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Notes

I came from Density Functional Theory (DFT) background

Learning quantum computing then I can run DFT on another accelerator (QPU)

The effort here is still in-the-making and comments are welcomed

The quantum part here is very small! but I thought it can be good extension of DFT people
to try exploring running on quantum simulations

Priliminary Manuscript is here [1] and Implementation available on GitHub is here [2].
Comments and pull requests are welcomed!
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Quantum Chemistry Simulations using Quantum Computing
Algorithms

There is numerous literature work on Quantum chemistry calculations as a promising early
applications of quantum computers, an example is simulating small molecules as indicated in [3]

Figure: From [4]:Typical flow of quantum computing algorithm for quantum chemistry calculation

Note:

Applying this workflow beyond small molecules to larger molecules or periodic systems can be
difficult at the moment due to large number of qubits needed
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Materials Systems in Different Dimensions

Focus on materials science simulations like solid-state systems is picking up using quantum
computing algorithms, those systems are often modeled as periodic systems and simulation cell
can have hundreds of atoms and system can be 1D, 2D or 3D

Figure: from [5]: Examples of materials systems in 1D, 2D and 3D
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Computational materials science in a nutshell

Modeling and computing materials properties is solving the electronic structure problem for
the system of interest to predict a physical variable of interest

Electronic structure of molecules and solids is the starting point in a computational materials
science workflow

Models and embedding help simplify complex quantum calculations

Figure: From [6]
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Connection to HPC resources

Typically those systems require many cores and nodes and fill-up big portion of HPC time,
for example through Density Functional Theory (DFT) calculations (by famous codes like
VASP, Quantum ESPRESSO, ABINIT, etc.)

Figure: From [7]

Karim Elgammal (QAS2024) Quantum Computing for Material Simulations December 4, 2024 6 / 26



Connection to HPC resources

Typically those systems require many cores and nodes and fill-up big portion of HPC time,
for example through Density Functional Theory (DFT) calculations (by famous codes like
VASP, Quantum ESPRESSO, ABINIT, etc.)

Figure: From [8]

Connection with current codes

This approach has the potential to combine the best of both worlds: the higher accuracy you can
get from quantum methods and the efficiency of classical methods in accelerated material science
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Quantum-centric supercomputing

The Quantum-centric supercomputers efforts taking place at the moment using quantum
accelerators with current HPC infrastructures can be used to accelerate those materials science
simulations

Figure: From [6]:Integration between classical (HPC) and quantum computing resources exemplified by the
variational quantum eigensolver. The steps of the calculation are represented by gray blocks, connected by
arrows describing the flow of operations and arranged left/center/right for operation that require
“long-time/near-time/real-time” interaction between HPC and quantum computers
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Workflow for Quantum Simulations of Materials

Practical-wise, one can use the classical resources to do the calculations as usual and focus
the quantum part on the important interactions that can benefit from the quantum
algorithms and feed the results back to the classical side

Figure: General strategy for quantum simulations of materials using quantum embedding [9]

quantum embedding and active space

The figure above shows how to combine the classical and quantum calculations using the
quantum embedding method

Large simulations utilises active space approximation to reduce the resources required to
model the system’s electronic structure on a quantum workflow
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Quantum Embedding Method for the Simulation of Systems on
Quantum Computers I

The energy of the active subsystem A embedded into the environment subsystem B by means of an SCF-in-DFT calculation is
given by [10]:

ESCF-in-DFT[γ
A
emb; γ

A
, γ

B ] = ESCF[γ
A
emb] + EDFT[γ

A + γ
B ] − EDFT[γ

A] + tr[(γA
emb − γ

A)νemb[γ
A
, ] + αtr[γA

embP
B ] (1)

Brief Description

This relies on the projection-based wave
function-in-DFT (WF-in-DFT) embedding
method, where the total KS density matrix,
γ, of the molecular system obtained from
KS-DFT is partitioned into an active and
environment subsystem, γA and γB

Key Components

ESCF is the energy of the embedded subsystem A at SCF level

PB = SγBS is a projector for orbital orthogonality

α is a scaling parameter

νemb includes all two-electron interactions

Figure: Quantum embedding in action [10]
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Quantum Embedding Method for the Simulation of Systems on
Quantum Computers II

ADAPT-VQE at a glance

Adaptive Derivative-Assembled Pseudo-Trotter VQE (ADAPT-VQE) is a solver technique that
builds an ansatz iteratively from a predefined operator pool, which can more efficiently converge
to predict the ground state energy [11]

Ansatz Element Pool

Ansatz Element Pool

Decision
Rule

D
Choose best element

An(θ) = Aα(θ) = eθTα

Append to ansatz

Un(θ) = An(θn)· · ·A1(θ1)

Optimise parameters

θ −→ θ′

Apply ansatz

ρn(θ
′) = Un(θ

′)ρ0 U†
n(θ

′)

Initialise state, ansatz and pool

n = 0, ρ0 = ρHF, U0 = I,P = {Aα}
Start

Trial state

ρn(θ
′)

Measure expectation

En(θ
′) = Tr[Hρn(θ

′)]

Converged?End

Max energy reduction in subset S

argmin
α:Aα∈S

(
min
θn

Tr
[
HAα(θn)ρn−1A

†
α(θn)

])
Max gradient

argmax
α:Aα∈P

|Tr {[H,Tα] ρn−1}|

A

A

AAA
A A

AA
A

A

Yes

No n → n+ 1

Or

Figure: From [12]:ADAPT-VQE procedure

Then different pool of ansatz offered by UCCSD can be chosen then initial Hartree-Fock state
can be formed then build the Hamiltonian
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A practical usecase on Quantum Computing for Materials?

A practical example of how periodic systems can be important to study is studying corrosion
inhibition through examining the adhesion power of few inhibitor molecules on top of metal
alloys surfaces that form the body of a car or aeroplane. This can enhance the lifespan and
efficiency of the car or aeroplane body, there is research around shifting towards eco-friendly
alternatives like smart coatings and organic inhibitors due to environmental concerns, for
more information please see [1]

Such inhibitor molecules can benefit from accurate quantum calculations to study their
interactions with the metal surface. Then those calculations can correct for energies
computed by the Density Functional Theory (DFT)

Figure: From [13]: Corrosion inhibition mechanisms of organic inhibitors
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How to perform the quantum-centric supercomputing

Build the DFT simulation workflow

Identify the part of important interactions to study with the quantum algorithm (e.g.
surface-adsorbate interactions where we choose orbitals around the Fermi level)

Build Hybrid quantum-classical computational framework where calculations from DFT
(implemented in CP2K) can talk to quantum algorithm calculation (adaptVQE implemented
in Qiskit)

Karim Elgammal (QAS2024) Quantum Computing for Material Simulations December 4, 2024 12 / 26



Integration between CP2K and Qiskit

Socket-based
communica-
tion between
CP2K and
Qiskit

FCIDUMP
format for
integral
transfer

most important
article here!

This figure is
from [14]
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Case Study: Calculational System Simplification

Figure: So, we simplify our system to make the calculations easy to compute and focus on the two parts which
are the DFT and the adaptVQE calculations
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Case Study: Workflow Overview

The D3 dispersion model

screening CORDATA for 
potential inhibitors

- ASE, RDKit
- ML potential: orb-d3-v2

inhibition efficiency 
screening

pH range screening

temperature range 
screening

aroumatic ring structure 
screening

give candidate inhibitors for 
automotive and aerospace

Geometry 
optimization

- ML potential: 
orb-d3-v2

model Al surface + 
candidate inhibitor

perform geometry 
optimization

DFT calculations

- DFT as implemented 
in CP2K

calculate binding 
energies

Prepare ansatz

- Fermionic mappers as 
(Jordan-Wigner (JW), 
Bravyi-Kitaev and 
parity with two-qubit 
reduction (P2QR)) 

Quantum simulation

use variation of VQE 
like Adapt VQE

- adaptVQE
- Braket with 

qiskit-braket-provider

Prepare Alloy (Al) surface

- ASE
- ML potential: orb-d3-v2

Start with most stable Al 
surface (111)

Prepare slab with 
multilayers

classical part

Active space 
selection

- DFT using CP2K 
- UCCSD 
- CP2K - qiskit PBC as 

implemented by Battaglia 
et al. 

- ActiveSpaceTransformer 
as implimented in qiskit

- *Battaglia et al. 
- Canonical orbital energy 

ordering selection

Define the orbitals 
involved in the 
interaction and 
choose active space 
for the periodic Al slab 
+ corrosion inhibitor

use embedding 
scheme methods*

represent active 
space Hamiltonian in 
second quantization

project the 
Born-Oppenheimer 
Hamiltonian onto the 
active space

Use fermion-to-qubit 
mappings to map the 
active space to a 
qubit operator 

find binding energies

hybrid quantum-classical part

optimize the 
calculations w.r.t. 
active orbital selection

Validation and bechmarking
benchmark results from both 
cases with experimental 
values (if found) or use 
results from recently 
performed experiments

experiment using DFT 
calculations using hybrid 
functionals and non-local 
functionals

account for vdW 
disspersion forces

vdW dispersion 
forces using Grimme

DZVP-MOLOPT-GTH 
basis sets

legend

tools

workflow step

use embedding 
scheme methods*

From: [1]
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Case Study: Workflow with Example System

Al substrate (4x4)

1,2,4-Triazole-3-thiol
3.21 Å

side view

The D3 dispersion model

screening CORDATA for 
potential inhibitors

- ASE, RDKit
- ML potential: orb-d3-v2

inhibition efficiency 
screening

pH range screening

temperature range 
screening

aroumatic ring structure 
screening

give candidate inhibitors for 
automotive and aerospace

Geometry 
optimization

- ML potential: 
orb-d3-v2

model Al surface + 
candidate inhibitor

perform geometry 
optimization

DFT calculations

- DFT as implemented 
in CP2K

calculate binding 
energies

Prepare ansatz

- Fermionic mappers as 
(Jordan-Wigner (JW), 
Bravyi-Kitaev and 
parity with two-qubit 
reduction (P2QR)) 

Quantum simulation

use variation of VQE 
like Adapt VQE

- adaptVQE
- Braket with 

qiskit-braket-provider

Prepare Alloy (Al) surface

- ASE
- ML potential: orb-d3-v2

Start with most stable Al 
surface (111)

Prepare slab with 
multilayers

classical part

Active space 
selection

- DFT using CP2K 
- UCCSD 
- CP2K - qiskit PBC as 

implemented by Battaglia 
et al. 

- ActiveSpaceTransformer 
as implimented in qiskit

- *Battaglia et al. 
- Canonical orbital energy 

ordering selection

Define the orbitals 
involved in the 
interaction and 
choose active space 
for the periodic Al slab 
+ corrosion inhibitor

use embedding 
scheme methods*

represent active 
space Hamiltonian in 
second quantization

project the 
Born-Oppenheimer 
Hamiltonian onto the 
active space

Use fermion-to-qubit 
mappings to map the 
active space to a 
qubit operator 

find binding energies

hybrid quantum-classical part

optimize the 
calculations w.r.t. 
active orbital selection

Validation and bechmarking
benchmark results from both 
cases with experimental 
values (if found) or use 
results from recently 
performed experiments

experiment using DFT 
calculations using hybrid 
functionals and non-local 
functionals

account for vdW 
disspersion forces

vdW dispersion 
forces using Grimme

DZVP-MOLOPT-GTH 
basis sets

legend

tools

workflow step

- CP2K
- activespace 

integration with qiskit

- Qiskit
- adaptVQE

qiskit simulator

use embedding 
scheme methods*

From: [1]
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Case Study: System Setup and Classical Computational Details

Establish a baseline to benchmark to:

Using the DFT code CP2K to solve the problem classically can be a good way to compare with
the hybrid calculation that can use both CP2K and Qiskit later

System: Al(111) surface with
triazole inhibitor and vacuum gap
of 25 Å in the z-direction. The
supercell is 4×4 size to avoid
interactions between repeated
cells

PBE functional with D3
dispersion correction

Periodic DFT calculations using
CP2K

DZVP-MOLOPT-GTH basis sets

Binding energy calculation:

Ebinding = Esupercell−(Esubstrate+Einhibitor)
Figure: From [1]
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Case Study: Complete Computational Parameters Summary

Method/Component Details
Classical Calculations
Geometry Optimization ASE with orb-d3-v2 model
Dispersion Corrections Grimme’s D3 (integrated into neural network potential)
Surface Model Al(111) 4×4 supercell

DFT Calculations
Functional PBE with GGA implementation
Basis Set DZVP-MOLOPT-GTH (double-zeta valence polarized)
Method GPW, plane-wave cutoff: 500 Ry, relative cutoff: 60 Ry
van der Waals DFT-D3 with PBE reference functional
Vacuum Gap 25 Å (z-direction)
SCF Convergence 1.0E-6 Ha, Broyden mixing (α = 0.1, β = 1.5)

Active Space Parameters
Configuration 2e, 5o (2 active electrons in 5 orbitals)
Selection Method ActiveSpaceTransformer (Qiskit implementation), canonical orbital energy ordering selection

Quantum Calculations
Primary Algorithm ADAPT-VQE from Qiskit, StatefulAdaptVQE from qiskit-nature-cp2k
Qubit Mapping Parity with two-qubit reduction
Convergence Criteria Energy threshold: 1e-6 Hartree, gradient norm: 1e-4
Classical Optimizer SPSA (learning rate: 0.005, perturbation size: 0.05, max iterations: 1000)

Quantum Hardware & Simulation
Simulators Qiskit local and Aer

Karim Elgammal (QAS2024) Quantum Computing for Material Simulations December 4, 2024 18 / 26



Case Study: Results - Classical part

Inhibitor MW Temp pH Eff.
(g/mol) (K) Range (%)

1,2,4-Triazole 69.07 298 8-10 90
1,2,4-T-3-thiol 101.13 298 4-10 70-90
Benzotriazole 119.12 298 7-10 90-98
2-MBI 150.2 298 4-10 90
THC 227.24 303 7 91-95
T-methionine 502.70 298 7 95-99

Shortlisted few inhibitor molecules

Chosen two variations of Triazole
inhibitors

Geometry-optimized structures consistent
with experimental observations
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Case Study: Results - Hybrid part

Method Inhibitor Binding Energy (eV) Distance (Å)
Classical DFT 1,2,4-Triazole -0.385512 3.54
AdaptVQE 1,2,4-Triazole -0.385508 3.54
vanilla VQE 1,2,4-Triazole -2.325986 3.54
Classical DFT 1,2,4-Triazole-3-thiol -1.279063 3.21
AdaptVQE 1,2,4-Triazole-3-thiol -1.279064 3.21

Agreement between classical DFT and AdaptVQE methods

Stronger binding for 1,2,4-Triazole-3-thiol (-1.279 eV) vs 1,2,4-Triazole (-0.386 eV)

Shorter binding distance for thiol derivative (3.21Å vs 3.54Å)

Enhanced surface interaction of thiol derivative supports findings on sulfur’s role in surface
passivation
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Conclusion

Demostrated hybrid quantum-classical approach for
modeling corrosion inhibitors

Computed a physical property of binding energies
with classical and hybrid methods

AdaptVQE showed better performance over vanilla
VQE

Potential for expanding active space to capture
complex interactions

Priliminary Manuscript is here [1] and Implementation
available on GitHub is here [2]. Comments and pull
requests are welcomed!

Method Inh. B.E. Dist.
(eV) (Å)

Class. 1,2,4-T -0.39 3.54
AdaptVQE 1,2,4-T -0.39 3.54
VQE 1,2,4-T -2.33 3.54
Class. T-3-t -1.28 3.21
AdaptVQE T-3-t -1.28 3.21
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Ongoing Work & Future Directions

This work is an effort towards building guidance workflow for quantum-classical hybrid
materials simulation

Current results demonstrate proof-of-concept on periodic systems, but there is a huge room
for improvement

The results are yet to be improved and include more influence coming from the embedding
methods

Ongoing developments:
Scaling to larger active space
Integration of qiskit-nature-cp2k with newest qiskit version 1.x

Future work will focus on:
Benchmarking against pure classical methods (FCI)
Implementation of zero-noise extrapolation techniques
Optimization of quantum circuit ansätze for hardware constraints
Adapt the workflow to the recent work here [15]
Extension to broader materials science applications and use cases like metal-oxide frameworks
(carbon capture) and catalysis (hydrogen storage)
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Useful literature and resources

Learning resources

For some recent VQE implementations: [16]

A good review article on the topic of quantum-centric supercomputing: [6]

For more insights, see the tutorial video lecture [17]

NVidia blog post on ADAPT-VQE [11]

Qiskit Nature and CP2K resources

Qiskit-nature-CP2K integrationhttps://github.com/Qiskit/qiskit-nature-cp2k

Qiskit-nature https://github.com/qiskit-community/qiskit-nature

Quantum Embedding tools

A Python package for Bootstrap Embedding (BE) method for quantum embedding: [18], the
related publication is [15]

For more on quantum embedding: [19]
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