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Introduction to option pricing

▶ A European call (put) option on a stock:

▶ Right to buy (sell) the stock S at a known price K at some
pre-determined time T

▶ K is the strike

▶ T is the expiry

▶ Banks often sell options to their clients

▶ At expiry, the client will receive the payoff
Φ(ST ) = max(ST − K , 0)

▶ Need to be able to calculate a fair price!
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Introduction to option pricing

Figure: Payoff function for K = 100.
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Introduction to option pricing

Figure: Recent OMX Index price movements.
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Introduction to option pricing

▶ The fair price v of a European call option is determined by
the discounted expected payoff

v = e−rTE[Φ(ST )] = e−rTE[max(ST − K , 0)]

▶ Depends on the distribution of ST , given the current price S0!

▶ Black & Scholes model:,

log
ST
S0

∼ N((r − 1

2
σ2)T , σ

√
T )

where σ is the volatility, and r is the interest rate.

▶ Monte Carlo can be used to estimate the expected value!
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Monte Carlo pricing

▶ Monte Carlo recipe:

▶ Simulate xi from the log-normal distribution of ST

▶ Evaluate payoff Φ(xi ) = max(xi − K , 0)

▶ Repeat N times

▶ Calculate average payoff!

▶ From the Law of Large numbers,

1

N

N∑
i=1

Φ(xi ) → E[max(ST − K , 0)], as N → ∞
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Option pricing on a quantum computer

▶ Let µ = E[max(ST − K , 0)]

▶ Imagine if we could encode µ in the state |Ψ⟩ of a qubit q in
a quantum circuit, e.g.

|Ψ⟩ =
√
1− µ |0⟩+√

µ |1⟩
▶ The probability of measuring a 1 is (

√
µ)2 = µ

▶ Then, we could:

▶ Run circuit with N shots and measure q

▶ Calculate average of the measurements m1,m2, . . . ,mN

▶ From the Law of Large numbers,

1

N

N∑
i=1

mi → µ, as N → ∞
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Encoding the probability distribution

▶ With n qubits, discretize distribution of stock price
to 2n grid points

▶ Let pi = P(measuring i)

▶ Define operator A by

A |0⟩n =
2n−1∑
i=0

√
pi |i⟩n

▶ A encodes the probability distribution into a cirquit!
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Encoding the payoff function and the expected value

▶ Consider random variable X on {0, 1, . . . , 2n − 1}
and function f (X ) 7→ [0, 1]

▶ Define operator F by

F |i⟩n |0⟩ =
√
1− f (i) |i⟩n |0⟩+

√
f (i) |i⟩n |1⟩

▶ Applying F to A |0⟩n |0⟩ yields

FA |0⟩n |0⟩ = . . . |0⟩+
2n−1∑
i=0

√
f (i)

√
pi |i⟩n |1⟩

▶ The probability of measuring |1⟩ in the final qubit is

2n−1∑
i=0

f (i)pi = E[f (X )]
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Encoding the payoff function and the expected value

▶ Problem: f (x) = max(x − K , 0) does not
map to [0, 1] interval

▶ Solution: we rescale it!

▶ Take f̂ (x) = f (ϕ(x))
f (xmax)

, with ϕ(x) = xmin + (xmax − xmin)
x

2n−1 .

▶ Final note:

▶ This is NOT quantum MC!

▶ This is classical MC, implemented on a quantum computer

▶ Now ready to implement in Qiskit!
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