Option pricing on a quantum computer

Björn Löfdahl, SEB

Quantum Autumn School December 2-4, 2024

A European call (put) option on a stock:

Right to buy (sell) the stock S at a known price K at some pre-determined time T

K is the strike

T is the expiry

Banks often sell options to their clients

• At expiry, the client will receive the *payoff* $\Phi(S_T) = \max(S_T - K, 0)$

Need to be able to calculate a fair price!

Figure: Payoff function for K = 100.

Figure: Recent OMX Index price movements.

The fair price v of a European call option is determined by the discounted expected payoff

$$v = e^{-rT} \mathbb{E}[\Phi(S_T)] = e^{-rT} \mathbb{E}[\max(S_T - K, 0)]$$

• Depends on the distribution of S_T , given the current price S_0 !

Black & Scholes model:,

$$\log \frac{S_T}{S_0} \sim \mathrm{N}((r - \frac{1}{2}\sigma^2)T, \sigma\sqrt{T})$$

where σ is the *volatility*, and *r* is the interest rate.

Monte Carlo can be used to estimate the expected value!

Monte Carlo recipe:

Simulate x_i from the log-normal distribution of S_T

• Evaluate payoff
$$\Phi(x_i) = \max(x_i - K, 0)$$

Repeat N times

Calculate average payoff!

From the Law of Large numbers,

$$\frac{1}{N}\sum_{i=1}^N \Phi(x_i) \to \mathbb{E}[\max(S_T - K, 0)], \text{ as } N \to \infty$$

Option pricing on a quantum computer

• Let
$$\mu = \mathbb{E}[\max(S_T - K, 0)]$$

• Imagine if we could encode μ in the state $|\Psi\rangle$ of a qubit q in a quantum circuit, e.g.

$$\ket{\Psi} = \sqrt{1-\mu} \ket{0} + \sqrt{\mu} \ket{1}$$

• The probability of measuring a 1 is $(\sqrt{\mu})^2 = \mu$

Then, we could:

Run circuit with N shots and measure q

• Calculate average of the measurements m_1, m_2, \ldots, m_N

From the Law of Large numbers,

$$\frac{1}{N}\sum_{i=1}^{N}m_i \to \mu, \text{ as } N \to \infty$$

Encoding the probability distribution

With n qubits, discretize distribution of stock price to 2ⁿ grid points

• Let
$$p_i = \mathbb{P}(\text{measuring i})$$

• Define operator \mathcal{A} by

$$\left|\mathcal{A}\left|0\right\rangle_{n}=\sum_{i=0}^{2^{n}-1}\sqrt{p_{i}}\left|i\right\rangle_{n}$$

A encodes the probability distribution into a cirquit!

Encoding the payoff function and the expected value

Consider random variable X on {0,1,...,2ⁿ−1} and function f(X) → [0,1]

• Define operator \mathcal{F} by

$$\mathcal{F}\left|i\right\rangle_{n}\left|0\right\rangle = \sqrt{1-f(i)}\left|i\right\rangle_{n}\left|0\right\rangle + \sqrt{f(i)}\left|i\right\rangle_{n}\left|1\right\rangle$$

• Applying \mathcal{F} to $\mathcal{A} |0\rangle_n |0\rangle$ yields

$$\mathcal{FA} \ket{0}_{n} \ket{0} = \dots \ket{0} + \sum_{i=0}^{2^{n}-1} \sqrt{f(i)} \sqrt{p_{i}} \ket{i}_{n} \ket{1}$$

 \blacktriangleright The probability of measuring |1
angle in the final qubit is

$$\sum_{i=0}^{2^n-1} f(i)p_i = \mathbb{E}[f(X)]$$

Encoding the payoff function and the expected value

- Problem: f(x) = max(x K, 0) does not map to [0, 1] interval
- Solution: we rescale it!

► Take
$$\hat{f}(x) = \frac{f(\phi(x))}{f(x_{\max})}$$
, with $\phi(x) = x_{\min} + (x_{\max} - x_{\min})\frac{x}{2^n - 1}$.

Final note:

This is NOT quantum MC!

This is classical MC, implemented on a quantum computer

Now ready to implement in Qiskit!

Woerner, S. and Egger, D. (2019). Quantum Risk Analysis npj Quantum Information, 5(1), 15.

Stamatopoulos, N. et al. (2020). Option pricing using quantum computers Quantum, 4, 291.