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Photodynamics with Quantum Mechanics 2

Coordinate: r1

Velocity: V1
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1. Calculate next 

coordinate r2 with 

velocity verlet

2. Predict surface 

hopping with 

overlap matrix or 

non-adiabatic 

coupling vector 

(NAC)

Photodynamics trajectory over time



• QM calculation is expensive ➔

accelerate with ML model

• ML model trained on QM dataset 

• Simulate PD trajectories with trained 

ML model

• Input: molecular coordinates 

(descriptor)

• Output: energies, forces, overlap, NAC

Machine Learning Photodynamics 3

Local descriptor:

Describe the whole 

molecule

Global descriptor:

Describe atoms and the 

interaction between 

atoms



Reference QM Method

• Molecule: Hydroxysulfinyl radical (HOSO)

• Method: MS-CASPT2 (13,10) / ANO-S-

VDZP (OpenMolcas / SHARC)

• Time: 100 ~ 520 fs (0.5 fs / step)

• Hopping: FSSH + overlap matrix

(a) 5 doublets starting from first excited state 

(b) 8 doublets starting from different states

4

Data provided by

Javier Carmona-García

J. Carmona-García, et. al, J. Am. Chem. Soc. 143, 10836−10841, 2021.



Molecular Descriptor 5

Kristof T. Schüttm et. al. Advances in Neural Information Processing Systems. 30 992-1002, 2017.

J. Westermayr, et. al.The Journal of Physical Chemistry Letters, 11(10):3828–3834, 2020.

SchNet: convolutional network taking interatomic distance



Molecular Descriptor 6

Ankur Kumar Gupta and Krishnan Raghavachari, Journal of Chemical Theory and Computation, 18(4), 2132-2143, 2022.

Localized Orbital Locator (LOL): 

3D voxelized descriptor describing electron density

• The space is represented as a 14*14*14 grid

• Each voxel contains features describing 

electron density

• DenseNet with 3D convolution layers

• DFT (UB3LYP/6-31G) is required → ground 

state energy utilized for Δ-learning



Applicable Domain 7

Last 100 fs 

exceeds the 

training set 

domain

PCA of coordinates for QM and ML trajectories



Active Learning 8

xi

Model1 yi
1

Model2 yi
2

• 2 distinct models trained on the same dataset

• xi is predicted by 2 models respectively

• RMSE(yi
1 - yi

2) < threshold: xi is in applicable domain

• Reliability of this method was never discussed

J. Westermayr, et. al.The Journal of Physical Chemistry Letters, 11(10):3828–3834, 2020.

Previous work by 

J. Westermayr, et. al. 



Active Learning 9

QM data

Model 1

Model 2

Coordinate

Energy

Wrong prediction



Active Learning 10

SchNet1 + SchNet2

The error between LOL and SchNet better represents the real error

LOL + SchNet



Data Processing 11

73 trajectories
29135

data points

Training set: 20394 points

Validation set: 8741 points

Uniform dataset:

73 trajectories

Training set: 51 trajectories (20071 points)

Validation set: 22 trajectories (9064 points)

Non-uniform dataset:

shuffle



Training Results: Energy and Force 12

Validation (Test) RMSE Energy (eV) Force (eV / Å )

LOL
Uniform 0.103 (0.117) 1.35 (1.32)

Non-uniform 0.158 (0.189) 1.36 (1.43)

SchNet
Uniform 0.105 (0.105) 1.34 (1.19)

Non-uniform 0.163 (0.183) 1.26 (1.29)

LOL+SchNet
Uniform 0.073 (0.082) 1.23 (1.07)

Non-uniform 0.125 (0.147) 1.13 (1.18)



Training Results: Overlap Matrix 13

Off-diagonal elements with high 

absolute values are inaccurate
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Lack of data in the CI region 

limits the performance of ML



14PD Simulation Workflow

C.Y. Zhu, K. Nobusada, H. Nakamura, J. Chem. Phys. 115, 3031 (2001)



PD Results – Photoproducts 15

Photoproduct
ML (N = 73) ML (N = 1000) QM/ML (N = 73) QM (N = 73)

N° % N° % N° % N° %

HO+SO 41 56.2 561 56.1 29 39.7 32 43.8

HOS+O 0 0 2 0.2 0 0 2 2.7

H+SO2 0 0 10 1.0 0 0 0 0

No photolysis 32 43.8 427 42.7 44 60.3 39 53.4

(a) 5 doublets starting from first excited state for 200 fs 

(b) 8 doublets starting from different states

Photoproduct
ML (N = 73, 200 fs) QM (N = 73, ~353 fs)

N° % N° %

HO+SO 59 84.1 55 79.7

HOS+O 2 2.9 6 8.7

H+SO2 1 2.9 2 2.9

No photolysis 7 10.1 6 8.7



PD Results – State Population 16

QM + FSSH (N = 73) QM/ML + ZNSH (N = 73)

(a) 5 doublets starting from first excited state for 200 fs 



PD Results – State Population 17

QM + FSSH (N = 73) QM/ML + ZNSH (N = 73)

(b) 8 doublets starting from different states for 200 fs


