Anton Nykänen, Walter Talarico, Roberto Di Remigio Eikås | QAS2023, Göteborg | 27.10.2023

Quantum chemistry on near-term devices

algorithmig Bringing quantum to life

Our mission is to revolutionise life sciences by exploiting the potential of quantum computing to solve currently inaccessible problems

Quantum Network Medicine

Algorithmiq's multiscale approach to tackle the complexity of the cell biology

Ab-initio **molecular simulations**

Quantum computer simulation

Quantum computing is evolving very quickly

a an an am an am an Aonaich ann an Aonaich an Dùbhail an Dùbhail an Dùbhail an Dùbhail an Dùbhail an Dùbhail a

Billions are being invested **Hardware is improving fast** Drug discovery is emerging as a promising area of application

Despite advances in high performance computing it is challenging to model complex molecules on classical computers

Using a quantum computer As a quantum physics simulator

$$
\langle \Psi \rangle = \sum_{\vec{f}} \alpha_{\vec{f}} |f_1 f_2 \dots \rangle
$$

Arbitrary state of its quantum bits (qubits) A universal quantum computer can solve problems beyond quantum simulation (e.g. factorisation)

We are in the era of the Noisy soon useful for simulation!

Variational Quantum Eigensolver

Molecular ground-state energy **(General) problem statement**

• Composition of the molecule is given

WATER $(H₂0)$

Molecular ground-state energy **(General) problem statement**

-
- energy surface)

in Hilbert space

Efficient classical representation

Dimensionality of many-body QM **Why is this difficult?**

WATER $(H₂0)$

1 2.0 -20.552 Ha 2 2.0 -1.346 Ha

Dimensionality of many-body QM **Why is this difficult?**

$|\Psi\rangle = |f_1 f_2 \dots f_M\rangle$

Equal to 1 if spin-orbital occupied Otherwise 0

Dimensionality of many-body QM **Why is this difficult?**

The dimensionality of state space is classically intractable

1 2.0 -20.552 Ha 2 2.0 -1.346 Ha

• Prepare *some* quantum state using a so-called variational form (ansatz)

GUANTUM STATE

- Prepare *some* quantum state using a so-called variational form (ansatz)
- Gates in the ansatz have free parameters

- Prepare *some* quantum state using a so-called variational form (ansatz)
- Gates in the ansatz have free parameters
- For each value of the parameters the resulting state has some mean energy

 $\langle E \rangle = \langle \Psi(\vec{\theta}) | \hat{H}_e | \Psi(\vec{\theta}) \rangle \geq E_{\text{ground}}$

- Prepare *some* quantum state using a so-called variational form (ansatz)
- Gates in the ansatz have free parameters
- For each value of the parameters the resulting state has some mean energy
- Find the ground state variationally, that is, minimising over the parameters

$|\Psi(\theta)|$ GUANTUM STATE $\theta_{\pmb{\mathcal{H}}}$ OPTIMIZATION $\langle E \rangle = \langle \Psi(\vec{\theta}) | \hat{H}_e | \Psi(\vec{\theta}) \rangle \geq E_{\text{ground}}$

- Hilbert space is a big space
- Quantum computers are error-prone
- Not many qubits available
- Simulations can be time-consuming

The variational quantum eigensolver **Quantum chemistry in the near term**

Challenges

The variational quantum eigensolver **Quantum chemistry in the near term**

Challenges

- Hilbert space is a big space
- Quantum computers are error-prone
- Not many qubits available
- Simulations can be time-consuming

Identifying challenges towards practical quantum advantage through resource estimation: the measurement roadblock in the variational quantum eigensolver

> Jérôme F. Gonthier,¹ Maxwell D. Radin,¹ Corneliu Buda,² Eric J. Doskocil,² Clena M. Abuan,³ and Jhonathan Romero¹ ¹Zapata Computing, Inc., 100 Federal St., Boston, MA 02110, USA

 18 TABLE IV. Estimated runtimes t in days for a single energy evaluation using the number of measurements M from extrapolated

- Borrow from the coupled cluster (CC) method in computational chemistry

in a VQE simulation **State preparation**

$$
|CC\rangle = e^{\hat{T}}|0\rangle \qquad \hat{T} = \sum_{k} \hat{T}_{k} = \sum_{k} \frac{1}{(k!)^{2}} \left(\sum_{i_{1} \cdots i_{k}} \sum_{a_{1} \cdots a_{k}} t_{a_{1} \cdots a_{k}}^{i_{1} \cdots i_{k}} a_{a_{1}}^{*} a_{a_{k}}^{*} a_{i_{k}} \cdots \right)
$$
\n- Use its **unitary variant**
$$
|UCC\rangle = e^{\hat{T} - \hat{T}^{\dagger}}|0\rangle
$$
\n- **Truncated** to single and double excitations
$$
\hat{T} = \hat{T}_{1} + \hat{T}_{2}
$$

- Use its *unitary variant*
-
- Apply in *Trotterized form*

- The Hamiltonian is given as a linear combination of Pauli strings $\hat{H}_e = \sum c_{\bf k} \hat{P}_{\bf k}$ \longleftarrow Each term is a product of local operators $P_{\bf k} = \bigotimes_{i=1}^N \sigma_{k_i}^{(i)}$
- We can calculate expectation values on the QC

$$
|\Psi\rangle = \sum_{\vec{f}} \alpha_{\vec{f}} |f_1 f_2 \dots f_M\rangle \longrightarrow \langle \Psi | \hat{H}_e | \Psi \rangle = \sum_{\vec{f}} \langle \Psi | \hat{H}_e | \Psi \rangle
$$

Cannot even write down on a classical computer

 $\sum c_{\bf k}\langle\Psi|\hat{P}_{\bf k}|\Psi\rangle$

Easy on a quantum computer: only requires measuring Pauli strings

Measuring the energy in a VQE simulation

Measurement cost in VQE **(Specific) problem statement**

$$
\langle\Psi|\hat{H}_e|\Psi\rangle = \sum c_{\bf k}\langle\Psi|\hat{P}_{\bf k}|\Psi\rangle
$$

Repeat each many times to estimate the mean $\langle\Psi|\hat{P}_{\mathbf{k}}|\Psi\rangle$

Measurement cost in VQE **(Specific) problem statement**

$$
\langle\Psi|\hat{H}_e|\Psi\rangle = \sum c_{\bf k}\langle\Psi|\hat{P}_{\bf k}|\Psi\rangle \quad \sim
$$

Every Pauli string evaluated independently through repeated measurements

Number of shots needed to reach ²² given precision: $S = O(N^{5 \div 6})$

Estimation error:

$$
\epsilon = \sqrt{\sum_{\mathbf{k}} |c_{\mathbf{k}}|^2 \text{Var}(P_{\mathbf{k}})/S_{\mathbf{k}}}
$$

References

- O'Malley, P. J. J.; Babbush, R.; Kivlichan, I. D.; Romero, J.; McClean, J. R.; Barends, R.; Kelly, J.; Roushan, P.; Tranter, A.; Ding, N.; Campbell, B.; Chen, Y.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Fowler, A. G.; Jeffrey, E.; Lucero, E.; Megrant, A.; Mutus, J. Y.; Neeley, M.; Neill, C.; Quintana, C.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Coveney, P. V.; Love, P. J.; Neven, H.; Aspuru-Guzik, A.; Martinis, J. M. **Scalable Quantum Simulation of Molecular Energies**. Phys.

- Rev. X. 2016, 6, 031007.<https://doi.org/10.1103/PhysRevX.6.031007>.
- McArdle, S.; Endo, S.; Aspuru-Guzik, A.; Benjamin, S. C.; Yuan, X. **Quantum Computational Chemistry**. Rev. Mod. Phys. 2020, 92 (1), 015003. [https://doi.org/10.1103/revmodphys.92.015003.](https://doi.org/10.1103/revmodphys.92.015003)
- Tilly, J.; Chen, H.; Cao, S.; Picozzi, D.; Setia, K.; Li, Y.; Grant, E.; Wossnig, L.; Rungger, I.; Booth, G. H.; Tennyson, J. **The Variational Quantum Eigensolver: A Review of Methods and Best Practices**. Phys. Rep. 2022, 986, 1–128. [https://doi.org/10.1016/j.physrep.2022.08.003.](https://doi.org/10.1016/j.physrep.2022.08.003)
- Huggins, W. J.; McClean, J. R.; Rubin, N. C.; Jiang, Z.; Wiebe, N.; Whaley, K. B.; Babbush, R. **Efficient and Noise** 1–9. <https://doi.org/10.1038/s41534-020-00341-7>.

Resilient Measurements for Quantum Chemistry on Near-Term Quantum Computers. Npj Quantum Inf. 2021, 7 (1),

Informationally Complete Measurements

Using generalised quantum measurements

- Add ancillary qubit in a known state
- Apply a two-qubit transformation
- Measure both in the computational basis

Using generalised quantum measurements

- Add ancillary qubit in a known state
- Apply a two-qubit transformation
- Measure both in the computational basis

Probability of outcome **m**: $\text{Tr}[\rho \Pi_{\mathbf{m}}]$ where $\Pi_{\mathbf{m}} = \bigotimes_{i=1}^{N} \Pi_{m_i}^{(i)}$

Using generalised quantum measurements

Probability of outcome **m**: $\text{Tr}[\rho \Pi_{\mathbf{m}}]$ where $\Pi_{\mathbf{m}} = \bigotimes_{i=1}^{N} \Pi_{m_i}^{(i)}$ alqorithmiq 27

- Add ancillary qubit in a known state
- Apply a two-qubit transformation
- Measure both in the computational basis
- informationally complete

$$
\mathcal{O} = \sum \omega_{\mathbf{m}} \Pi_{\mathbf{m}} \qquad \langle \mathcal{O} \rangle = \sum \omega_{\mathbf{m}} Tr[\rho \Pi_{\mathbf{m}}]
$$

Using generalised quantum measurements

- Add ancillary qubit in a known state
- Apply a two-qubit transformation
- Measure both in the computational basis
- informationally complete

$$
\mathcal{O} = \sum \omega_{\mathbf{m}} \Pi_{\mathbf{m}} \qquad \langle \mathcal{O} \rangle = \sum \omega_{\mathbf{m}} Tr[\rho \Pi_{\mathbf{m}}]
$$

Probability of outcome **m**: $\text{Tr}[\rho\Pi_{\mathbf{m}}]$ where $\Pi_{\mathbf{m}} = \bigotimes_{i=1}^{N} \Pi_{m_i}^{(i)}$ alqorithmiq

Optimising measurements on the fly

- Qubit-ancilla interaction is parametrised

Optimising measurements on the fly

- Qubit-ancilla interaction is parametrised
- Can use informationally complete data to calculate gradient of measurement error

Optimising measurements on the fly

- Qubit-ancilla interaction is parametrised
- Can use informationally complete data to calculate gradient of measurement error
- At every iteration, we use a better POVM than in the previous one

 $\left(\overline{\mathcal{O}}_\ell , \overline{\mathcal{V}}_\ell \,\right)$

Optimising measurements on the fly

- Qubit-ancilla interaction is parametrised
- Can use informationally complete data to calculate gradient of measurement error
- At every iteration, we use a better POVM than in the previous one
- We produce many estimators of the mean with different statistical error

Optimising measurements on the fly

- Qubit-ancilla interaction is parametrised
- Can use informationally complete data to calculate gradient of measurement error
- At every iteration, we use a better POVM than in the previous one
- We produce many estimators of the mean with different statistical error

alqorithmiq

Final estimation combining intermediate results

POVM implementations

- 1. Dilation POVM [García-Pérez te al. PRX Quantum **2**, 040342 (2021)]
- 2. Physical dilation POVM [Fischer et al. PRR 4 (2022)]
- 3. Randomized unitaries [Glos et al., arXiv:2208.07817] **IC-POVMENT CONTRACTOR**

Benefits of IC-POVMs

- Can be adapted to improve estimation precision for a given state and observable
- Provide better scaling of the number of measurements vs number of qubits
- Allow to estimate other observables with the same data:
	- RDMs \overline{O}
	- **Commutators** \overline{O}
	- Noise mitigation

References

- García-Pérez, G.; Rossi, M. A. C.; Sokolov, B.; Tacchino, F.; Barkoutsos, P. K.; Mazzola, G.; Tavernelli, I.; Maniscalco, S. **Learning to Measure: Adaptive Informationally Complete Generalized Measurements for Quantum Algorithms**.

Implementations and Measurement Error Mitigation Strategies for Near-Term Quantum Devices. arXiv [quant-ph],

- PRX Quantum 2021, 2 (4), 040342.<https://doi.org/10.1103/PRXQuantum.2.040342>.
- Glos, A.; Nykänen, A.; Borrelli, E.-M.; Maniscalco, S.; Rossi, M. A. C.; Zimborás, Z.; García-Pérez, G. **Adaptive POVM** 2022. [http://arxiv.org/abs/2208.07817.](http://arxiv.org/abs/2208.07817)
- Fischer, L. E.; Miller, D.; Tacchino, F.; Barkoutsos, P. K.; Egger, D. J.; Tavernelli, I. **Ancilla-Free Implementation of** [doi.org/10.1103/physrevresearch.4.033027.](https://doi.org/10.1103/physrevresearch.4.033027)

Generalized Measurements for Qubits Embedded in a Qudit Space. Phys. Rev. Res. 2022, 4 (3), 033027. [https://](https://doi.org/10.1103/physrevresearch.4.033027)

Advanced State Preparation Techniques

Ansatz preparation Efficient representation of state

- Design a quantum circuit, which efficiently covers the part of Hilbert space that contains the target quantum state
- Things to consider
	- Expressibility
	- Optimisability
	- Scalability
	- Depth
	- Gate count
	- Hardware layout
	- Native gate set

Ansatz types

- Hardware efficient Ansatz
	- Expressible circuits, but too much -> Hard to optimize
	- Barren plateaus -> Finding gradient direction requires very precise measurements
- Unitary et Symmetries (Spingles and reticle unumber) .
	- Chemically inspired, ansatz consists of fermionic single and double excitations
	- Long circuits, too many parameters and gate ordering not optimal
	- Improvements exist, but tradeoffs between depth and accuracy

Layer 1

$$
\begin{array}{l}\hat{\tau}_p^q=a_q^\dagger a_p-a_p^\dagger a_q\\ \hat{\tau}_{rs}^{pq}=a_p^\dagger a_q^\dagger a_r a_s-a_s^\dagger a_r^\dagger a_q a_p\end{array}
$$

Adaptive Ansätze

- Adaptively build a problem-tailored ansatz
	- Expressive enough to contain the ground state
	-

• Operators chosen by their energy gradient

ADAPT = Adaptive Derivative-Assembled Pseudo-Trotter ansatz

Gates in ADAPT

- Fermionic single and double excitations
	- Chemical motivation -> Good convergence
- Qubit Excitation Based (QEB) operators (only Jordan-Wigner)
	- Remove Z-chains -> More hardware-efficient in a connectivity
	- Negligible effect on convergence for small molect
- qubit-ADAPT
	- Split generators into separate terms
	- More parameters, but more hardware-efficient
	- Breaks symmetries more

algorithmig

——

$$
A_{ik}(\theta) = e^{\theta T_{ik}} = \exp \left[\theta(a_i^{\dagger} a_k - a_k^{\dagger} a_i)\right] \text{ and}
$$

$$
A_{ijkl}(\theta) = e^{\theta T_{ijkl}} = \exp \left[\theta(a_i^{\dagger} a_j^{\dagger} a_k a_l - a_k^{\dagger} a_i^{\dagger} a_i a_j)\right]
$$

$$
---\begin{bmatrix} \mathbf{a}_{ik}(\theta) = \exp \left[\mathbf{i}\frac{\theta}{2}(X_i Y_k - Y_i X_k)\prod_{r=i+1}^{k-1} Z_r\right] \text{ and} \end{bmatrix}
$$

$$
-X_i X_j Y_k X_l - X_i X_j X_k Y_l - Y_i X_j Y_k Y_l - X_i Y_j Y_k Y_l) \prod_{r=i+1}^{j-1} Z_r \prod_{r'=i+1}^{l} X_r
$$

$$
A_{ijkl,1}(\theta_1) = \exp(i\theta_1 X_i Y_j X_k X_l)
$$

$$
A_{ijkl,2}(\theta_2) = \exp(i\theta_2 Y_i X_j X_k X_l)
$$

Main limitation of ADAPT

Measurement overhead

- To find the operator with the highest gradient, one needs to measure a commutator for each operator in the operator pool
- IC-POVMs solve the problem. Just measure the energy and use the same measurement data for the evaluations of the commutators.

Selection criteria

- Gradient selection is robust but not necessarily the most efficient
	- The gradient is measured at parameter 0.0, so low gradient doesn't necessarily mean small effect on energy.
	- Alternatively, select the operator which lowers the energy the most
- Use overlap selection and optimisation if the target state or an approximation of it is known
	- Not easily implemented on a quantum computer

References

- Grimsley, H. R.; Economou, S. E.; Barnes, E.; Mayhall, N. J. **An Adaptive Variational Algorithm for Exact Molecular Simulations on a Quantum Computer**. Nat. Commun. 2019, 10 (1), 3007. [https://doi.org/10.1038/s41467-019-10988-2.](https://doi.org/10.1038/s41467-019-10988-2)

- Tang, H. L.; Shkolnikov, V. O.; Barron, G. S.; Grimsley, H. R.; Mayhall, N. J.; Barnes, E.; Economou, S. E. **Qubit-ADAPT-VQE: An Adaptive Algorithm for Constructing Hardware-Efficient Ansätze on a Quantum Processor**. PRX quantum

- Nykänen, A.; Rossi, M. A. C.; Borrelli, E.-M.; Maniscalco, S.; García-Pérez, G. **Mitigating the Measurement Overhead of ADAPT-VQE with Optimised Informationally Complete Generalised Measurements**. arXiv [quant-ph], 2022. [http://](http://arxiv.org/abs/2212.09719)

-
- 2021, 2 (2), 020310. <https://doi.org/10.1103/prxquantum.2.020310>.
- arxiv.org/abs/2212.09719.
- arxiv.org/abs/2306.17159.

- Feniou, C.; Claudon, B.; Hassan, M.; Courtat, A.; Adjoua, O.; Maday, Y.; Piquemal, J.-P. **Greedy Gradient-Free Adaptive Variational Quantum Algorithms on a Noisy Intermediate Scale Quantum Computer**. arXiv [quant-ph], 2023. [http://](http://arxiv.org/abs/2306.17159)