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Dirac/”Bra-ket” notation

• common notation for quantum states i.e. vectors in a complex Hilbert space V

• |⟩ denotes a vector in a vector space V

• ⟨| denotes a linear functional on V, i.e. is an element of V∗

• we can identify a vector (”ket”) with a linear functional (”bra”) and vice versa
• ⟨|⟩ : V × V → C denotes the inner product
• |⟩ ⟨| : V × V → V ⊗ V denotes the outer product
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A quantum bit

• A quantum bit (qubit) is a quantum mechanical system with a two-dimensional statespace. A state |Φ⟩ is a unit vector in C2.
• Given an orthonormal basis |φ0⟩ , |φ1⟩, (typically:
|φ0⟩ = |0⟩ = (1, 0)T, |φ1⟩ = |1⟩ = (0, 1)T), a qubit can be written as

|Φ⟩ = a0 |φ0⟩+ a1 |φ1⟩ , with a0, a1 ∈ C and |a0|2 + |a1|2 = 1. (1)

• In contrast to classical mechanics, a superposition of basis states is possible. Anexample is the state |Φ⟩ = − 1√
2
|0⟩+ i 1√

2
|1⟩.
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Multiple qubits

The general state |Φ⟩ of n qubits is a unit vector in (C2)⊗n = C2 ⊗ · · · ⊗ C2︸ ︷︷ ︸n times
.

Using the standard basis for C2, a basis for (C2)⊗n is given by the following 2n vectors
|0⟩n := | 00 . . . 00︸ ︷︷ ︸n digits

⟩ = |0⟩ ⊗ |0⟩ ⊗ · · · ⊗ |0⟩ ⊗ |0⟩ =
(

1, 0 . . . 0, 0
)⊺

|1⟩n := | 00 . . . 01︸ ︷︷ ︸n digits
⟩ = |0⟩ ⊗ |0⟩ ⊗ · · · ⊗ |0⟩ ⊗ |1⟩ =

(
0, 1 . . . 0, 0

)⊺
...

|2n − 1⟩n := | 11 . . . 11︸ ︷︷ ︸n digits
⟩ = |1⟩ ⊗ |1⟩ ⊗ · · · ⊗ |1⟩ ⊗ |1⟩ =

(
0, 0 . . . 0, 1

)⊺
(2)
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Multiple qubits
A general state can therefore be expressed as

|Φ⟩ =
2n−1∑
i=0

ci |i⟩ =


c0

c1...
c2n−2

c2n−1

 ,

2n−1∑
i=0

|ci|2 = 1, ci ∈ C. (3)

Remark.
• The space (C2)⊗n is a 2n-dimensional space. The dimension grows exponentiallywith the number of qubits.
• The state space of n classical bits, i.e., a binary string {0, 1}n is an n-dimensionalspace. The dimension grows linearly with the number of bits.
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Product states and entanglement

A quantum state |Φ⟩ ∈ (C2)⊗n is a product state if it can be expressed as a tensorproduct of n single qubits |Φi⟩, i.e.,
|Φ⟩ = |Φ1⟩ ⊗ · · · ⊗ |Φn⟩︸ ︷︷ ︸n times

(4)

Otherwise, it is entangled.

Examples.
• Product state: 1

2 (|00⟩+ |01⟩+ |10⟩+ |11⟩) = 1√
2
(|0⟩+ |1⟩)⊗ 1√

2
(|0⟩+ |1⟩)

• Entangled state: 1√
2
(|00⟩+ |11⟩)
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Important states and conventions

• Two-qubit Bell states
1√

2
(|00⟩+ |11⟩)

1√
2
(|00⟩ − |11⟩)

1√
2
(|01⟩+ |10⟩)

1√
2
(|01⟩ − |10⟩)

(They form a maximally entangled basis, known as the Bell basis, of thefour-dimensional Hilbert space for two qubits.)
• Superposition states

|+⟩ = 1√
2
(|0⟩+ |1⟩)

|−⟩ = 1√
2
(|0⟩ − |1⟩)
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Operations on qubits

An operation applied by a quantum computer, which is also called a gate, to n qubits is a
unitary matrix U ∈ C2n×2n .
• A matrix is U unitary, if U†U = UU† = I.
• Unitary matrices are norm-preserving, i.e., ∥U |Φ⟩ ∥ = ∥ |Φ⟩ ∥. This means that weget back a quantum state, which is a unit vector.
• Quantum operations are linear.
• Quantum operations are reversible.
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Examples of 1 qubit gates

• Hadamard gate H = 1√
2

(
1 1
1 −1

)
. We have that

H2 = I,H |0⟩ = |+⟩ ,H |1⟩ = |−⟩ ,H |+⟩ = |0⟩ ,H |−⟩ = |1⟩.
• Pauli gates X = σx =

(
0 1
1 0

)
. We have that

X2 = I, X |0⟩ = |1⟩ , X |1⟩ = |0⟩ , X |+⟩ = |+⟩ , X |−⟩ = − |−⟩.
• Pauli gates Y = σy =

(
0 −i
i 0

)
. We have that Y2 = I, Y |0⟩ = i |1⟩ , Y |1⟩ = −i |0⟩.

• Pauli gates Z = σz =

(
1 0
0 −1

)
. We have that Z2 = I, Z |0⟩ = |0⟩ , Z |1⟩ = − |1⟩.

• Phase shift gates RΦ =

(
1 0
0 eiΦ

)
.

• Square root of NOT gate√X = 1
2

(
1 + i 1 − i
1 − i 1 + 1

)
. We have that√X

√
X = X.

• . . .
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Examples of 2 qubit gates

• controlled not gate CNOT = CX =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 =

It has the effect
CNOT |00⟩ = |00⟩ , CNOT |01⟩ = |01⟩ , CNOT |10⟩ = |11⟩ , CNOT |11⟩ = |10⟩.

• controlled U gate CU =


1 0 0 0
0 1 0 0
0 0 u00 u01

0 0 u10 u11

 = U
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Observables
• An observable H is a self-adjoint operator on the Hilbert space C⊗n.

• Spectral theorem: ∃ orthonormal basis {|ψi⟩}i of C⊗n consisting of eigenvectors of
H, and all eigenvalues λi are real.• We can write: H =

∑
i λi |ψi⟩ ⟨ψi|• Physicist call eigenvalues of a Hamiltonian energies.– amounts of energy the system can have– typically order from smallest to largest, λ1 ≤ λ2 ≤ · · · ≤ λn.• To each energy λj corresponds to an energy eigenstate.– ground state: energy eigenstate |v1⟩ corresponding to the lowest energy– first excited state, second excited state, ...: |v2⟩ , |v3⟩ , ...

Electron sitting in the lowest shell is in the ground state + -

First excited state has the electron in the next shell up + -
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Expectation values

Given
• a state |ϕ⟩ and
• an observable H

Then the expectation value of H in the state |ϕ⟩ is given by
⟨H⟩|ϕ⟩ := ⟨ϕ|H |ϕ⟩ (5)

It follows:
⟨H⟩|ϕ⟩ = ⟨ϕ|

∑
i

λi |ψi⟩ ⟨ψi|ϕ⟩ =
∑

i

λi |⟨ϕ|ψi⟩|2 . (6)
Particularly: ⟨H⟩|ψi⟩ = λi
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The variational principle

⟨H⟩|ϕ⟩ =
∑

i

λi |⟨ϕ|ψi⟩|2

≥
∑

i

λmin |⟨ϕ|ψi⟩|2 = λmin (7)

• H can encode a problem as ground state
• Prepare parametrized state |ψ(θ)⟩
• Find θ∗ s.t. | ⟨H⟩|ϕ(θ∗⟩ − λmin|minimal

initial state
solution
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Overview Hybrid Quantum Classical Solvers

Optimization problem

Quantum chemistry problem

Hamiltonian

Quantum Device:
• Prepare trial state
• Measure

Classical Device:
• Calculate cost function
• Update control parameterssolution

optimize

13



Quantum Chemistry
H H

H H H H

distance

pot
enti

ale
ner

gy

H(x) =
∑
p,q

hp,q(x)a†
paq +

1
2

∑
p,q,r,s

hp,q,r,s(x)a†
pa†

qaras + hnuc (8)
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Combinatorial optimization: MaxCut
• Given a graph G = (V,E) consisting of vertices V andedges E with weights wi,j > 0, for (i, j) ∈ E.

• A cut is defined as a partition of the vertices V into twodisjoint subsets S, S.
• The cost function to be maximized is the sum of weightsof edges with vertices in the two different subsets.

Assign xi =

{
−1, if edge i is in set S

+1, otherwise , then the cost function
is given by

C(x) =
∑
(i,j)∈E

wi,j
1
2
(1 − xixj) (9)

V ={0, 1, 2, 3, 4}
E ={(0, 1, 1.0), (0, 2, 2.0),

(0, 3, 1.0), (0, 4, 2.0),

(1, 3, 1.0), (3, 2, 4.0),

(2, 4, 3.0)}

0

1

2

3 4

1.
1. 2.

2.
1.

4. 3
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Example

v1
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v4 v5
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Smallest case
v1v2

• For each vertex we define |xi⟩ =


|0⟩ =

(
1

0

)
, if vertex i ∈ S

|1⟩ =

(
0

1

)
, if vertex i ∈ S

• Observe that for σz =

(
1 0
0 −1

)
we have σz |0⟩ = |0⟩, σz |1⟩ = − |1⟩,

• Hamiltonian
H = ZZ (10)

has ground states |01⟩, |10⟩
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MaxCut for general graph

Remember that the cost function is given by
C(x) =

∑
(i,j)∈E

wi,j
1
2
(1 − xixj) (11)

• The Hamiltonian encoding our problem is therefore
HC =

∑
(i,j)∈E

wi,j
1
2
(I − σi

z ⊗ σ
j
z), (12)

where Im denotes the identity matrix in (C2)⊗m
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QUBO

In general any QUBO
xTAx + bTx + c → min (13)

can be formulated as an Ising-Hamiltonian by the transformation
xi →

1
2

(
I − σi

z

) (14)

19



The adiabatic theorem
”A physical system remains in its instantaneous eigenstate if a given perturbation is actingon it slowly enough and if there is a gap between the eigenvalue and the rest of theHamiltonian’s spectrum.”

Consider a time dependent Hamiltonian
H(t) =

(
αt a
a −αt

)
(15)

λ1,2 = ±
√

a2 + (αt)2 (16)

The probability of a diabatic transition isgiven by (Landau-Zener)
PD = e2πa2/|α| (17)

The minimal gab is 2a.

20
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Quantum annealing

HQA(s) = (1 − t)HB + tHC, (18)
• Choose HB s.t. ground state easy to prepare
• Choose HC s.t. ground state encodes solution

• run time of the algorithm typically scales asO(1/∆2min), where
∆min = mins∈[0,1](λ2(t)− λ1(t)) is the minimum spectral gap.

• It turns out that for hard instances,∆min is exponentially small with respect to theproblem size.

21



Quantum annealing

HQA(s) = (1 − t)HB + tHC, (18)
• Choose HB s.t. ground state easy to prepare
• Choose HC s.t. ground state encodes solution
• run time of the algorithm typically scales asO(1/∆2min), where
∆min = mins∈[0,1](λ2(t)− λ1(t)) is the minimum spectral gap.

• It turns out that for hard instances,∆min is exponentially small with respect to theproblem size.
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H(t) = (1 − t)(−X) + tZ

Eigenvalues:
λ1/2 = ±

√
2t2 − 2t + 1
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H(t) = (1 − t)(−X) + tZ
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weighted MaxCut

HC =
∑

(j,k)∈E

1
2

wi,j

(
I − σi

zσ
j
z

) (19)

• HC is sum of |E| local terms
• HC is a diagonal matrix

HB =
∑

i∈nodes

σi
x (20)

• HB has only off-diagonal non-zero entries
• HB induces a swap operation between neighboring qubits, and thus can move theexcitation around for the purpose of state transfer
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How to find quantum gates for QA?

We need to find gates for
e−iHQA(s), (21)

where
HQA(s) = −(sHC + (1 − s)HB), s = t/T (22)
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Matrix exponentials
If H1,H2 are matrices (Hamiltonians), then

eH1+H2 ̸= eH1 eH2 , (23)
except when H1 and H2 commute, i.e., H1H2 = H2H1.

Trotterization, (Lie-Trotter-Suzuki product formula[Trotter(1959), Suzuki(1976)])
e−i(H1+H2)t =

(
e−iH1

t
n e−iH2

t
n

)n
+O

(
t2

n

)
(24)

First and second order versions
e−i(H1+H2)t = e−iH1te−iH2t +O

(
t2)

e−i(H1+H2)t = e−iH1t/2e−iH2te−iH1t/2 +O
(

t3) (25)
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Overall QAOA
1. Using 2p parameters γ = γ1, . . . , γp, β = β1, . . . , βp, prepare state

|Ψ(γ, β)⟩ = UBp UCp . . .UB1 UC1 |+⟩⊗n , (26)
where the operators have the explicit form

UBl = e−iβlHB =
n∏

j=1

e−iβlσ
j
x ,

UCl = e−iβlHC =
∏

(j,k)∈E

e−iγlwj,k/2(I−σj
zσ

k
z ),

(27)

2. Obtain ⟨Ψ(γ, β)|HC|Ψ(γ, β)⟩.3. Run an outer, classical, optimization loop to find γ, β that minimizes the expectationvalue ⟨Ψ(γ, β)|HC|Ψ(γ, β)⟩.
26



How to obtain the expectation value
HC is a diagonal Hamiltonian, and we have that

HC =
∑

x∈{0,1}n

C(x)|x⟩⟨x| (28)

Therefore,
⟨Ψp(γ⃗, β⃗)|H|Ψp(α⃗, β⃗)⟩ = ⟨Ψp(γ⃗, β⃗)|

∑
x∈{0,1}n

C(x)|x⟩⟨x||Ψp(α⃗, β⃗)⟩

=
∑

x∈{0,1}n

C(x)⟨Ψp(γ⃗, β⃗)|x⟩⟨x|Ψp(α⃗, β⃗)⟩ =
∑

x∈{0,1}n

C(x)p(x)

(29)
27



How to implement with gates efficiently?

e−iγlwj,k/2(I−σj
zσ

k
z ) can be implemented as

j-th qubit
k-th qubit Rz(−γlwj,k)

• Observe that e−iγlwj,k/2I is a global phase and can be ignored•

(CX)(I ⊗ Rz(θ))(CX) =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

(1 0
0 1

)
⊗
(

e−iθ/2 0
0 eiθ/2

)
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



=


e−iθ/2 0 0 0

0 eiθ/2 0 0
0 0 eiθ/2 0
0 0 0 e−iθ/2

 = e−iθ/2σzσz

(30)28



How to implement with gates efficiently?
e−iβlX can be implemented as j-th qubit Rx(2βl)

Rx(θ) =
(

cos(θ/2) −i sin(θ/2)
−i sin(θ/2) cos(θ/2)

)
(31)

|1100⟩|0111⟩ |1001⟩|0100⟩ |1110⟩|1010⟩ |1101⟩|1011⟩|0101⟩|0000⟩ |1000⟩|0010⟩ |0011⟩|0001⟩ |1111⟩|0110⟩

XIII⟨IIII⟩ IIXI⟨IIII⟩ IIIX⟨IIII⟩ IXII⟨IIII⟩
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Types of approaches

Solving NP hard optimization problems.
• Calculating the cost of all partitions takes exponential time.

• Heuristic algorithms. No polynomial run time guarantee; appear to perform well onsome instances.
• Approximate algorithms. Efficient and provide provable guarantees.With high probability we get a solution x∗ such that

C(x∗)−minx C(x)
maxx C(x)−minx C(x)

≥ α, (32)
where 0 < α ≤ 1 is the approximation ratio.
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Example graph
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Random sampling
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QAOA depth = 1
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QAOA depth = 2
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QAOA depth = 3
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QAOA depth = 4
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QAOA depth = 5
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QAOA depth = 6
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QAOA depth = 7
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QAOA depth = 8
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QAOA depth = 9
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QAOA depth = 10
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QAOA depth = 11
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QAOA depth = 12
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QAOA depth = 13
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QAOA depth = 14
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QAOA depth = 15
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QAOA depth = 16
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QAOA depth = 17
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QAOA depth = 18
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QAOA depth = 19

0 2 4 6 8 10 12 14
0

0.5

1

51



QAOA depth = 20
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Global continuous optimization problem

original problem Hamiltonian→ minimize cost(θ) = ⟨ϕ(θ)|A |ϕ(θ)⟩
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Hands-on lectures with a price!
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Technology for a better society
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