
SW stack
for noisy intermediate-scale quantum devices

Miroslav Dobsicek, October 26, 2023WACQT NordIQuEst OpenSuperQPlus

Presentation overview
v SW stack overview
v User-space quantum stack
v Circuit level assembly
v Hardware level encoding

WACQT NordIQuEst OpenSuperQPlus

SW stack

Circuit design

Compiler

Pulse schedules

Instrument
orchestration

Computer science domain
Output for idealized quantum computer

Experimentalist domain
Single-user environment, lab work

Co-design for NISQ devices

WACQT NordIQuEst OpenSuperQPlus

SW stack is built around the circuit model

How do we get a circuit?

How do we run it?

SW stack

Control engineering

Qubit technology
WACQT NordIQuEst OpenSuperQPlus

What is above?

What is below?

High level parts of a SW stack

Generic methods
v Encode your problem into known quantum algorithms
v Embed a classical circuit into a quantum one through reversible logic
v Automatically decompose large transformations into sequences of smaller ones

v Design your own quantum algorithm

How do we generate quantum circuits?

Attacking directly the problem

WACQT NordIQuEst OpenSuperQPlus

1. Problem enconding into an existing quantum algorithm

Computational problem

VQE/QAOA HHL QFT Grover search

Quantum circuit • VQE – quantum chemistry problems
• QAOA – combinatorial opt. problems
• HHL – systems of linear equations (ML)
• QFT – detect group-like properties
• Grover search – generic square root speed-up

encode

generate

This is currently the most
feasible way how to do
a computation on
a quantum computer.

WACQT NordIQuEst OpenSuperQPlus

2. Embedding of classical circuits via reversible logic

NOT Xa NOT a

XOR
a

b

a

a XOR b
CX

AND b
a

0

b
a

a AND b

CC
X

Classical logical gates mostly map to
quantum gates in 1:1 fashion.

A quantum circuit generated in this way
will have the same overall complexity as
the classical circuit. Not better or worse.
But! it will be capable of working with
superposition of states.

The cost are extra qubits guaranteeing
reversibility.

Do you know that the QFT circuit
and the circuit for a classical FFT are
structurally the same?

WACQT NordIQuEst OpenSuperQPlus

3. Automatic decomposition
You start with a mathematical description of the desired
unitary transformation and write it down in a matrix
form. Then apply unitary decomposition algorithm(s).
This process is usually based on Singular Value
Decomposition (SVD).

This approach is unlikely to lead to efficent circuits! The
number of generated gates is generally exponential in
the number of qubits.

Desired transformation:

Matrix form:

Efficient circuit for QFT (if you get lucky)
WACQT NordIQuEst OpenSuperQPlus

4. Novel design
v Not an easy task
v Much of our reasoning is still tied to circuits and complex Hilbert spaces
v We are “chasing vectors around” in an analogy to “chasing bits around”
v The most active fields in quantum algorithm theory are:

• Quantum error correction codes
• Quantum complexity classes

• MIP* = RE, Certifiable randomness, Classically verifiable quantum
advantage

• Finding new classical algorithms by ”dequantization”

WACQT NordIQuEst OpenSuperQPlus

Gate-based quantum computing model

What is below?
How do we run it?

SW stack

Control engineering

Qubit technology

generate

Problem encoding
into known generic

algorithms

Embedding
through reversible

logic

Automatic
decomposition

Novel
development

WACQT NordIQuEst OpenSuperQPlus

A number of circuit optimizations
v Circuit compression – minimize the number of gates used (coupling gates in

particular)
v Unroll/decompose to the native gate set supported by the quantum HW
v Optimal routing – map the logical circuit to the physical chip while respecting its

connectivity map. Insert SWAP gates where needed.
v (Insert error mitigation gates).

These optimizations techniques are partwise orthogonal, quantum HW
dependent, and may be applied iteratively/recursively in order to
achieve the best results.

WACQT NordIQuEst OpenSuperQPlus

Circuit compression
v The most common technique is to exploit logical circuit identities

v One of the newer approaches is called ZX-calculus.
• It relaxes the unitarity condition: operates in a less restrictive linear regime instead
• But, it’s not always possible to revert back to a unitary circuit

=H X H Z

Eg:

WACQT NordIQuEst OpenSuperQPlus

Unrolling/decomposition
v There are many universal gate sets for quantum computing.

v For superconducting qubits common entangling gates are: CX, CZ, or iSWAP
accopanied with Rx(..) and Rz(..) single qubit rotations. We call it a native gate set.

v SW stack typically contains a library of definitions of other commons gates in terms
of the native universal gate set. Thus, for example, the Hadamard gate H can be
‘unrolled’ in terms of Rx(..) and Rz(..).

v Uncommon gates needs to be (brute-force) decomposed (eg. by SVD).

= Rz(pi/2) Rx(pi/2) Rz(pi/2)H

WACQT NordIQuEst OpenSuperQPlus

Example: Qiskit’s built-in circuit optimizations
Original circuit

Transpiled circuit

Check the native gate set
Unrolling and
compression
has been applied.

WACQT NordIQuEst OpenSuperQPlus

Optimal routing

v A quantum chip typically supports only interactions between nearest-neigbour
qubits. We talk about a connectivity map.

v More distant interactions are achieved via inserting (multiple) SWAP gates. We
want to minimize the number of burdersome SWAPs.

This problem is quite similar to a CPU register allocation.

WACQT NordIQuEst OpenSuperQPlus

Example: Qiskit’s built-in circuit optimizations

Unrolling, compression
and routing has been applied.

Original circuit

Transpiled circuit

Manila’s coupling map

WACQT NordIQuEst OpenSuperQPlus

Gate-based quantum computing model

SW stack

Control engineering

Qubit technology

generate

optimize

SW stack
What is below?

How do we run it?

Problem encoding
into known generic

algorithms

Automatic
decomposition

Novel
development

WACQT NordIQuEst OpenSuperQPlus

Embedding
through reversible

logic

Quantum circuit execution
v The generated & optimized circuit needs to be converted from an internal

high-level representation (say a Python object) to a flattened textual or binary
representation suitable for network transfer and execution.

v OpenQASM V2 from IBM has emerged as a practical standard due to its
simplicity and permissive licensing.

v OpenQASM V2 is also often used as inter-operability language between
different circuit toolkits.

assemble

WACQT NordIQuEst OpenSuperQPlus

Execution target: simulator

v Gates are expanded into their matrix form representation
v Matrices and the input vector are multiplied to produce the output vector

v |output> = U . |input>
v A big advantage is that one gets the whole output vector!
v Simulators are slow and memory consuming!!!

Tensor product

Matrix multiplication

WACQT NordIQuEst OpenSuperQPlus

Execution target: NISQ device

Quantum
chip

Cryogenic
equipment

Microwave
instruments

Instrument
orchestration

Control SW stack

Remote API
• Mapping from gates to pulses
• Routines for automatic calibration
• Internal database

• Generate assembly instructions for
digital signal processing (DSP)

• Instrument synchronization
• Data acquisition loop

• Instruments are pre-programmed
• There is no real-time control loop yet

• Quantum chip is an electronic circuit
• We send a control mw-pulse and measure

the corresponding response
WACQT NordIQuEst OpenSuperQPlus

Public frontend

Backend control

Qblox

QPU

WebGUI Client

REST API

REST API

Quantify

Redis

mongoDB

ZI

Labber

REST API

WACQT NordIQuEst OpenSuperQPlus

Pulse schedule example

WACQT NordIQuEst OpenSuperQPlus

Example: Qblox instruments assembly
Q1ASM program:

0: wait_sync 4
1: upd_param 4
2: set_mrk 15 # set markers to 15
3: wait 4 # Latency correction of 0 ns.
4: move 2000,R0 # iterator for loop with label start
5: start:
6: reset_ph
7: upd_param 4
8: wait 65532 # auto generated wait (300000 ns)
9: wait 65532 # auto generated wait (300000 ns)
10: wait 65532 # auto generated wait (300000 ns)
11: wait 65532 # auto generated wait (300000 ns)
12: wait 37872 # auto generated wait (300000 ns)
13: set_awg_gain 851,0 # setting gain for gaussian-d1-0
14: play 0,1,4 # play gaussian-d1-0 (100 ns)
15: wait 96 # auto generated wait (96 ns)
16: wait 4 # auto generated wait (4 ns)
17: set_awg_gain 851,0 # setting gain for gaussian-d1-104
18: play 0,1,4 # play gaussian-d1-104 (100 ns)
19: wait 3596 # auto generated wait (3596 ns)
20: loop R0,@start
21: set_mrk 0 # set markers to 0
22: upd_param 4
23: stop

Credits: Qblox, 2021

WACQT NordIQuEst OpenSuperQPlus

A layout of a 25 qubit processor developed
at Chalmers.

QPU chip

SW stack

Control engineering

Qubit technology

generate

optimize

execution

WACQT NordIQuEst OpenSuperQPlus

