
02/12/2024 VTT – beyond the obvious

Introduction to Helmi
Zuhair Khan

Quantum Algorithm and Software



Physical 
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of Helmi
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 Helmi is a 5-qubit superconducting 

quantum computer arranged in a 

star-shaped topology (VTT, 2024).

 Jointly developed by IQM and VTT, it 

consists of 5 flux-tuneable transmons 

connected by tuneable couplers.

 Helmi can be accessed through CSC 

via LUMI, Europe’s fastest 

supercomputer.

Actual Hardware
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Gates and Measurements
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 We can natively do Phased-RX and Controlled-
Z gates.

 We do measurements in the Z-basis.

 We can do Virtual RZ gates using the control 
stack (McKay et al., 2017).

 Helmi is a Noisy Intermediate Scale 
Quantum computer (NISQ), which means 
that circuits cannot be run without errors.
• However, this does not mean that NISQ 

devices are not useful.
• There are some techniques we can use to 

get better results on NISQ devices – and 
we’ll cover the most useful ones for Helmi.



Errors in NISQ 
Devices
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𝑆𝑖𝑛𝑔𝑙𝑒 𝑄𝑢𝑏𝑖𝑡 𝐺𝑎𝑡𝑒 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦

𝑅𝑒𝑎𝑑𝑜𝑢𝑡 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦
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GHZ States
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 The n qubit Greenberger–

Horne–Zeilinger state (GHZ) 

can be described as 
ȁ ۧ0

𝑛
+ȁ ۧ1

𝑛

2
.

 The largest GHZ state that can 

be created on a quantum 

computer is a good indicator of 

its general utility.
• Fidelity > 50% is the cutoff

 Let’s prepare a 5 qubit GHZ 

state on Helmi!
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GHZ States
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 Let’s convert CNOTs to CZs.
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GHZ States
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 We can decompose the H gate 

down to our native gate set 

(Phased-RX and Controlled-Z 

gates).

 Since we measure in the Z 

basis, we can optimise away 

some of the virtual RZ gates.

 This is the actual circuit that 

we end up running on Helmi.
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Optimisations
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Reducing Errors
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Error Suppression

 Closest to 

hardware – may 

involve changing 

the pulses

 Examples include 

DRAG pulses, 

which reduce 

leakage errors.

Error Mitigation
 Most relevant for 

NISQ devices.

 Involves changing 

the circuit and 

running multiple 

circuits to mitigate 

errors.

Error Correction

 Combine many 

noisy, physical 

qubits for fault-

tolerant, logical 

qubits.

 Examples 

include Stabiliser 

codes and 

Topological 

codes.
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State Preparation
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 Assume that our state is 

correctly initialised to ȁ ۧ0 .

 We can use heralding 

(postprocessing) or active 

reset to increase the odds of 

the qubit being correctly 

initialised to the ȁ ۧ0  state.

 Heralding only works for small 

NISQ devices, whereas active 

reset requires specific 

hardware.
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Quantum Gates
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 Every gate that we run could 

have an error attached to it.

 We can mitigate this error 

using Pauli twirling (randomly 

replacing a gate with a 

different representation of that 

gate), ZNE (repeating a gate 

multiple times to see how the 

expectation value scales), etc.
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 Zero Noise Extrapolation (ZNE) is a noise-mitigation technique 

where we vary the noise in a circuit to extrapolate it away.

 Instead of physically worsening the qubits, we can do this digitally 

by repeating gates.

What is ZNE?



How to perform ZNE?
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𝑦 = 0.763 + 0.216𝑒−0.043𝑥

= 0.979

We can define an observable 

(such as 𝑃 0 ), and fit a function 

to the data:

❑ Linear fit – 𝑂 𝑥

❑ Polynomial fit

o Quadratic fit – 𝑂 𝑥2

o Richardson fit – 𝑂 𝑥𝑛−1

❑ Exponential fit - 𝑂 𝑒𝑥

❑ Poly-exponential fit - 𝑂 𝑒poly(𝑥)
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Measurement
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 For NISQ devices, readout 

mitigation is one of the easiest 

ways to improve the results.

 The simplest readout 

mitigation technique requires 

us to prepare a confusion 

matrix and invert it to get a 

better estimate of the actual 

measurement values (Mitiq, 

2024).

𝑅𝑦 −𝜋
2

𝑅𝑦 −𝜋
2

𝑅𝑦 −𝜋
2

𝑅𝑦 −𝜋
2

𝑅𝑦
𝜋
2

𝑅𝑦
𝜋
2

𝑅𝑦
𝜋
2

𝑅𝑦
𝜋
2

0 1 2 43



Smarter 
Algorithms
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𝑅𝑒𝑎𝑑𝑜𝑢𝑡 𝐸𝑟𝑟𝑜𝑟 0 → 1

𝑅𝑒𝑎𝑑𝑜𝑢𝑡 𝐸𝑟𝑟𝑜𝑟 1 → 0
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Multiple Quantum Coherences
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 We can calculate the GHZ 

fidelity using Multiple Quantum 

Coherences (MQC) (Wei et al., 

2020).

 We apply rotation gates with 

phase 𝜃 to the qubits, and de-

entangle to apply a phase shift 

to the first qubit.
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Multiple Quantum Coherences
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 For a 𝑁 qubit GHZ circuit, we 

need to run this circuit at least 

2𝑁 + 2 times, with 𝜑 =
𝜋𝑗

𝑁+1
 ∀ 𝑗 ∈ 0, … , 2𝑁 + 1 .

 Ideally, we get only ȁ ۧ00000  

and ȁ ۧ00100 , and the 

probability of the former should 

be 
1+ cos 𝑁𝜑

2
.

 We can use this to estimate 

the MQC fidelity.
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MQC – With vs. Without X
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MQC Stability – With vs. Without X

0.637 ≤ 𝐹 ≤ 0.813 0.716 ≤ 𝐹 ≤ 0.859
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Other Optimisations

 We could reorder the CX gates such that the qubits with shorter 

decoherence times take less time to perform the phase kickback.

 We could replace any idling time with pairs of X gates.

 We could perform readout mitigation and zero noise extrapolation, 

or other such error mitigation techniques to improve the results.

 We could increase the number of experiments we perform to 

achieve a higher fidelity.

 We could increase the number of shots, as well as average over 

multiple jobs to make our results less random.
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Caveats

 Every mitigation technique we apply requires extra jobs, and as 

such it comes with a monetary and time cost.
• However, we can often get greatly improved results for very little – 

readout mitigation is a great example.

 The more hardware-aware we make our algorithm, the less 

general it becomes. This is usually very difficult to automate.

 Optimising NISQ algorithms is still being actively studies, 

especially in the hopes that many of these techniques can scale to 

larger NISQ devices.
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