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0
- Represent data: quantum bits

- Initialize the computation: state preparation

» Carry out the computation: quantum gates

* Read out the result: measurement
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Quantum bits

A quantum bit (qubit) can be
in a superposition of states

¥) = al0) + BI1) = <(1)> +5 (?) N <g>

a,BeC o+ |8 =1

Can be visualised on the Bloch sphere

0 - 0
1)) = cos 5\0} 1 "?sin §|1>

Measurements give either O or |
with probabilities [oI"and |5/’
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Multi-qubit states

N qubits can be in a
superposition of 2" states

000. ..00),]100...00),]010...00),...,

N classical bits can only
be in one state at a time

Storing all the information about
a quantum state can require
> N classical bits
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Single-qubit gates

Operations changing the state of
a qubit must preserve the norm

Ul) = U(a|0) + A1) = [¢') = o/|0) + B/[1)
o + 16 =1= /" + |8

They are 2x2 unitary matrices, e.g.,

the Pauli matrices the Bloch sphere

R.(0) = exp(—i0X/2)

is the quantum NOT gate
xi+ = (1 o) (5) = (1) -

Rotations around different axes of

B10) + 1)

= cos(0/2)] —1sin(0/2) X

_ ( cos(0/2) —i Sin(9/2)>
—isin(60/2)  cos(6/2)
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More single-qubit gates

— H—  The Hadamard gate H P ) e

:%(l ~1 V2

|7 — The T gate (7T/8 gate) T = <é exp(?'zr/ll)) = exp(im/8) (eXP(—OiW/S) exp((i)’ir/8)>




W AC T Wallenberg Centre for
Quantum Technology

More single-qubit gates

— #—  The Hadamard gate H = \% G —11> B X\%Z
[T}~  TheT gate (7/8 gate) 7 - (g e 4)) — exp(im/8) (GXP(BWS) exmgw/s))

— S—  The phase (or S,or P) gate 5= (é 8) — 77
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00) |01) [10) |11)
1 0 0 O0\]lo

-
_ O

Controlled-NOT ¢NOT =

o O O
o O =
— O O
[S—
—t

S = O
 —
\/\o/\/\/
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Iwo-qubit gates

00) |01) [10) [11)

1 0 0 0\ /oo
1o 1 0 0]
Controlled-NOT cNoT= |0 o o ||
0 0 1 0/
1 00 O ——
01 0 0 |
Controlled-Z CZ=10 0 1 o
0 0 0 —1
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00) |01) [10) [11)

L0000 100 Controlled unitar
o 1 0 o)y onhtrofied tnitary
Controlled-NOT cNoT= |0 o o ||
0 0 1 0/n 2 U2
0, U
1 00 O ——
01 0 0 |
Controlled-Z CZ=10 0 1 o
0 0 0 —1
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Iwo-qubit gates

Controlled-NOT ¢NOT =

Controlled-Z

SWAP

CZ =

SWAP =

00) |01) [10) [11)

1

o O O = o O O

o O O =

0

1
0
0

SO = O

O = O O

0

— o O

o = O O

S O = O

0 100
0 01i Controlled unitary
1 |10
0/ 1) 12 02
0
0
O
0 N
0
0
1 B
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Controlled-controlled-NOT

1 00000 0 0 o
0100000 O
001 0000 0
0001000 O
e @
Toffoli=10""0"0 0 1 0 0 o0
0000010 0
000000 0 1
000 0O0O0T1 0 D
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Three-qubit gates

Controlled-SWAP

Controlled-controlled-NOT

1 00 0 0 0 0 O
0O 1 0 0 0 0 0 O
0O 0 1 0 0 0 0 O
0O 0 0 1 0 0 0 O
1
0

0 0 0 O
0O 0 0 0 0 1 0 O
o0 0 0 0 0 0 1

Fredkin

1 00 0 0 0 0 O
O 1 0 0 0 0 0 O
O 0 1 0 0 0 0 O
o 0 0 1 0 0 0 O
O 0 0 0 1 0 0 O
O 0 0 0 0 1 0 O
o 0 0 0 0 0 0 1
o0 0 0 0 0 1 O

Toftoli
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Controlled-controlled-NOT Controlled-SWAP
1 00 0 00 0 0 1 00 0 0 0 0 0 .
010000 0 0 0100000 0
0010000 0 0010000 0
oo o100 0 0 | 0001000 0
Toftoli =140 0 0 1 0 0 o Fredkin="110"0"0 0 1 0 0 0
0000010 0 00 0000 1 0
000 000 0 1 00 000 1 0 0
000000 1 0 D 000 000 0 1

Multi-qubit gates can be decomposed into
sequences of single- and two-qubit gates
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Universal gate sets

Classical computing Quantum computing

A gate set is universal if it enables A gate set is universal if the gates
expressing any Boolean function therein can approximate any

on any humber of bits unitary transformation on any

number of qubits to any precision

The NAND gate is universal What are requirements for a
{AND, OR} is not a universal gate set universal set of quantum gates?
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Universal quantum gate sets

Failure modes Universal gate sets
- Inability to create superposition states  Almost anything else than
{X, CNOT} H in {H, CNOT, S}
- Inability to create entanglement - Almost any two-qubit gate
{H, S} on its own
» Inability to create complex amplitudes » In practice: many single-qubit gates
{H, CNOT} A + one or two two-qubit gates

* The Gottesman-Knill theorem
{H, CNOT, S} still not enough!
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Quantum versus classical computing

Are there problems that a classical computer e
can’t solve but a quantum computer can!

The classical computer, given enough resources, can store all
the complex amplitudes specifying the state of the quantum
computer and simulate all the gates in a quantum circuit

For the quantum computer to be faster, one thing to worry about is
whether the universal gate set can represent the desired algorithm
with enough precision without requiring too long circuits
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The Solovay-Kitaev theorem

Let G be a finite subset of SU(2) andU € SU(2). If the group

generated by G is dense in SU(2), then for any € > 0 it is possible

to approximate U to precision € using O <log4

For an /N-qubit unitary, at most O (4N log™

"1
e

1

_8_

) gates from G.

) gates suffice

Precision is thus not a problem in practice for available universal gate sets
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qo —

A

1 —

VX

X37T/4

q2 —

VX

VX

Zw/4

VX

X37T/4

— VX

Z—37T/4

Z

VX

VX

Z—7T/2

\/Y_

Quantum algorithms are sequences of gates acting on quantum states

Compilation steps

- Convert the gates of the algorithm into gates in your native universal gate set



W AC T Wallenberg Centre for
Quantum Technology

Quantum algorithms and compilation

do — / ®

G VX HZ I X374 I I X374 I VX 4

Z—7T/2 \/Y .

Zrja H VX VX H Z—3n/4

2 —vX S VX VX

Quantum algorithms are sequences of gates acting on quantum states

Compilation steps
- Convert the gates of the algorithm into gates in your native universal gate set
- Map qubits in the algorithm to qubits on your hardware



W AC T Wallenberg Centre for
Quantum Technology

Quantum algorithms and compilation

do — / ®

G VX HZ I X374 I I X374 I VX 4

Z—7T/2 \/Y .

Zrja H VX VX H Z—3n/4

2 —vX S VX VX

Quantum algorithms are sequences of gates acting on quantum states

Compilation steps
- Convert the gates of the algorithm into gates in your native universal gate set
- Map qubits in the algorithm to qubits on your hardware
- Insert SWAP gates to connect qubits far apart that need to interact



W AC T Wallenberg Centre for
Quantum Technology

Quantum algorithms and compilation

do — / ®

G VX HZ I X374 I I X374 I VX 4

@2 |vXHS

VX

Zrja H VX VX H Z—3n/4

VX

Z—7T/2 \/Y .

Quantum algorithms are sequences of gates acting on quantum states

Compilation steps
- Convert the gates of the algorithm into gates in your native universal gate set
- Map qubits in the algorithm to qubits on your hardware
- Insert SWAP gates to connect qubits far apart that need to interact
- Compress the resulting circuit
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Summary

» Qubits can be in superposition states; exponentially
many classical bits are required to describe many qubits

* Quantum algorithms are implemented by applying a
sequence of single- and two-qubit gates (unitary

matrices) to the qubits (states represented as vectors)

- Quantum algorithms need to be compiled to fit on the 0) —H s
quantum hardware; the Solovay-Kitaev theorem tells us 0 7 —
that universal gate sets can achieve this without

0) —{ & —{H]—

prohibitive overhead to ensure precision



