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Actual Hardware

= Helmi is a 5-qubit superconducting
guantum computer arranged in a
star-shaped topology (VTT, 2024).

= Jointly developed by IQM and VTT, it
consists of 5 flux-tuneable transmons
connected by tuneable couplers.

= Helmi can be accessed through CSC
via LUMI, Europe’s fastest
supercomputer.
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Gates and Measurements

= We can natively do Phased-RX and Controlled-
Z gates.

= \WWe do measurements in the Z-basis.

= We can do Virtual RZ gates using the control
stack (McKay et al., 2017).

= Helmi is a Noisy Intermediate Scale

Quantum computer (NISQ), which means

that circuits cannot be run without errors.

* However, this does not mean that NISQ
devices are not useful.

» There are some techniques we can use to
get better results on NISQ devices — and
we’ll cover the most useful ones for Helmi.
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GHZ States

" The n qubit Greenberger—

Horne—Zeilinger state (GHZ)
10)"+]1)"

can be described as

" The largest GHZ state that can
be created on a quantum

computer is a good indicator of ozs {3 %
its general utility. meas 5 vo 41 42 33 de
- Fideli % i N )\
Fidelity > 50% is the c.utoff H_/ v v
" |Let's prepare a 5 qubit GHZ State Quantum gates Measurement

state on Helmi! Preparation



GHZ States

= | et’s convert CNOTs to CZs.
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GHZ States

= We can decompose the H gate
down to our native gate set
(Phased-RX and Controlled-Z
gates).

= Since we measure in the Z
basis, we can optimise away
some of the virtual RZ gates.

= This is the actual circuit that
we end up running on Helmi.
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Reducing Errors

Error Suppression @I‘I’OI‘ Mitigation\ Error Correction

= Closestto = Most relevant for = Combine many
hardware — may _ noisy, physical
involve changing NISQ devices. qubits for fault-
the pulses = |nvolves changing tolerant, logical

= Examples include the circuit and qubits.
DRAG pulses, running multiple = Examples
which reduce circuits to mitigate include Stabiliser
leakage errors. errors. codes and

Topological

\ / codes.




State Preparation

= Assume that our state is
correctly initialised to |0).

= We can use heralding
(postprocessing) or active
reset to increase the odds of
the qubit being correctly
initialised to the |0) state.

= Heralding only works for small
NISQ devices, whereas active
reset requires specific
hardware.
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Quantum Gates

= Every gate that we run could
have an error attached to it.

= We can mitigate this error
using Pauli twirling (randomly

replacing a gate with a
different representation of that § |
gate), ZNE (repeating a gate : : %
multiple t_|mes to see how the . L ]
expectation value scales), etc. Y Y Y

State Quantum gates Measurement
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What is ZNE?

= Zero Noise Extrapolation (ZNE) is a noise-mitigation technique
where we vary the noise in a circuit to extrapolate it away.

= |Instead of physically worsening the qubits, we can do this digitally
by repeating gates.

il [T 1]
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How to perform ZNE?

We can define an observable Fidelity per qubit
(such as P(0)), and fit a function |, o | cubic 4
to the data: 1 ",
) Linear fit — 0(x) 0] % y T 0763 +0216¢ T
‘e, =10.979
) Polynomial fit E‘ ‘o ..
o Quadratic fit — 0(x?) £ e, .
o Richardson fit— 0(x™™1) oo ] Tt Lt |
- Exponential fit - 0(e*) I e o .
e®,®
OI I :I I 2I3 I Ill2l I IlI6I I I2I0I I 2I4 I I2I8I I I3I2I I 3I6 I I4IDI I 4I4 I I4I8I I 5I2 I I5I6I I IEDID

—l Poly-exponential fit - O(ep(’ly{x)). _

Number of X gates




Measurement

Confusion Matrix

R
= For NISQ devices, readout T I
mitigation is one of the easiest il I
ways to improve the results. o1 {3+ T_m §
= The simplest readout os2 )
mitigation technique requires ~ ¢*° & i
us to prepare a confusion oo+ {3 ] g
matrix and invert it to get a oss {B | %
better estimate of the actual mees = K ] \"" “}
measurement values (Mitiq, —~ Y Y
2024)_ State Quantum gates Measurement

Preparation
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Multiple Quantum Coherences

= We can calculate the GHZ
fidelity using Multiple Quantum
Coherences (MQC) (Wei et al.,
2020).

= We apply rotation gates with
phase 6 to the qubits, and de-
entangle to apply a phase shift
to the first qubit.
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Multiple Quantum Coherences

= For a N qubit GHZ circuit, we
need to run this circuit at least
2N + 2 times, with ¢ =

LI
v j €{0,..,2N +1}.

= |deally, we get only |00000)

and |00100), and the QBS

probability of the former should ... : L Ll

1+ cos(N¢) . m j
pe LHeoe) o y }
. ' S antum gates Measurement
= We can use this to estimate e Quantum g U

: _ Preparation
the MQC fidelity. _
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MQC — With vs. Without X




MQC Stability — With vs. Without X

An

0.637 <F <£0.813 0.716 <F <0.859
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Other Optimisations

= We could reorder the CX gates such that the qubits with shorter
decoherence times take less time to perform the phase kickback.

= We could replace any idling time with pairs of X gates.

= We could perform readout mitigation and zero noise extrapolation,
or other such error mitigation techniques to improve the results.

= We could increase the number of experiments we perform to
achieve a higher fidelity.

= We could increase the number of shots, as well as average over
multiple jobs to make our results less random.




Caveats

= Every mitigation technique we apply requires extra jobs, and as
such it comes with a monetary and time cost.
* However, we can often get greatly improved results for very little —

readout mitigation is a great example.

= The more hardware-aware we make our algorithm, the less
general it becomes. This is usually very difficult to automate.

= Optimising NISQ algorithms is still being actively studies,
especially in the hopes that many of these techniques can scale to
larger NISQ devices.
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