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Quantum states, Dirac’s bra - (⟨x |) and ket (|x⟩) notations

1) ket |·⟩
quantum states are ’ket’: |ψ⟩
linearity (superpositions): complex linear combinations of states are
states c1 |ψ1⟩+ c2 |ψ2⟩, ci ∈ C.

2) bra ⟨·|
inner product is defined: ⟨ϕ|ψ⟩ ∈ C, ’a bracket’
quantum states are kets |ψ⟩ with unit norm ∥|ψ⟩∥2 := ⟨ψ|ψ⟩ = 1
fix |ϕ⟩, a linear functional: ℓϕ(|ψ⟩) := ⟨ϕ|ψ⟩ is called ’bra’ ⟨ϕ|
all possible bras ⟨ϕ| form a linear space (dual to the space of kets)

3) Quantum states |x⟩ ∈ H
H is a Hilbert space
inner product of elements |x⟩, |y⟩ is ⟨x |y⟩
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Consider finite dimensional state space

Theorem
Every n-dimensional complex Hilbert space is isomorphic to Cn (with the
standard inner product)

→ We can work in an abstract vector space (Cn ): ket is a column vector
and bra is a row vector:

|ψ⟩ ∈ Cn or |ψ⟩ =


c1
c2
...
cn

 and ⟨ψ| =
(
c∗1 , c

∗
2 , . . . , c

∗
n

)

⟨ϕ|ψ⟩ =
(
d∗
1 , d

∗
2 , . . . , d

∗
n

)
·


c1
c2
...
cn

= d∗
1 c1 + d∗

2 c2 + · · ·+ d∗
ncn

Norm: ∥|ψ⟩∥2 = ⟨ψ|ψ⟩ =
∑

i |ci |
2
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Linear operator A
is a linear function, A : Cn → Cn, and A(

∑
i ci |ψi ⟩) =

∑
i ciA |ψi ⟩

Let {|ψ⟩i} be an orthonormal basis in state space matrix of A is defined by

A |ψi ⟩ := |ai ⟩, |ai ⟩ =


a1i
a2i
...
ani



A =
(
|a1⟩ , |a2⟩ , . . . , |an⟩

)
=


a11, a12, . . . , a1n
a21, a22, . . . , a2n

...
an1, an2, . . . , ann

,

e.g. A |ψ1⟩ := A


1
0
...
0

=


a11
a21
...

an1


A(

∑
i ci |ψi ⟩) =

∑
i ciA |ψi ⟩ =

∑
i ci |ai ⟩
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Examples

If we know A |ψi ⟩ := |ai ⟩, we get i-th column of the matrix of A.
Unit operator I : for all |ψ⟩, I |ψ⟩ = |ψ⟩, as a result for any orthonormal

basis {|ψ⟩i}: I = (|ψ1⟩ , · · · , |ψn⟩) =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


Or: I = |ψ1⟩ ⟨ψ1|+ |ψ2⟩ ⟨ψ2|+ · · ·+ |ψn⟩ ⟨ψn|
Eigenvectors: M |ψi ⟩ = λi |ψi ⟩,

M = (λ1 |ψ1⟩ , · · · , λn |ψn⟩) =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn
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Adjoint-operator A† of an operator A

Let A be a matrix of an operator in orthonormal basis {|ψi ⟩}:

A =


r11 r12 · · · r1n
r21 r22 · · · r2n
...
rn1 rn2 · · · rnn


By definition, matrix of adjoint-operator A† of A has the matrix which is
conjugate transpose of A:

A†=


r∗11 r∗21 · · · r∗n1
r∗12 r∗22 · · · r∗n2
...
r∗1n r∗2n · · · r∗nn
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Some relations

Ket is a one-column matrix and we have: If |ψ⟩ =

c1
...
cn

, then |ψ⟩† = ⟨ψ|

is:c1
...
cn


†

= (c∗1 , · · · , c∗n), and

⟨ψ|ψ⟩ = (c∗1 , · · · , c∗n)

c1
...
cn

= |c1|2 + |c2|2 + · · ·+ |cn|2

|ϕ⟩ ⟨ψ| is an operator acting according to: (|ϕ⟩ ⟨ψ|) |·⟩ = |ϕ⟩ ⟨ψ|·⟩ for any
|·⟩
We have: (|ϕ⟩ ⟨ψ|)† = (⟨ψ|)†(|ϕ⟩)† = |ψ⟩ ⟨ϕ|
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Self-adjoint operators

A linear operator is self-adjoint if: M† = M.
Eigenvalues of an self-adjoint operator are real and eigenvector with
different eigenvalues are orthogonal Self-adjoint operators M† = M,

real eigenvalues -possible outcomes of measurements
orthonormal eigenvectors - squares of absolute values of coordinates
-> probability distribution of outcomes
M |λi ⟩ = λi |λi ⟩, |ψ⟩ =

∑
i ci |λi ⟩ → P(M → λi | |ψ⟩) = |ci |2

expectation of M in state |ψ⟩ is ⟨ψ|M |ψ⟩ =
∑

i λi |ci |
2
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Unitary operators

U is a unitary operator iff U†U = I , or U† = U−1

▶ ∥U |ψ⟩∥2 = (U |ψ⟩)†U |ψ⟩ = ⟨ψ|U†U |ψ⟩ = ⟨ψ|ψ⟩ = ∥|ψ⟩∥2

▶ unitary transformation preserves norm of a vector
▶ evolution of state vector |ψ(t)⟩ is a unitary transformation

|ψ(t)⟩ = U(t) |ψ(0)⟩, t is ’time’
▶ eigenvectors |θ⟩, U |θ⟩ = e iθ |θ⟩
▶ quantum computer realises unitary transformation using ’quantum

gates’
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Example I: Not-gate X

X -gate

permutation of basis states in C2, |0⟩ =
(

1
0

)
and |1⟩ =

(
0
1

)
▶ X : |0⟩ → |1⟩
▶ X : |1⟩ → |0⟩
▶ X = |1⟩ ⟨0|+ |0⟩ ⟨1|
▶ X (c0 |0⟩+ c1 |1⟩) = c0 |1⟩ ⟨0|0⟩+ c1 |0⟩ ⟨1|1⟩ = c0 |1⟩+ c1 |0⟩
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Example II: A permutation operator

Proposition
A permutation of basis states defines a unitary operator

Assume a finite orthonormal basis {|i⟩}ni=1

A bijection π : {1, 2, · · · , n} → {1, 2, · · · , n} (a permutation)
define a permutation operator S :
S = |π(1)⟩⟨1|+ |π(2)⟩⟨2|+ · · ·+ |π(n)⟩⟨n|

▶ for a given state-vector, S permutes its coordinates

S† = |1⟩⟨π(1)|+ |2⟩⟨π(2)|+ · · ·+ |n⟩⟨π(n)|
SS† =
|π(1)⟩ ⟨1|1⟩ ⟨π(1)|+ |π(2)⟩ ⟨2|2⟩ ⟨π(2)|+ · · ·+ |π(n)⟩ ⟨n|n⟩ ⟨π(n)| =
|π(1)⟩⟨π(1)|+|π(2)⟩⟨π(2)|+· · ·+|π(n)⟩⟨π(n)| = |1⟩⟨1|+· · ·+|n⟩⟨n| = In,
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Tensor products of Hilbert spaces

Let H1 and H2 be two Hilbert spaces describing two quantum systems -
how to create state space of a quantum system which has such two parts,
H1 ⊗ H2?

if {|ψi ⟩} and {|ϕi ⟩} are orthonormal baseses of H1 and H2, then
{|ψi ⟩ |ϕj⟩ := |ψi ⟩ ⊗ |ϕj⟩} is a basis in H1 ⊗ H2

a generic element in H1 ⊗ H2 has a form: |Ψ⟩ =
∑

ij cij |ψi ⟩ |ϕj⟩,
cij ∈ C
define inner product of an element |ψ1⟩ |ψ2⟩ as:
|ψ1⟩ |ϕ1⟩ · |ψ2⟩ |ϕ2⟩ = ⟨ϕ1|ϕ2⟩ ⟨ψ1|ψ2⟩
inner product is denoted |ψ1⟩ |ϕ1⟩ · |ψ2⟩ |ϕ2⟩ = ⟨ψ1, ϕ1|ψ2, ϕ2⟩
continue inner product by linearity to all elements of H1 ⊗ H2

operators M1,M2 acting in H1,H2 act in H1 ⊗ H2 as
M1 ⊗M2 |ψi ⟩ ⊗ |ϕj⟩ = (M1 |ψi ⟩)⊗ (M2 |ϕj⟩)
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Qubits

One qubit states - two dimensional space C2 spanned by:

|0⟩ =
(

1
0

)
and |1⟩ =

(
0
1

)
An element in C2, |ψ⟩ = c0 |0⟩+ c1 |1⟩ =

(
c0
c1

)
, |c0|2 + |c1|2 = 1
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Many qubit space

tensor product of more than 2 Hilbert spaces: by induction
one qubit space is C2, two qubit space is C2 ⊗ C2 = C4 and so on
take basis vectors in each one qubit space: |0⟩ , |1⟩, computational
bases
computational basis in n-qubit space (C2n) is formed by all possible
combinations:

▶ |x1⟩ ⊗ |x2⟩ ⊗ · · · ⊗ |xn⟩ = |x1⟩ |x2⟩ · · · |xn⟩ = |x1, x2, · · · , xn⟩, xi ∈ {0, 1}
▶ ordering of basis: {|00⟩ , |01⟩ , |10⟩ , |11⟩} (and similarly for more than 2

qubits)
▶ |x1, x2, · · · , xn⟩ = |x⟩, in which x ∈ {0, · · · , 2n − 1} is integer

corresponding to its binary representation (x1, · · · , xn) =
∑

i xi2
i−1

▶ so: |00⟩ =


1
0
0
0

,|01⟩ =


0
1
0
0

,|10⟩ =


0
0
1
0

, |11⟩ =


0
0
0
1
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Gates I
Evolution of quantum state is unitary
manipulation of qubits - unitary oprators
gates are unitary operations
Example controlled-NOT: if the control qubit is in |1⟩ reverses the
target qubit, otherwise does not change anyting

▶ UCN |00⟩ = |00⟩ ,UCN |01⟩ = |01⟩ ,UCN |10⟩ = |11⟩ ,UCN |11⟩ = |10⟩

▶ in matrix form UCN =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0
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Gates II
Any unitary operation can be represented by C-NOT gates and
one-qubit gates

Some important 1-qubit gates: Hadamar gate: H |0⟩ = 1√
2
(|0⟩+ |1⟩),

H |1⟩ = 1√
2
(|0⟩ − |1⟩)

H = 1√
2

(
1 1
1 −1

)

Hannu Reittu Quantum walks 16/57



Random walk on Z
classical random walk on Z: start from the point 0, at each discrete
time step (t = 0, 1, 2, · · · ) step flip a fair coin C , if C = 0, move one
step to the right, otherwise move one step to the left.
result a probability distribution of finding the walker at position n ∈ Z
at the moment of time t, p(t, n)
say, if p(0, 0) = 1, then p(1,−1) = p(1, 1) = 1

2

for large t, p(t, n) ∼ 2√
2πt

e−
n2
2t

▶ En(t) = 0, σ(t) =
√
En(t)2 =

√
t

Hannu Reittu Quantum walks 17/57



Quantum walk on Z, basic definitions

state space: ℓ2 with orthonormal basis {|k⟩}k∈Z
▶ a generic state: |ψ⟩ =

∑
i∈Z ci |i⟩,

∑
i |ci |

2 = 1
▶ state |ψ⟩ = |i⟩ means that the walker is at the position i ∈ Z
▶ |ci |2 is the probability of finding the walker in position i

quantum coin state |ϕ⟩ ∈ C2 with basis {|0⟩ , |1⟩}
quantum walk state space is ℓ2 ⊗ C2

shift to the right operator: S0 :=
∑

i∈Z |i + 1⟩ ⟨i |
shift to the left operator: S1 :=

∑
i∈Z |i − 1⟩ ⟨i |

coin flip operator Hadamar H
unitary operator of a quantum walk step:
U := S0 ⊗ (|0⟩ ⟨0|H) + S1 ⊗ (|1⟩ ⟨1|H)

U is unitary because both S0 and S1 are permutations (SiS
†
i = Iℓ2):

▶ UU† = S0S
†
0 ⊗ (|0⟩ ⟨0|HH† |0⟩ ⟨0|) + S1S

†
1 ⊗ (|1⟩ ⟨1|HH† |1⟩ ⟨1|) =

Iℓ2 ⊗ (|0⟩ ⟨0|+ |1⟩ ⟨1|) = Iℓ2 ⊗ I2 = I
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Quantum walk on Z
quantum state of the quantum walk at time t ∈ {0, 1, 2, · · · } with
initial state |ψ(0)⟩ is: |ψ(t)⟩ = Ut |ψ(0)⟩
take, for instance, |ψ(0)⟩ = |n = 0⟩ ⊗

(
|0⟩−i |1⟩√

2

)
we get a linear stretch of distribution
at t = 100, probability of position - solid line. Dashed - line random
walk
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A simple graph

let G (E ,V ) be a simple graph with set of links E and set of n vertices
V

adjacency matrix of G (E ,V ), A is indicator of links
▶ A is n× n symmetric binary matrix with Aij = 1 if {i , j} ∈ E or if {i , j}

is a link, otherwise Aij = 0
▶ A simple graph: no self-loops (Aii = 0), no multiple links (Aij ∈ {0, 1})

an example K3 a triangle

A =

0 1 1
1 0 1
1 1 0
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Quantum walk on a finite graphs

vertex set V = {1, · · · ,N}, position of a walker |v⟩ , v ∈ V .
a quantum walk unitary operator U defines evolution of the state
|ψ(t)⟩ = Ut |ψ(0)⟩ , t = 1, 2, · · ·
U may involve coin-operator
p(v , t) denotes the probability of finding walker in node v at time t

▶ p(v , t) does not converge as t → ∞
▶ depends on initial state |ψ(0)⟩
▶ p(v , t) is quasi-periodic, because U is unitary
▶ average probability distribution: pv (T ) := 1

T

∑T−1
i=0 p(v , t)

▶ sampling: take uniformly at random t ∈ {0,T − 1}, measure |ψ(t)⟩,
probability of finding v = pv (T )

▶ π(v) = limT→∞ pv (T ), exists, though convergence may be slow
(power-laws has been seen)

▶ π(v) = 1
N , may happen when all eigenvalues of U are distinct
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Quantum walk on a d−regular graph with even number of
vertices

assume a simple graph Gd(V ,E ) with |V | = N even number of
vertices and with constant degrees = d of all nodes (a class 1 graph).
such a graph has an edge coloring with d colors (each edge is assigned
a color in such a way that all edges adjacent to a node have different
colors)
take a d-dimensional coin space, Cd

take a N-dimensional position space CN

take a edge coloring with d-colors, for a color a and vertex v ∈ V ,
denote v(a) neighbor of v sharing an edge with color a.
basis states are denoted: |a, v⟩ ∈ Cd ⊗ CN , a ∈ {0, 1, · · · , d − 1} and
v ∈ {1, · · · ,N}
Quantum walk is defined by an operator U = S(C ⊗ IN)

▶ C is unitary coin operator
▶ S |a, v⟩ = |a, v(a)⟩
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K4-example

for each edge color a ∈ {0, 1, 2} S(a) defines a permutation of vertices
for instance for a color = 0: S(0) = (|0⟩ ⟨1|+ |1⟩ ⟨0|+ |3⟩ ⟨2|+ |2⟩ ⟨3|)
S(0)S(0)† = (|0⟩ ⟨0|+ |1⟩ ⟨1|+ |2⟩ ⟨2|+ |3⟩ ⟨3|)⊗ |0⟩ ⟨0|) = I3

that is why U =
∑2

a=0 S(a)⊗ |a⟩ ⟨a| (C ⊗ IN) is unitary
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Continuous time quantum walk on a graph

n × n adjancency matrix A of a simple graph G is a binary and
symmetric matrix and as a result Hermitian
A is a ’Hamiltonian’
e−iAt , t ∈ R is a unitary operator
take a Hilbert space HA = Cn in which an orthonormal basis
correspond to nodes of the graph
continuous time quantum walk on G starting from |ψ⟩ ∈ HA

corresponds to the evolution: |ψ(t)⟩ = e−iAt |ψ⟩
instead of A we could have taken the ’graph Laplacian’ as an
Hamiltonian (- degrees on diagonal and A entries outside the diagonal)

Hannu Reittu Quantum walks 24/57



Hypercube

take n qubits
take 2n nodes
a node with number k is mapped to the computational basis state |k⟩
the binary string corresponding to |k⟩ is taken as coordinates of an
vertex of n - hypercube
denote by σix the X -gate acting on a qubit i (X |0⟩ = |1⟩ ,X |1⟩ = |0⟩)
Claim: matrix of H :=

∑n
i=1 σ

i
x is adajcency matrix of the

corresponding hypercube
indeed, ⟨k |H |k ′⟩ = 1 only if the bit strings k and k ′ differ exactly by
a one binary digit, which is the adjacency rule for the hypercube
say, for n = 3, ⟨001|H |000⟩ = ⟨001|σ1

x |000⟩ = ⟨001|001⟩ = 1
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Quantum walk on a hypercube

as a result, we have a unitary for quantum walk on the hypercube:
UHC (t) = e−itH =

∏n
j=1 e

−iσj
x t

or in other words: UHC (t) =
⊗n

j=1

(
cos(t) −i sin(t)

−i sin(t) cos(t)

)
UHC has one-qubit implementation with standard gates:
UHC (t) =

⊗n
j=1 RX (2t)
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Quantum approximate optimization algorithm (QAOA)

QAOA imitates quantum adiabatic evolution: start from a known ground state of a trivial Hamiltonian, then slowly

change the Hamiltonian, the state remains in the ground state all the time, at the end read the ground state of the

final Hamiltonian which solves an optimization problem.

QAOA Hamiltonians:
solutions of the problem are encoded as bit strings of constant length
n, x = (x1, · · · , xn) with cost function c(x) taking real values
task is to find x∗ = argminx c(x)

take quantum register with n qubit
Define a ’problem Hamiltonian’ C
C is diagonal in computational basis and C |x⟩ = c(x) |x⟩
’trivial Hamiltonian’ H0 = −

∑n
i=1 σ

i
x , ground state is

|ψ⟩ = 1
2n/2

∑
x |x⟩ =

1
2n/2 (|0⟩+ |1⟩)(|0⟩+ |1⟩) · · · (|0⟩+ |1⟩)

H0 |ψ⟩ = −n |ψ⟩, because σx(|0⟩+ |1⟩) = |0⟩+ |1⟩
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QAOA

define U(t, τ) = e−iH0te−iCτ

and for p = 1, 2, · · · ,
|(t1, τ1), · · · , (tp, τp)⟩ = U(tp, τp) · · ·U(t1, τ1) |ψ⟩
parameters are chosen from the condition ((t1, τ1), · · · , (tp, τp)) =
argmin ⟨(t1, τ1), · · · , (tp, τp)|C |(t1, τ1), · · · , (tp, τp)⟩
note: e−iH0t is unitary of the quantum walk on the corresponding
hypercube
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Quantum walk assisted QAOA
S. Marsh and J. B. Wang, Quantum Inf Process 18, 61 (2019)

QAOA needs modifications when not all vertices of the hypercube
correspond to a solution
for instance the problem of minimal vertex cover of a graph

▶ a vertex cover is a subset of vertices such that any edge of the graph
has an endpoint in it

a graph with n nodes: take n qubits, a cover can be described as one
of the basis vectors |x1, · · · , xn⟩ in which xi = 1 iff node i is in the
cover
not all basis states are covers, say, |0⟩ corresponds to the empty vertex
set, which can not cover any graph
a solution instead of quantum walk e−iH0t , take a quantum walk on
the solution subspace avoiding states which are not possible solutions
efficient gate implementations exist if the problem instances can be
decided efficiently (NP optimization problems)
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Example: triangle
Covering a triangle (K3 ) and the corresponding hypercube. Red vertices
indicate valid covers
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Quantum walk on a solution subspace
In case of K3 vertex cover, quantum walk should be only among red
vertices

Take an adjacency matrix A which connects only red nodes (like the
complete graph K4 in this case)
instead of e−iH0t , use e−iAt in the QAOA algorithm
in more general case one needs an indexing unitary which permutes
basis states so that red vertices are in a canonical order
a good idea is to use so caled ’circular graphs’ in the corresponding
solution space (a complete graph is an example)
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Solving minimum vertex cover for K3

four possible covers, take 4-dimensional vector space C4

a circulant graph K4 with adjacency matrix A4=


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


first 3 dimensions correspond to covers with two nodes, the last to the
cover with 3 nodes

take the cost matrix as C =


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 1



the initial state |s⟩ = 1
2


1
1
1
1
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Optimal solution for QAOA

Let |ψ⟩ is the state after QAOA transformation
target is to find |ψ∗⟩ = argmax|ψ⟩ ⟨ψ|C |ψ⟩, which maximizes
expectation of C ,

achieved with e.g. |ψ∗⟩ = 1√
3


1
1
1
0

 and ⟨ψ∗|C |ψ∗⟩ = 2

Claim: |ψ∗⟩ can be found with one round of QAOA
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Solution of cover problem for K3 with one step of quantum
walk assisted QAOA

Using Wolfram Mathematica (or analytics):

|ψ⟩ = e−iA4te iτC |s⟩ = e−3it+iτ

8


c
c
c
c ′


c = 1 − e4it + 3e iτ + e i(4t+τ)

and c ′ = 1 + 3(e4it + e iτ − e i(4t+τ))

|ψ⟩ = |ψ∗⟩ iff c ′ = 0 (because ⟨ψ|ψ⟩ = 1)
solving numerically:
c ′ = −1.56986 ∗ 10−9 + 1.98889 ∗ 10−10i for t = 3.449332507981935
and τ = 5.0522258895115755
probabilty of wrong answer is |c ′|2/64 = 3.91251 ∗ 10−20
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Perfect solution for QAOA exists: a sketch of proof

A solution of c ′ = 0 is a point in which 3 functions intersect:
1) z(x , y) = 0, 2) z(x , y) = cos x + cos y − cos (x + y) + 1

3 and
3)z(x , y) = sin x + sin y − sin (x + y), (z(x , y) = 0, when x = −y)

Figure: z(x , y) = 0 orange-plot
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Circulant graphs

Circulat graph is agraph with circulant adjacency matrix
For instance any complete graph

Circulant matrix has rows and columns which are ordered cyclic
permutations of each other:

C =


c0 cn−1 · · · c2 c1
c1 c0 · · · c3 c2
· · · · · · · · · · · · · · ·
cn−2 cn−3 · · · c0 cn−1
cn−1 cn−2 · · · c1 c0


Has closed form spectra: ω := exp

{2πi
n

}
, eigenvectors are

|vj⟩ = 1√
n

(
1 ωj ω2j · · · ω(n−1)j

)
T ,

with eigenvalues:

λj = c0 + cn−1ω
j + cn−2ω

2j + · · ·+ c1ω
(n−1)j
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Circulant graphs and quantum Fourier transformation

if A is circulant, then e iAt |vj⟩ = e itλj |vj⟩
spectral decomposition: e iAt =

∑
j e

iλj t |vj⟩ ⟨vj |
quantum Fourier transformation of a orthonormal basis:
F (|j⟩) =

∑
k

1√
n
e2πikj/n |k⟩ =

∑
k

1√
n
ωjk |k⟩ = |vj⟩

as a result F =
∑

j |vj⟩ ⟨j |
and F−1 = F † =

∑
j |j⟩ ⟨vj |

F is a transformation of one orthonormal basis to another one
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A sketch of gate implementation of a quantum walk on
circulant graphs

Let A be an adjacency matrix of a circulant graph
we need gates for e iAt |ψ⟩, for an arbitrary quantum register state |ψ⟩
expand |ψ⟩ =

∑
j cj |vi ⟩

then e iAt |ψ⟩ =
∑

j e
iλj tcj |vj⟩

let e iΛt be a diagonal matrix with e iλj t at as the jth diagonal element
F † |ψ⟩ =

∑
j cjF

† |vj⟩ =
∑

j cj |j⟩
e iΛtF † |ψ⟩ =

∑
j cje

iΛt |j⟩ =
∑

j cje
iλj t |j⟩

Fe iΛtF † |ψ⟩ =
∑

j cje
iλj tF |j⟩ =

∑
j e

iλj tcj |vj⟩ = e iAt |ψ⟩
as a result: e iAt = Fe iΛtF †
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Staggered quantum walk

Discrete walk on a graph G

select a set, Ti , of complete subgraphs of G covering all vertices
take several such ’tesselations’ T = (T1, · · · , Tn), until T covers all
edges of G
T is called tesselation cover of G
for all complete graphs Kα(i) constituting Ti , make equal
superposition of vertex states |Dα(i)⟩
make a Hamiltonian Hi = 2

∑
α |Dα(i)⟩ ⟨Dα(i)| − I

unitary U(t1, · · · , tn) = exp{itnHn} · · · exp{it1H1} with real
parameters t1, · · · , tn, defines a staggered quantum walk on G
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Staggered quantum walk assisted QAOA?
For a solution space graph find tesselation cover T
find corresponding Hamiltonians Hi and US(t) = U(t, · · · , t)
use US(t) in quantum walk assisted QAOA
works for minimum vertex cover problem in K3, with one step
tesselation cover used:

Figure: 3 tesselation of K4 shown in red
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Amplitude of non-optimal vertex cover of K3 using QAOA
with staggered QW

By tuning two real parameters, probability of sub-optimal vertex covers can
be adjusted to almost zero ∼ 10−7:

Figure: Probability (vertical) of finding non-optimal vertex cover as a function of
two real parameters of QAOA
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Non-backtracking quantum walk: background
M. Bolla, H. Reittu, and F. Abdelkhalek, "Clustering the Nodes of Sparse
Edge-Weighted Graphs via Non-Backtracking Spectra", to appear

a hot topic in graph based data mining

a so called non-backtracking matrix is involved - describes non-backtracking
walk on a graph

is there a quantum version?

Application: spectral clustering based on non-backtracking matrix of a
graph/matrix, see:

Figure: Clustering of a 7600 node chemical network
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Non-backtracking classical walk on a graph: one step
forward and no step back
A step (blue) and all possible next steps (orange) - no backtracking

Figure: Caption
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Directed graph associated with the non-backtracking walk

Figure: Caption
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The adjacency matrix of the directed graph =
Non-backtracking matrix

Figure: Caption
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A coined non-backtracking quantum walk; condition of
existence

Ashley Montanaro, Quantum walks on directed graphs, Quantum
Information Computation vol. 7 no. 1, pp. 93-102, 2007,
quant-ph/0504116

Consider a directed graph (links are ordered pairs of vertices, ’a link
from a to b= (a,b)’
link a → b is reversible if there is a path from b to a
A graph is reversible if all its links are reversible
Theorem: A discrete-time coined quantum walk can be defined on a
finite directed graph G if and only if G is reversible
A Corollary: Quantum walk on a non-backtracking graph is possible iff
the non-backtracking graph is reversible
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Generic recipe (Montanaro, ibid.)

In reversible directed graph G choose a set C of elementary cycles (no
repeated nodes) such that every link (a, b) is at least in one cycle from
C

a cycle is an ordered sequence of vertices (v1, v2, · · · , vk) , such that
every (vi , vi+1), 1 ≤ i ≤ k − 1 and (vk , v1) is a link
make bijection of nodes to orthonormal states |·⟩
each cycle ci ∈ C defines a permutation operator
S(ci ) =

∑
(a,b)∈ci |b⟩ ⟨a|+

∑
k /∈ci |k⟩ ⟨k|

choose |C | orthonormal coin states and a unitary coin operator F
quantum walk operator is W = (

∑
i |i⟩ ⟨i | ⊗ S(ci ))(F ⊗ I|C |)
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Cycles in NB-graph
need to choose set of cycles from a NB-graph so that every link is at
least in one cycle
e.g. could take 8 cycles each a directed triangle
needs 12 orthonormal states to represent vertices

4 qubits and use first 12 basis states (|0000⟩ , · · · , |1011⟩ as vertices)
to switch among 8 cycles, take a coin space with 8 basis states

▶ 3 qubit space, |000⟩ , · · · , |111⟩ representing cycles
in total needs 7 qubits

Figure: 8 cycles of the NB-graph
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Graphical view of one of Si

Figure: A permutation corresponding to a cycle, self-loops correspond to I2
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Cycle as a sequence of ’swaps’
any n-cycle can is equivalent to n − 1 subsequent transpositions
(2-cycles)

a cycle (a, b, c, · · · , d , g) is a permutation:
(
a b c · · · g
g a b · · · d

)
can be decomposed into transpositions (a, b), (b, c), · · · , (d , g)
each transposition (i,j) is like (|i⟩ ⟨j |+ |j⟩ ⟨i |+

∑
k ̸=i ,j |k⟩ ⟨k |),

a SWAP gate, implemented as 3 CNOT gates:

Figure: Caption
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Quantum circuit for a cycle

A quantum circuit for a cycle (ijk) controlled by a coin state |010⟩ for a
NB-graph G using one ancilla qubit A.
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Non-backtracking classical walk on K3

classical random walk on K3 (triangle)
first coin toss decides: go clockwise or counter clockwise

Figure: Clockwise or counter clockwise
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Quantum non-backtracking walk on K3

The non-backtracking graph is a set of two triangles (see Fig.)
has two unique 3-cycles
needs coin with two states |0⟩ and |1⟩ to switch between cycles
6 orthonormal vectors for position |1⟩ , |2⟩ , · · · , |6⟩

Figure: Non-backtracking graph for K3
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Unitary for NB on K3

shift operator: S = |0⟩ ⟨0| S1 + |1⟩ ⟨1| S2
▶ S1 = |2⟩ ⟨1|+ |3⟩ ⟨2|+ |1⟩ ⟨3|
▶ S2 = |5⟩ ⟨4|+ |6⟩ ⟨5|+ |4⟩ ⟨6|

unitary operator using Hadamar-coin: U = S ⊗ H

S1 is diagonal in Fourier-basis: (|1⟩ , |2⟩ , |3⟩) → (|α1⟩ , |α2⟩ , |α3⟩)
▶ |α1⟩ = 1√

3
(|1⟩+ |2⟩+ |3⟩)

▶ |α2⟩ = 1√
3
(|1⟩+ ω |2⟩+ ω2 |3⟩), ω := exp(2πi/3)

▶ |α3⟩ = 1√
3
(|1⟩+ ω2 |2⟩+ ω |3⟩), (ω3 = 1)

similarly S2 is diagonal in Fourier basis:
(|4⟩ , |5⟩ , |6⟩) → (|β1⟩ , |β2⟩ , |β3⟩)
S1 |αi ⟩ = λi |αi ⟩, λ1 = 1, λ2 = ω−1, λ3 = ω−2

S2 |βi ⟩ = λi |βi ⟩
U is not diagonal in the Fourier basis {|αi ⟩ , |βj⟩} if using
(|0⟩ , |1⟩)-basis for the coin
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Diagonalizing K3 NB-walk unitary operator

for fixed i , S ⊗H |0⟩ |αi ⟩ = 1√
2
S(|0⟩+ |1⟩) |αi ⟩ = 1√

2
(λi |0⟩+ |1⟩) |αi ⟩

and S ⊗ H |1⟩ |αi ⟩ = 1√
2
S(|0⟩ − |1⟩) |αi ⟩ = 1√

2
(λi |0⟩ − |1⟩) |αi ⟩

for generic coin state |α⟩ ,U |α⟩ |αi ⟩ = u(i) |α⟩ |αi ⟩

▶ with uα(i) =
1√
2

(
λi λj
1 −1

)
▶ find orthonormal eigenvectors of uα(i),

∣∣a1
i

〉
and

∣∣a2
i

〉
, with eigenvalues

a1
i , a

2
i

similarly for states |βi ⟩ we get matrix uβ(i) =
1√
2

(
1 1
λi −λi

)
, and the

spectra is denoted as vectors
∣∣b1

i

〉
and

∣∣b2
i

〉
with eigenvalues b1

i , b
2
i .

U is diagonal in basis {(
∣∣aki 〉 |αi ⟩ ,

∣∣∣bkj 〉 |βj⟩)}, k = 1, 2

U =
∑

i{(a1
i

∣∣a1
i

〉 〈
a1
i

∣∣+ a2
i

∣∣a2
i

〉 〈
a2
i

∣∣) |αi ⟩ ⟨αi |+ (b1
i

∣∣b1
i

〉 〈
b1
i

∣∣+
b2
i

∣∣b2
i

〉 〈
b2
i

∣∣) |βi ⟩ ⟨βi |}
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Eigenvalues of NB-walk on K3

U has 12 eigenvectors
All eigenvalues are distinct, except for eigenvalues ±1, which are
doubly degenerate both

they correspond to case: uα(1) = uβ(1) = 1√
2

(
1 1
1 −1

)
eigenvalues (dots) of U on complex plane:
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K4 example: needed resources

a complete quantum circuit consists of 8 blocks for cycles
needs 8 qubits
each block has two generalized Toffoli-gates (for coin) with 3 controls
each block has 2 controlled SWAP-gates (Fredkin-gates)
CNOT count

▶ for generalized Toffoli gates -needs 1 ancilla qubit and 3 × 6 = 18
CNOT gates

▶ Each Fredkin-gate needs 18 CNOT-gates
▶ in total need 9 qubits and 8 × 5 × 18 = 720 CNOT-gates
▶ generally CNOT-count ∼ 12|C | log2 |C |+ 18

∑
i (|ci | − 1)
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