo 1,386+ qubits	Kookaburra 4,158+ qubits	Scaling to 10K-100K qubits with classical and quantum communication
					Heron 133 qubits x p	Crossbill 408 qubits		

Sweden's quantum technology programme **Wallenberg Centre for Quantum Technologies** WACQT, 2018-2029 MC2, Chalmers U of Tech, Sweden

12 years, 150 M€

Mission: to build a quantum processor with 100+ superconducting qubits by 2025

https://www.chalmers.se/en/centres/wacqt/Pages/default.aspx

Cryostat

25q Transmon chip under testing

NordiQuEst HPC-QC ecosystem

LUMI pre-exascale HPC in Kajaani

According to plans: 25 qubits by 2023 50 qubits by 2025

Accessible for users via a LUMI portal

EuroHPC JU

LUMI-Q ? (in preparation) (CSC, VTT, Chalmers, NeIC, IQM ...) **Horizon Europe**

OpenSuperQ Plus !

FPA Roadmap 2022-2029: Chalmers, VTT, CSC, IQM,

SGA1 2023-2025 (100q)

SGA2 2026-2029 (1000q)

Why is quantum computing interesting? Because of hard future limits for classical High-Performance Computing (HPC):

- End of Moore's Law for semiconductor component scaling
- Scaling of classical computational power will hit hard limits (ultimately electrical power)

POWER

Computers:

Big computers and internet servers are built from many **parallel** PC-type processors

1 processor typically consumes about ~ 100 W The computation itself (bit flops) consumes about 1V x 3 GHz x 10^10 transistors \approx 5 W The rest is losses dissipated as heat.

20 000 processors x 100 W \rightarrow 2 10⁶ W = 2 MW \rightarrow Needs a dedicated power station!

One is planning for 1000 times more powerful – exaflop - computers \rightarrow 10⁹ W = 1000 MW

→ Requires a dedicated nuclear power station!!

POWER

Internet-of-Things (IoT): a rough estimate

10¹⁰ people (10 x Kina today) 100 W/person at home (only for IoT) \rightarrow 10¹² Watt = 1000 nuclear power reactors

Moreover: every internet server will need a dedicated nuclear power reactor!! Suppose the world will need 1000 IoT servers

→ 2 000 nuclear power reactors needed for internet/IoT

→ Information processing in the near future will need very big electric power!

→ We need **exponential speed-up** to be able to solve (approximately!) hard problems with finite resources (time, memory).

→ We may need new computational paradigms → Quantum computing?

The original quantum "killer application": Shor's algorithm for factorisation (1995)

Today, the typical killer applications are "use cases":

- **Quantum Chemistry** designing enzymes and catalysers
- Materials science describing strong electron correlations
- **Optimization** logistics, scheduling, ...
- → There is no lack of algorithms and applications.
- → But there is lack (absence!) of large-scale coherent quantum processors

The killer application today

Nitrogenase protein: iron molybdenum cofactor FeMoco

Elucidating reaction mechanisms on quantum computers M. Reiher, N. Wiebe, K. M. Svore, D. Wecker, and M. Troyer PNAS **114**, 7555-7560 (2017)

Quantum Advantage

Quantum computers offer, in principle, exponential speed-up for certain classes of hard problems

No Quantum Advantage

Complexity classes

Complexity classes – Quantum Chemistry

Quantum gates and states: superposition and entanglement

Background for L2 and exercises: Teleportation

Exemplifies:

- Quantum circuits
- 1q Hadamard gate
- Superposition
- 2q CNOT (XOR)
- Entanglement
- Coding- decoding
- Intro to quantum error correction (QEC)

Teleportation

Teleportation - Bell state generation

√NOT

Teleportation – entangling input state with Bell state

Teleportation – decoding entangled state + meas't + restoring (Bob)

Quantum Error Correction - QEC

Quantum Error Correction - QEC

