# Quantum chemistry on near-term devices

Anton Nykänen, Walter Talarico, Roberto Di Remigio Eikås I QAS2023, Göteborg I 27.10.2023





Our mission is to revolutionise life sciences by exploiting the potential of quantum computing to solve currently inaccessible problems

## algorithmig Bringing quantum to life

#### **Quantum Network Medicine**

Algorithmiq's multiscale approach to tackle the complexity of the cell biology









Quantum (proprietary)

#### Ab-initio molecular simulations

Quantum computer simulation





### Quantum computing is evolving very quickly

Billions are being invested

Hardware is improving fast



Drug discovery is emerging as a promising area of application



#### **Despite advances in high performance computing it is** challenging to model complex molecules on classical computers







#### Using a quantum computer As a quantum physics simulator



Arbitrary state of its quantum bits (qubits)

$$|\Psi\rangle = \sum_{\vec{f}} \alpha_{\vec{f}} |f_1 f_2 \dots f_{\vec{f}}|$$



A universal quantum computer can solve problems beyond quantum simulation (e.g. factorisation)



soon useful for simulation!

## Variational Quantum Eigensolver



#### **(General) problem statement** Molecular ground-state energy

Composition of the molecule is given



#### WATER (H<sub>2</sub>O)



#### (General) problem statement Molecular ground-state energy

- energy surface)





#### Why is this difficult? Dimensionality of many-body QM

#### WATER (H<sub>2</sub>O)







1 2.0 -20.552 Ha 2 2.0 -1.346 Ha

#### Why is this difficult? Dimensionality of many-body QM

## $|\Psi\rangle = |f_1 f_2 \dots f_M\rangle$

Equal to 1 if spin-orbital occupied Otherwise 0







#### Why is this difficult? Dimensionality of many-body QM



The dimensionality of state space is classically intractable





1 2.0 -20.552 Ha 2 2.0 -1.346 Ha

• Prepare some quantum state using a so-called variational form (ansatz)



#### QUANTUM STATE



- Prepare *some* quantum state using a so-called variational form (ansatz)
- Gates in the ansatz have free parameters





- Prepare some quantum state using a so-called variational form (ansatz)
- Gates in the ansatz have free parameters
- For each value of the parameters the resulting state has some mean energy







#### $\langle E \rangle = \langle \Psi(\vec{\theta}) | \hat{H}_e | \Psi(\vec{\theta}) \rangle \ge E_{\text{ground}}$



- Prepare *some* quantum state using a so-called variational form (ansatz)
- Gates in the ansatz have free parameters
- For each value of the parameters the resulting state has some mean energy
- Find the ground state variationally, that is, minimising over the parameters



## $\Psi(\theta)$ QUANTUM STATE $\theta_{s}$ 014 OPTINIZATION

 $\langle E \rangle = \langle \Psi(\vec{\theta}) | \hat{H}_e | \Psi(\vec{\theta}) \rangle \ge E_{\text{ground}}$ 



#### Quantum chemistry in the near term The variational quantum eigensolver





Challenges

- Hilbert space is a big space
- Quantum computers are error-prone
- Not many qubits available
- Simulations can be time-consuming

#### Quantum chemistry in the near term The variational quantum eigensolver





#### Challenges

- Hilbert space is a big space
- Quantum computers are error-prone
- Not many qubits available
- Simulations can be time-consuming

Identifying challenges towards practical quantum advantage through resource estimation: the measurement roadblock in the variational quantum eigensolver

> Jérôme F. Gonthier,<sup>1</sup> Maxwell D. Radin,<sup>1</sup> Corneliu Buda,<sup>2</sup> Eric J. Doskocil,<sup>2</sup> Clena M. Abuan,<sup>3</sup> and Jhonathan Romero<sup>1</sup> <sup>1</sup>Zapata Computing, Inc., 100 Federal St., Boston, MA 02110, USA

| Molecule          | H <sub>2</sub> O | CO <sub>2</sub> | CH <sub>4</sub> | CH <sub>4</sub> O | C <sub>2</sub> H <sub>6</sub> | $C_2H_4$ | $C_2H_2$ | C <sub>2</sub> H <sub>6</sub> O | $C_3H_8$ | C <sub>3</sub> H <sub>6</sub> | $C_3H_4$ |
|-------------------|------------------|-----------------|-----------------|-------------------|-------------------------------|----------|----------|---------------------------------|----------|-------------------------------|----------|
| N <sub>el</sub>   | 8                | 16              | 8               | 14                | 14                            | 12       | 10       | 20                              | 20       | 18                            | 16       |
| N <sub>q</sub>    | 104              | 208             | 104             | 182               | 182                           | 156      | 130      | 260                             | 260      | 234                           | 208      |
| $K \cdot 10^{-3}$ | 1.9              | 16              | 1.6             | 8.4               | 8.5                           | 6.6      | 3.1      | 24                              | 16       | 23                            | 18       |
| $M \cdot 10^{-9}$ | 39               | 32              | 32              | 17                | 17                            | 13       | 62       | 48                              | 31       | 46                            | 36       |
| t (days)          | 2.3              | 39              | 1.9             | 18                | 18                            | 12       | 4.6      | 71                              | 47       | 62                            | 44       |

18 TABLE IV. Estimated runtimes t in days for a single energy evaluation using the number of measurements M from extrapolated

#### State preparation in a VQE simulation

- Borrow from the coupled cluster (CC) method in computational chemistry

$$|CC\rangle = e^{\hat{T}}|0\rangle$$
  $\hat{T} = \sum_{k} \hat{T}_{k} = \sum_{k} \frac{1}{(k!)^{2}} \left(\sum_{i_{1}\cdots i_{k}} \sum_{a_{1}\cdots a_{k}} t^{i_{1}\cdots i_{k}}_{a_{1}\cdots a_{k}} a^{\dagger}_{a_{1}} a^{\dagger}_{a_{k}} a_{i_{k}} \cdots \right)$   
se its *unitary variant*  $|UCC\rangle = e^{\hat{T} - \hat{T}^{\dagger}}|0\rangle$   
*runcated* to single and double excitations  $\hat{T} = \hat{T}_{1} + \hat{T}_{2}$ 

- Us
- *Tr*
- Apply in *Trotterized form*





#### **Measuring the energy** in a VQE simulation

- The Hamiltonian is given as a linear combination of Pauli strings  $\hat{H}_e = \sum c_k \hat{P}_k$   $\leftarrow$  Each term is a product of local operators  $P_k = \bigotimes_{i=1}^N \sigma_{k_i}^{(i)}$
- We can calculate expectation values on the QC

$$|\Psi\rangle = \sum_{\vec{f}} \alpha_{\vec{f}} |f_1 f_2 \dots f_M\rangle \longrightarrow \langle \Psi | \hat{H}_e | \Psi \rangle = \sum_{\vec{f}} \langle \Psi | \hat{H}_e | \Psi \rangle = \sum_{\vec{f}} \langle \Psi | \hat{H}_e | \Psi \rangle$$

Cannot even write down on a classical computer





 $\sum c_{\mathbf{k}} \langle \Psi | \hat{P}_{\mathbf{k}} | \Psi \rangle$ 

Easy on a quantum computer: only requires measuring Pauli strings

#### (Specific) problem statement Measurement cost in VQE



$$\langle \Psi | \hat{H}_e | \Psi \rangle = \sum c_{\mathbf{k}} \langle \Psi | \hat{P}_{\mathbf{k}} | \Psi \rangle$$



Repeat each many times to estimate the mean  $\langle \Psi | \hat{P}_{\mathbf{k}} | \Psi \rangle$ 

#### (Specific) problem statement Measurement cost in VQE



$$\langle \Psi | \hat{H}_e | \Psi \rangle = \sum c_{\mathbf{k}} \langle \Psi | \hat{P}_{\mathbf{k}} | \Psi \rangle$$

Every Pauli string evaluated independently through repeated measurements



Estimation error:

$$\epsilon = \sqrt{\sum_{\mathbf{k}} |c_{\mathbf{k}}|^2 \operatorname{Var}(P_{\mathbf{k}})/S_{\mathbf{k}}}$$

Number of shots needed to reach given precision:  $S = O(N^{5 \div 6})$ 







### References

- Rev. X. 2016, 6, 031007. <u>https://doi.org/10.1103/PhysRevX.6.031007</u>.
- McArdle, S.; Endo, S.; Aspuru-Guzik, A.; Benjamin, S. C.; Yuan, X. Quantum Computational Chemistry. Rev. Mod. Phys. 2020, 92 (1), 015003. https://doi.org/10.1103/revmodphys.92.015003.
- Tilly, J.; Chen, H.; Cao, S.; Picozzi, D.; Setia, K.; Li, Y.; Grant, E.; Wossnig, L.; Rungger, I.; Booth, G. H.; Tennyson, J. The Variational Quantum Eigensolver: A Review of Methods and Best Practices. Phys. Rep. 2022, 986, 1–128. https://doi.org/10.1016/j.physrep.2022.08.003.
- Huggins, W. J.; McClean, J. R.; Rubin, N. C.; Jiang, Z.; Wiebe, N.; Whaley, K. B.; Babbush, R. Efficient and Noise 1-9. <u>https://doi.org/10.1038/s41534-020-00341-7</u>.



- O'Malley, P. J. J.; Babbush, R.; Kivlichan, I. D.; Romero, J.; McClean, J. R.; Barends, R.; Kelly, J.; Roushan, P.; Tranter, A.; Ding, N.; Campbell, B.; Chen, Y.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Fowler, A. G.; Jeffrey, E.; Lucero, E.; Megrant, A.; Mutus, J. Y.; Neeley, M.; Neill, C.; Quintana, C.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Coveney, P. V.; Love, P. J.; Neven, H.; Aspuru-Guzik, A.; Martinis, J. M. Scalable Quantum Simulation of Molecular Energies. Phys.

Resilient Measurements for Quantum Chemistry on Near-Term Quantum Computers. Npj Quantum Inf. 2021, 7 (1),

## Informationally Complete Neasurements





Using generalised quantum measurements

- Add ancillary qubit in a known state
- Apply a two-qubit transformation
- Measure both in the computational basis





Using generalised quantum measurements

- Add ancillary qubit in a known state
- Apply a two-qubit transformation
- Measure both in the computational basis

#### Probability of outcome **m**: $\operatorname{Tr}[\rho \Pi_{\mathbf{m}}]$ where $\Pi_{\mathbf{m}} = \bigotimes_{i=1}^{N} \Pi_{m_i}^{(i)}$





Using generalised quantum measurements

- Add ancillary qubit in a known state
- Apply a two-qubit transformation
- Measure both in the computational basis
- informationally complete

$$\mathcal{O} = \sum \omega_{\mathbf{m}} \Pi_{\mathbf{m}} \qquad \langle \mathcal{O} \rangle = \sum \omega_{\mathbf{m}} T \mathbf{n}$$

Probability of outcome **m**:  $\operatorname{Tr}[\rho \Pi_{\mathbf{m}}]$  where  $\Pi_{\mathbf{m}} = \bigotimes_{i=1}^{N} \Pi_{m_i}^{(i)}$ algorithmig



Using generalised quantum measurements

- Add ancillary qubit in a known state
- Apply a two-qubit transformation
- Measure both in the computational basis
- informationally complete

$$\mathcal{O} = \sum \omega_{\mathbf{m}} \Pi_{\mathbf{m}} \qquad \langle \mathcal{O} \rangle = \sum \omega_{\mathbf{m}} T \mathbf{n}$$

Probability of outcome **m**:  $\operatorname{Tr}[\rho \Pi_{\mathbf{m}}]$  where  $\Pi_{\mathbf{m}} = \bigotimes_{i=1}^{N} \Pi_{m_i}^{(i)}$ algorithmig







Optimising measurements on the fly

- Qubit-ancilla interaction is parametrised







Optimising measurements on the fly

- Qubit-ancilla interaction is parametrised
- Can use informationally complete data to calculate gradient of measurement error







Optimising measurements on the fly

- Qubit-ancilla interaction is parametrised
- Can use informationally complete data to calculate gradient of measurement error
- At every iteration, we use a better POVM than in the previous one





 $(\overline{\mathcal{O}}_t, \overline{V}_t)$ 



Optimising measurements on the fly

- Qubit-ancilla interaction is parametrised
- Can use informationally complete data to calculate gradient of measurement error
- At every iteration, we use a better POVM than in the previous one
- We produce many estimators of the mean with different statistical error





Optimising measurements on the fly

- Qubit-ancilla interaction is parametrised
- Can use informationally complete data to calculate gradient of measurement error
- At every iteration, we use a better POVM than in the previous one
- We produce many estimators of the mean with different statistical error

algorithmig

Final estimation combining intermediate results



### **POVM implementations**

- Dilation POVM [García-Pérez te al. PRX Quantum 2, 040342 (2021)] 1.
- 2. Physical dilation POVM [Fischer et al. PRR 4 (2022)]
- 3. Randomized unitaries [Glos et al., arXiv:2208.07817]



[1]





[2]



### **Benefits of IC-POVMs**

- Can be adapted to improve estimation precision for a given state and observable
- Provide better scaling of the number of measurements vs number of qubits
- Allow to estimate other observables with the same data:
  - RDMs 0
  - Commutators 0
  - Noise mitigation



### References

- PRX Quantum 2021, 2 (4), 040342. <u>https://doi.org/10.1103/PRXQuantum.2.040342</u>.
- Glos, A.; Nykänen, A.; Borrelli, E.-M.; Maniscalco, S.; Rossi, M. A. C.; Zimborás, Z.; García-Pérez, G. Adaptive POVM 2022. http://arxiv.org/abs/2208.07817.
- Fischer, L. E.; Miller, D.; Tacchino, F.; Barkoutsos, P. K.; Egger, D. J.; Tavernelli, I. Ancilla-Free Implementation of doi.org/10.1103/physrevresearch.4.033027.



- García-Pérez, G.; Rossi, M. A. C.; Sokolov, B.; Tacchino, F.; Barkoutsos, P. K.; Mazzola, G.; Tavernelli, I.; Maniscalco, S. Learning to Measure: Adaptive Informationally Complete Generalized Measurements for Quantum Algorithms.

Implementations and Measurement Error Mitigation Strategies for Near-Term Quantum Devices. arXiv [quant-ph],

Generalized Measurements for Qubits Embedded in a Qudit Space. Phys. Rev. Res. 2022, 4 (3), 033027. https://

## Advanced State Preparation Techniques



#### Ansatz preparation Efficient representation of state

- Design a quantum circuit, which efficiently covers the part of Hilbert space that contains the target quantum state
- Things to consider
  - Expressibility
  - Optimisability
  - Scalability
  - Depth
  - Gate count
  - Hardware layout
  - Native gate set







### Ansatz types

- Hardware efficient Ansatz
  - Expressible circuits, but too much -> Hard to optimize
  - Barren plateaus -> Finding gradient direction requires very precise measurements
- Unitary consumetries (Spingles a Rarticle bles (OCCSD)
  - Chemically inspired, ansatz consists of fermionic single and double excitations
  - Long circuits, too many parameters and gate ordering not optimal
  - Improvements exist, but tradeoffs between depth and accuracy





Layer 1

$$\hat{\tau}_p^q = a_q^{\dagger} a_p - a_p^{\dagger} a_q$$
$$\hat{\tau}_{rs}^{pq} = a_p^{\dagger} a_q^{\dagger} a_r a_s - a_s^{\dagger} a_r^{\dagger} a_q a_p$$

### **Adaptive Ansätze**

ADAPT = Adaptive Derivative-Assembled Pseudo-Trotter ansatz

- Adaptively build a problem-tailored ansatz
  - Expressive enough to contain the ground state



• Operators chosen by their energy gradient

### Gates in ADAPT

- Fermionic single and double excitations
  - Chemical motivation -> Good convergence
- Qubit Excitation Based (QEB) operators (only Jordan Wigner)
  - Remove Z-chains -> More hardware-efficient in a connectivity
  - Negligible effect on convergence for small molecules
- qubit-ADAPT
  - Split generators into separate terms
  - More parameters, but more hardware-efficient
  - Breaks symmetries more

algorithmiq

$$A_{ijkl}(\theta) = \exp\left[i\frac{\theta}{8}(X_iY_jX_kX_l + Y_iX_jX_kX_l + Y_iY_jY_kX_l + Y_iY_jY_$$

$$-X_{i}X_{j}Y_{k}X_{l} - X_{i}X_{j}X_{k}Y_{l} - Y_{i}X_{j}Y_{k}Y_{l} - X_{i}Y_{j}Y_{k}Y_{l})\prod_{r=i+1}^{j-1} Z_{r}\prod_{r'=k}^{l-1} Z_{r}\prod_{r'=k}^{l-$$

$$A_{ijkl,1}(\theta_1) = \exp(i\theta_1 X_i Y_j X_k X_l)$$
$$A_{ijkl,2}(\theta_2) = \exp(i\theta_2 Y_i X_j X_k X_l)$$





### **Main limitation of ADAPT**

Measurement overhead

- To find the operator with the highest gradient, one needs to measure a commutator for each operator in the operator pool
- IC-POVMs solve the problem. Just measure the energy and use the same measurement data for the evaluations of the commutators.





### **Selection criteria**

- Gradient selection is robust but not necessarily the most efficient
  - The gradient is measured at parameter 0.0, so low gradient doesn't necessarily mean small effect on energy.
  - Alternatively, select the operator which lowers the energy the most
- Use overlap selection and optimisation if the target state or an approximation of it is known
  - Not easily implemented on a quantum computer





### References

- 2021, 2 (2), 020310. https://doi.org/10.1103/prxquantum.2.020310.
- arxiv.org/abs/2212.09719.
- arxiv.org/abs/2306.17159.



- Grimsley, H. R.; Economou, S. E.; Barnes, E.; Mayhall, N. J. An Adaptive Variational Algorithm for Exact Molecular Simulations on a Quantum Computer. Nat. Commun. 2019, 10 (1), 3007. <u>https://doi.org/10.1038/s41467-019-10988-2</u>.

- Tang, H. L.; Shkolnikov, V. O.; Barron, G. S.; Grimsley, H. R.; Mayhall, N. J.; Barnes, E.; Economou, S. E. Qubit-ADAPT-VQE: An Adaptive Algorithm for Constructing Hardware-Efficient Ansätze on a Quantum Processor. PRX quantum

- Nykänen, A.; Rossi, M. A. C.; Borrelli, E.-M.; Maniscalco, S.; García-Pérez, G. Mitigating the Measurement Overhead of ADAPT-VQE with Optimised Informationally Complete Generalised Measurements. arXiv [quant-ph], 2022. http://

- Feniou, C.; Claudon, B.; Hassan, M.; Courtat, A.; Adjoua, O.; Maday, Y.; Piquemal, J.-P. Greedy Gradient-Free Adaptive Variational Quantum Algorithms on a Noisy Intermediate Scale Quantum Computer. arXiv [quant-ph], 2023. http://