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Notes

@ | came from Density Functional Theory (DFT) background

@ Learning quantum computing then | can run DFT on another accelerator (QPU)

@ The effort here is still in-the-making and comments are welcomed

@ The quantum part here is very small! but | thought it can be good extension of DFT people
to try exploring running on quantum simulations

@ Priliminary Manuscript is here [1] and Implementation available on GitHub is here [2].

Comments and pull requests are welcomed!
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Quantum Chemistry Simulations using Quantum Computing
Algorithms

There is numerous literature work on Quantum chemistry calculations as a promising early
applications of quantum computers, an example is simulating small molecules as indicated in [3]
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Figure: From [4]:Typical flow of quantum computing algorithm for quantum chemistry calculation

Applying this workflow beyond small molecules to larger molecules or periodic systems can be
difficult at the moment due to large number of qubits needed
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Materials Systems in Different Dimensions

Focus on materials science simulations like solid-state systems is picking up using quantum
computing algorithms, those systems are often modeled as periodic systems and simulation cell
can have hundreds of atoms and system can be 1D, 2D or 3D
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Figure: from [5]: Examples of materials systems in 1D, 2D and 3D
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Computational materials science in a nutshell

@ Modeling and computing materials properties is solving the electronic structure problem for
the system of interest to predict a physical variable of interest

@ Electronic structure of molecules and solids is the starting point in a computational materials
science workflow

@ Models and embedding help simplify complex quantum calculations
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Figure: From [6]
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Connection to HPC resources

Perlmutter

@ Typically those systems require many cores and nodes and fill-up big portion of HPC time,
for example through Density Functional Theory (DFT) calculations (by famous codes like
VASP, Quantum ESPRESSO, ABINIT, etc.)

From: Analyzing Resource Utilization in an HPC System: A Case Study of NERSC'’s
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Connection to HPC resources

@ Typically those systems require many cores and nodes and fill-up big portion of HPC time,
for example through Density Functional Theory (DFT) calculations (by famous codes like
VASP, Quantum ESPRESSO, ABINIT, etc.)

HECToR usage statistics

Phase 3 statistics (Nov 2011 - Apr 2013)

Ab initio codes (VASP, CP2K, CASTEP, ONETEP, NWChem,
Quantum Espresso, GAMESS-US, SIESTA, GAMESS-UK,
MOLPRO)
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Figure: From [8]

Connection with current codes

This approach has the potential to combine the best of both worlds: the higher accuracy you can
get from quantum methods and the efficiency of classical methods in accelerated material science
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Quantum-centric supercomputing

The Quantum-centric supercomputers efforts taking place at the moment using quantum
accelerators with current HPC infrastructures can be used to accelerate those materials science
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Figure: From [6]:Integration between classical (HPC) and quantum computing resources exemplified by the
variational quantum eigensolver. The steps of the calculation are represented by gray blocks, connected by
arrows describing the flow of operations and arranged left/center/right for operation that require
“long-time/near-time/real-time” interaction between HPC and quantum computers
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Workflow for Quantum Simulations of Materials

@ Practical-wise, one can use the classical resources to do the calculations as usual and focus
the quantum part on the important interactions that can benefit from the quantum
algorithms and feed the results back to the classical side
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Figure: General strategy for quantum simulations of materials using quantum embedding [9]
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quantum embedding and active space

@ The figure above shows how to combine the classical and quantum calculations using the
quantum embedding method

@ Large simulations utilises active space approximation to reduce the resources required to
model the system’s electronic structure on a quantum workflow
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Quantum Embedding Method for the Simulation of Systems on

Quantum Computers |

The energy of the active subsystem A embedded into the environment subsystem B by means of an SCF-in-DFT calculation is

given by [10]:
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Brief Description

This relies on the projection-based wave
function-in-DFT (WF-in-DFT) embedding
method, where the total KS density matrix,
7, of the molecular system obtained from
KS-DFT is partitioned into an active and
environment subsystem, y4 and g

v,
Key Components

] EgcF is the energy of the embedded subsystem A at SCF level

pB = S'yBS is a projector for orbital orthogonality

]
@ « is a scaling parameter
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Vemp includes all two-electron interactions
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Figure: Quantum embedding in action [10]
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Quantum Embedding Method for the Simulation of Systems on
Quantum Computers |l

ADAPT-VQE at a glance

Adaptive Derivative-Assembled Pseudo-Trotter VQE (ADAPT-VQE) is a solver technique that
builds an ansatz iteratively from a predefined operator pool, which can more efficiently converge
to predict the ground state energy [11]

Figure: From [12]:ADAPT-VQE procedure

Then different pool of ansatz offered by UCCSD can be chosen then initial Hartree-Fock state
can be formed then build the Hamiltonian
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A practical usecase on Quantum Computing for Materials?

@ A practical example of how periodic systems can be important to study is studying corrosion
inhibition through examining the adhesion power of few inhibitor molecules on top of metal
alloys surfaces that form the body of a car or aeroplane. This can enhance the lifespan and
efficiency of the car or aeroplane body, there is research around shifting towards eco-friendly
alternatives like smart coatings and organic inhibitors due to environmental concerns, for
more information please see [1]

@ Such inhibitor molecules can benefit from accurate quantum calculations to study their
interactions with the metal surface. Then those calculations can correct for energies
computed by the Density Functional Theory (DFT)
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Figure: From [13]: Corrosion inhibition mechanisms of organic inhibitors
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How to perform the quantum-centric supercomputing

o Build the DFT simulation workflow
o Identify the part of important interactions to study with the quantum algorithm (e.g.
surface-adsorbate interactions where we choose orbitals around the Fermi level)

@ Build Hybrid quantum-classical computational framework where calculations from DFT
(implemented in CP2K) can talk to quantum algorithm calculation (adaptVQE implemented
in Qiskit)
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Integration between CP2K and Qiskit
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and Qiskit Nature. The user configures the two classical pro-
cesses and the socket for the IPC. Each process then follows
the computational steps (rectangular boxes) outlined inside
of their respective frames. The data that gets computed
and transferred is indicated by the rounded boxes. Num-
bers in parentheses refer to the respective equations in this
manuscript. The self-consistent embedding requires a loop
which is highlighted by the gray box. This loop is terminated
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Case Study: Calculational System Simplification

{ inhibitor molecule J [ inhibitor molecule J
sim '|"" Alumi
simpli uminum
Aluminum alloy TR 1L-){/) substrate

Figure: So, we simplify our system to make the calculations easy to compute and focus on the two parts which
are the DFT and the adaptVQE calculations

=}
a

Karim Elgammal (QAS2024)

for ial Si i December 4, 2024 14 /26




Case Study: Workflow Overview
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Case Study: Workflow with Example System
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Case Study: System Setup and Classical Computational Details

Establish a baseline to benchmark to:

Using the DFT code CP2K to solve the problem classically can be a good way to compare with
the hybrid calculation that can use both CP2K and Qiskit later

@ System: Al(111) surface with
triazole inhibitor and vacuum gap
of 25 A in the z-direction. The
supercell is 4x4 size to avoid
interactions between repeated
cells

@ PBE functional with D3
dispersion correction

@ Periodic DFT calculations using
CP2K

@ DZVP-MOLOPT-GTH basis sets

@ Binding energy calculation:

Ebinding = Esupercell _(Esubstrate+ Einhibitor)

1,2,4-Triazole { OO
eo 0 0505009,
©000 05230000
® 059
Al substrate (4xd) o o o ° OOOOOOOO
0202020
© 000 0%%%°
t—» o 0 0O
E @ 0 00O

Figure: From [1]
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Case Study: Complete Computational Parameters Summary

Method/Component Details

Classical Calculations

Geometry Optimization ASE with orb-d3-v2 model

Dispersion Corrections Grimme's D3 (integrated into neural network potential)

Surface Model Al(111) 4X4 supercell

DFT Calculations

Functional PBE with GGA implementation

Basis Set DZVP-MOLOPT-GTH (double-zeta valence polarized)

Method GPW, plane-wave cutoff: 500 Ry, relative cutoff: 60 Ry

van der Waals DFT-D3 with PBE reference functional

Vacuum Gap 25 A (z-direction)

SCF Convergence 1.0E-6 Ha, Broyden mixing (o = 0.1, 8 = 1.5)

Active Space Parameters

Configuration 2e, 50 (2 active electrons in 5 orbitals)

Selection Method ActiveSpaceTransformer (Qiskit implementation), canonical orbital energy ordering selection
Quantum Calculations

Primary Algorithm ADAPT-VQE from Qiskit, StatefulAdaptVQE from qiskit-nature-cp2k
Qubit Mapping Parity with two-qubit reduction

Convergence Criteria Energy threshold: le-6 Hartree, gradient norm: le-4

Classical Optimizer SPSA (learning rate: 0.005, perturbation size: 0.05, max iterations: 1000)
Quantum Hardware & Simulation

Simulators Qiskit local and Aer
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Case Study: Results - Classical part

Inhibitor MW Temp pH Eff.
(g/mo)  (K)  Range (%)
1,2,4-Triazole 69.07 298 8-10 90
1,2,4-T-3-thiol 101.13 298 4-10 70-90
Benzotriazole 119.12 298 7-10 90-98
2-MBI 150.2 298 4-10 9
THC 227.24 303 7 91-95
T-methionine 502.70 298 7 95-99

@ Shortlisted few inhibitor molecules

@ Chosen two variations of Triazole

inhibitors

@ Geometry-optimized structures consistent

with experimental observations
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Case Study: Results - Hybrid part

Method Inhibitor Binding Energy (eV) Distance (A)
Classical DFT 1,2,4-Triazole -0.385512 3.54
AdaptVQE 1,2,4-Triazole -0.385508 3.54
vanilla VQE 1,2,4-Triazole -2.325986 3.54
Classical DFT 1,2,4-Triazole-3-thiol -1.279063 321
AdaptVQE 1,2,4-Triazole-3-thiol -1.279064 3.21

Agreement between classical DFT and AdaptVQE methods
Stronger binding for 1,2,4-Triazole-3-thiol (-1.279 eV) vs 1,2,4-Triazole (-0.386 eV)
Shorter binding distance for thiol derivative (3.21A vs 3.54A)

Enhanced surface interaction of thiol derivative supports findings on sulfur’s role in surface
passivation
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Conclusion

@ Demostrated hybrid quantum-classical approach for
modeling corrosion inhibitors

o Computed a physical property of binding energies
with classical and hybrid methods

o AdaptVQE showed better performance over vanilla
VQE

@ Potential for expanding active space to capture
complex interactions

@ Priliminary Manuscript is here [1] and Implementation

available on GitHub is here [2]. Comments and pull
requests are welcomed!

rim Elgammal (QAS2024) Q c ing for Material Simulations

Method Inh. B.E. Dist.

(V) (A)
Class. 1,24-T -0.39 3.54
AdaptVQE 1,24-T -0.39 3.54
VQE 1,24-T -2.33 3.54
Class. T-3-t -1.28 321
AdaptVQE T-3-t -1.28 3.21
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Ongoing Work & Future Directions

@ This work is an effort towards building guidance workflow for quantum-classical hybrid
materials simulation

@ Current results demonstrate proof-of-concept on periodic systems, but there is a huge room
for improvement

@ The results are yet to be improved and include more influence coming from the embedding
methods
@ Ongoing developments:
e Scaling to larger active space
o Integration of giskit-nature-cp2k with newest qiskit version 1.x
@ Future work will focus on:
e Benchmarking against pure classical methods (FCI)
o Implementation of zero-noise extrapolation techniques
o Optimization of quantum circuit ansatze for hardware constraints
o Adapt the workflow to the recent work here [15]
o Extension to broader materials science applications and use cases like metal-oxide frameworks
(carbon capture) and catalysis (hydrogen storage)
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Useful literature and resources

Learning resources

@ For some recent VQE implementations: [16]

@ A good review article on the topic of quantum-centric supercomputing: [6]
@ For more insights, see the tutorial video lecture [17]

o NVidia blog post on ADAPT-VQE [11]

.

Qiskit Nature and CP2K resources

o Qiskit-nature-CP2K integrationhttps://github.com/Qiskit/qiskit-nature-cp2k

o Qiskit-nature https://github.com/qiskit-community/qiskit-nature

y

Quantum Embedding tools

@ A Python package for Bootstrap Embedding (BE) method for quantum embedding: [18], the
related publication is [15]

@ For more on quantum embedding: [19]
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