PHOTOCYCLOREVERSION MECHANISM OF OXETANE DERIVATIVES AS MODELS OF (6-4) PHOTOPRODUCT DNA LESIONS

NIVERSITAT

VALÈNCIA

Miriam Navarrete-Miguel,^a Angelo Giussani^a and Daniel Roca-Sanjuán^a ^a Instituto de Ciencia Molecular, Universitat de València, P.O. Box 22085, 46071 València, Spain miriam.navarrete@uv.es

INTRODUCTION

- DNA in living beings is constantly damaged by both exogenous and endogenous agents, such as UV radiation. The direct light absorption gives rise to two different lesions: 6-4 photoproducts, (6-4)PP, and cyclobutane pyrimidine dimers, CPD.
- The photoinduced DNA lesions can be initiated by Paternò-Büchi photocycloaddition between two adjacent

Figure 1. BQ-ox (left) and NQ-1 (right) structures

Figure 2. HH-1 (left) and HT-1 (right) structures

The repair mechanism of these lesions can be represented with the inversion of the Paternò-Büchi reaction.

One of the most supported hypothesis is that the (6-4)PP repair mechanism takes place via an intermediate, characterized by an unstable oxetane ring. Then, oxetane derivatives have been used experimentally as stable models of this intermediate.

In this study, BQ-ox, NQ-1 and HH-1 and HT-1¹ are used as oxetane models.

METHODOLOGY

- DFT M06-2X/6-31++G** (Gaussian 09² package, rev. D.01)
 CASPT2//CASSCF protocol with an active space of (12,12)
 for NQ-1, HH-1 and HT-1 and (14,12) for BQ-ox and ANO-S VDZP basis set (Molcas 8³ software).
- Computational strategies: LIICs (Linear Interpolation of Internal Coordinates) and scans

OBJECTIVES

- Interpret the different photobehaviour on these systems
- ✤ Analyze if a triplet exciplex (³EXC^{*}) participates in the repair mechanism, as it happens in the lesion formation

RESULTS

a) BQ-ox and NQ-1 oxetane models

b) HH-1 and HT-1 oxetane models

In agreement with experiments: They observed no formation of the triplet exciplex

In agreement with experiments: Lower intensity of the transient absorption band at 530 nm detected by LFP for HT-1

CONCLUSIONS

BQ-ox and NQ-1 models
 In both BQ-ox and NQ-1 cases, the molecule will decay to S₀ directly from S₁
 Then, the population of the ³EXC* is not favorable

- In agreement with our experimental collaborators
- HH-1 and HT-1 models
 - Different photobehaviour
 - Photoinduced cycloreversion through the formation of a ³EXC* occurs to a much higher extent for HH-1
 - In agreement with our experimental collaborators

ACKNOWLEDGEMENTS

10th OpenMolcasDevelopers' Workshop Spanish MICINN (CTQ2017-87054-C2-2-P) Universitat de València (Atracció de Talent 2020; M.N.-M.) MICINN "Juan de la Cierva Incorporación" postdoctoral contract (IJC2018-035123-I, A.G.) Ramón y Cajal Fellowship (RYC-2015-19234; D.R.-S.)

REFERENCES

¹ Blasco-Brusola, A.; *et al.Phys. Chem. Chem. Phys.* **2020**, *22*, 20037 – 20042
 ² Frisch, M.J.; *et al.* Gaussian 09, Revision D.01 2009; Gaussian, Inc.: Wallingford, CT, USA, 2009.
 ³ Aquilante, F.; *et al. J. Comput. Chem.* **2016**, *37*, 506.