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Quantum chemistry on 
near-term devices
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Bringing quantum to life

Our mission is to revolutionise life sciences by 
exploiting the potential of quantum computing 

to solve currently inaccessible problems
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Quantum Network Medicine  
Algorithmiq's multiscale approach to tackle the complexity of the cell biology


Hazardous 
targets 
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if targeted) Safe 

Targets 
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effects) 

Data-driven identification of the 
relevant network biology

Classical & Quantum - inspired (proprietary)1
Modelling protein structures 

machine learning and crystallographic data

Classical2 Quantum (proprietary)

Ab-initio molecular simulations
Quantum computer simulation
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ChemistryNetwork Medicine
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Quantum computing is evolving very quickly

Billions are being invested Hardware is improving fast Drug discovery is emerging  
as a promising area of application
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Despite advances in high performance computing it is 
challenging to model complex molecules on classical computers

  bits105   bits1014   bits1049   bits1087   bits∼ ∞

12 qubits 160 qubits 286 qubits > 1000 qubits

IBM Eagle 2021 (127 qubits) IBM Osprey 2022 (433 qubits)

Classical 
memory

Quantum
memory

World’s most powerful  
supercomputers
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Using a quantum computer
As a quantum physics simulator

Arbitrary state of its quantum bits (qubits) A universal quantum computer can solve problems 
beyond quantum simulation (e.g. factorisation)
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We are in the era of the Noisy 
Intermediate-Scale Quantum computers:
soon useful for simulation!
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Variational Quantum 
Eigensolver
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Molecular ground-state energy

• Composition of the molecule is given

(General) problem statement
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Molecular ground-state energy

• Composition of the molecule is given

• Must determine ground-state energy as 
a function of positions of nuclei (potential 
energy surface)

Solution to time-independent
Schrödinger equation

High-dimensional vector
in Hilbert space

(General) problem statement
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Well-known from QM theory
Efficient classical representation



Dimensionality of many-body QM
Why is this difficult?
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Dimensionality of many-body QM
Why is this difficult?

Equal to 1 if spin-orbital occupied
Otherwise 0
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Dimensionality of many-body QM
Why is this difficult?

Superposition principle: states are
linear combinations of basis states

The dimensionality of state space
is classically intractable
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Solving the problem
The Variational Quantum Eigensolver

• Prepare some quantum state using a 
so-called variational form (ansatz)
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Solving the problem
The Variational Quantum Eigensolver

• Prepare some quantum state using a 
so-called variational form (ansatz)

• Gates in the ansatz have free 
parameters

• For each value of the parameters the 
resulting state has some mean energy

• Find the ground state variationally, that 
is, minimising over the parameters
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Challenges

- Hilbert space is a big space

- Quantum computers are error-prone

- Not many qubits available

- Simulations can be time-consuming

The variational quantum eigensolver
Quantum chemistry in the near term
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The variational quantum eigensolver
Quantum chemistry in the near term

Challenges

- Hilbert space is a big space

- Quantum computers are error-prone

- Not many qubits available

- Simulations can be time-consuming

 18



- Borrow from the coupled cluster (CC) method in computational chemistry

in a VQE simulation
State preparation

 19

- Use its unitary variant

- Truncated to single and double excitations

- Apply in Trotterized form



- The Hamiltonian is given as a linear combination of Pauli strings

- We can calculate expectation values on the QC

Cannot even write down 
on a classical computer

Easy on a quantum computer: only 
requires measuring Pauli strings

Each term is a product of local operators

Measuring the energy
in a VQE simulation
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Measurement cost in VQE
(Specific) problem statement

Every Pauli string evaluated 
independently through repeated 
measurements

Repeat each many times to 
estimate the mean
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Measurement cost in VQE
(Specific) problem statement

Every Pauli string evaluated 
independently through repeated 
measurements

Repeat each many times to 
estimate the mean

  ∼ O(N4)

Estimation error:   
 

 

Number of shots needed to reach 
given precision: S =  

ϵ = ∑
k

|ck |2 Var(Pk)/Sk

O(N5÷6) 22
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Informationally Complete 
Measurements
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Tackling the measurement problem
with generalised measurements

Using generalised quantum measurements

- Add ancillary qubit in a known state

- Apply a two-qubit transformation

- Measure both in the computational basis
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𝒪 = ∑ ωmΠm ⟨𝒪⟩ = ∑ ωmTr[ρΠm]



Tackling the measurement problem
with generalised measurements

Energy

Variance 28

Probability of outcome m: where

Using generalised quantum measurements

- Add ancillary qubit in a known state

- Apply a two-qubit transformation

- Measure both in the computational basis

- informationally complete

𝒪 = ∑ ωmΠm ⟨𝒪⟩ = ∑ ωmTr[ρΠm]



Tackling the measurement problem
with adaptive generalised measurements

Optimising measurements on the fly

- Qubit-ancilla interaction is parametrised
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Tackling the measurement problem
with adaptive generalised measurements

Optimising measurements on the fly

- Qubit-ancilla interaction is parametrised

- Can use informationally complete data to 
calculate gradient of measurement error

- At every iteration, we use a better POVM 
than in the previous one

- We produce many estimators of the 
mean with different statistical error

Final estimation combining intermediate results 33



POVM implementations
1. Dilation POVM [García-Pérez te al. PRX Quantum 2, 040342 (2021)]

2. Physical dilation POVM [Fischer et al. PRR 4 (2022)]

3. Randomized unitaries [Glos et al., arXiv:2208.07817]

4 linearly independent positive operator Πi ∑
i

Πi = "
spanning the space of linear operators in the Hilbert space of the qubit

Pi = Tr{ρΠi}
Probability of outcome i

IC-POVM
(Single-Qubit) Informationally Complete Positive Operator-Valued Measurments 

parametrised unitary

QUBIT

ANCILLA

[1] [2] [3] 
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Benefits of IC-POVMs
Can be adapted to improve estimation 
precision for a given state and observable

Provide better scaling of the number of 
measurements vs number of qubits

Allow to estimate other observables with the 
same data:

RDMs

Commutators

Noise mitigation

S ∝ N3

S ∝ N6

H chain
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Advanced State Preparation 
Techniques
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Ansatz preparation

• Design a quantum circuit, which efficiently covers the part of Hilbert space 
that contains the target quantum state

Efficient representation of state

• Things to consider

• Expressibility

• Optimisability

• Scalability

• Depth

• Gate count

• Hardware layout

• Native gate set
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Ansatz types
• Hardware efficient Ansatz

• Expressible circuits, but too much -> Hard to 
optimize

• Barren plateaus -> Finding gradient direction 
requires very precise measurements

• Breaks Symmetries (Spin and Particle number)• Unitary Coupled-Cluster Singles and Doubles (UCCSD)

• Chemically inspired,  ansatz consists of fermionic single and double 
excitations

• Long circuits, too many parameters and gate ordering not optimal

• Improvements exist, but tradeoffs between depth and accuracy
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Adaptive Ansätze
• Adaptively build a problem-tailored ansatz

• Expressive enough to contain the ground state

• Not too expressive to make it easily optimisable

• Operators chosen by their energy gradient

 40

ADAPT = Adaptive Derivative-Assembled Pseudo-Trotter ansatz



Gates in ADAPT
• Fermionic single and double excitations 

• Chemical motivation -> Good convergence

• Qubit Excitation Based (QEB) operators (only Jordan-
Wigner)

• Remove Z-chains -> More hardware-efficient in all-to-all 
connectivity

• Negligible effect on convergence for small molecules

• qubit-ADAPT

• Split generators into separate terms

• More parameters, but more hardware-efficient

• Breaks symmetries more

—————————————————
———

————————————————————————————————————————————————
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Main limitation of ADAPT
Measurement overhead

• To find the operator with the highest gradient, one needs to measure a 
commutator for each operator in the operator pool

• IC-POVMs solve the problem. Just measure the energy and use the 
same measurement data for the evaluations of the commutators.

N2 1.089Å
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Selection criteria
• Gradient selection is robust but not necessarily the most 

efficient

• The gradient is measured at parameter 0.0, so low gradient 
doesn’t necessarily mean small effect on energy.

• Alternatively, select the operator which lowers the energy 
the most

• Use overlap selection and optimisation if the target state or an 
approximation of it is known

• Not easily implemented on a quantum computer
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