Quantum Error Correction - Theory and Hands-on

Jérôme Lenssen, Delphine Martres, Hemanadhan Myneni, Franz G. Fuchs

9:00 - 12:00, 3. December 2024

Table of Contents

Classical codes (parity check codes) Need for QEC: Noise sources First Quantum Code: The Repetition Code Stabilizer Formalism Fault-Tolerant Quantum Computation The Surface Code Correcting Errors: The Decoder Minimum-Weight Perfect Matching Neural Network Decoders

Realization of Quantum Memory

Outline

Classical codes (parity check codes)

Realization of Quantum Memory

Classical noisy channel

Send *k*-bit message across a noisy channel.

Channel flips one bit independently with low probability p

How do you protect from the noise?

Repetition code

• Repeat information, so e.g., send x = 000 instead of x = 0

$$x \xrightarrow{\text{noise}} \tilde{x}$$

one receives:

- 000 with probability $(1-p)^3$,
- ▶ 100, 010, 001 each with probability $(1 p)^2 p$,
- ▶ 011, 101, 110 each with probability $(1 p)p^2$, and
- 111 with probability p³.
- Let's say we receive $\tilde{x} = 010$
- Assuming at most one error occurred, we can take a majority vote to decode x = 000

Error correction process

• $\mathcal{E}(x) = y$ encodes a k bit message x, into an n bits

- A codeword is an element of the image of *E*: Set of all codewords *C* = Im(*E*)
- E.g., 3-repetition code 0, k = 1, n = 3, we have C = {000, 111}
- If one or two bits are flipped, the error is detectable
- If all bits are flipped, the error is undetectable = logical error

Simple Parity-Check Code

Encoding: Given a 3-bit message (a, b, c), the parity-check code encodes it as:

$$E(a, b, c) = (a, b, c, z)$$
 where $z = (a + b + c) \mod 2$

Properties:

- z indicates whether the sum of a, b, c is even (z = 0) or odd (z = 1).
- Any single-bit error can be detected:
 - If a, b, or c is flipped, $z \neq (a + b + c) \mod 2$.

If z is flipped, it no longer corresponds to the parity of a, b, c.

Limitation: Errors cannot be corrected.

Hamming Codes - The Idea

- Hamming introduced a method to correct errors using parity-check bits.
- Example: A 4-bit message x = (a, b, c, d) with 3 parity-check bits:

$$z_1 = a + b + d$$
, $z_2 = a + c + d$, $z_3 = b + c + d \pmod{2}$

Encoded message:

$$y = E(a, b, c, d) = (a, b, c, d, z_1, z_2, z_3)$$

Parity-check Visualization

Error Detection:

- If a single bit is flipped, certain parity-checks will fail.
- Example:
 - If a is flipped, z₁ and z₂ will fail, while z₃ remains valid.

Error Correction:

- The pattern of failed parity-checks indicates the position of the flipped bit.
- Example: Flip in d causes all z₁, z₂, z₃ to fail.

イロト イポト イヨト イヨト

STATE UNIVERSITY OF ICELAND

э

Introduction to Linear Codes

- Linear codes generalize the concept of transmitting a message with parity-check bits.
- A linear code uses a matrix G—called the generator matrix—to encode the message:

$$y = Gx$$
.

- The message x has length k, and is supplemented with m parity-check bits such that the encoded message y has length n = k + m.
- ▶ The generator matrix **G** can be written as:

$$\boldsymbol{G} = \left(\begin{matrix} \boldsymbol{I}_k \\ \boldsymbol{A} \end{matrix}
ight)$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

• I_k : $k \times k$ identity matrix (reproduces the message bits),

• **A**: $m \times k$ matrix (defines parity-check operations).

Example: Generator Matrix of the Hamming Code For the [7,4]-Hamming code, the generator matrix is:

$$\boldsymbol{G} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix}$$

Encoding a message $\mathbf{x} = (a, b, c, d)^T$:

$$G\mathbf{x} = \begin{pmatrix} a \\ b \\ c \\ d \\ a+b+d \\ a+c+d \\ b+c+d \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \\ d \\ z_1 \\ z_2 \\ z_3 \end{pmatrix} \text{ interview of each of the set of the set$$

Properties of Generator Matrices

Code is defined as image of G:

- 1. The codewords are the set of all linear combinations of the columns of *G*.
- 2. To find all the codewords, just calculate all the y of the form $y = a_1g_1 + \cdots + a_kg_k$, where g_i is the i^{th} column of G and $a_1, \ldots, a_k \in \{0, 1\}$.
- 3. Elementary row and column operations on *G* do not change the code.
- 4. Using Gaussian elimination, **G** can always be transformed into the standard form:

$$G = \left(\frac{I_k}{A} \right).$$

Parity-Check Matrix

An equivalent representation of a linear code is the **parity-check matrix** *H*:

- ▶ **H** is an *m* × *n* matrix,
- **y** is a codeword if and only if Hy = 0.
- set of all codewords C = Ker(H)

For the [7,4]-Hamming code:

$$oldsymbol{H} = \left(egin{array}{cccc|c} 1 & 1 & 0 & 1 & | & 1 & 0 & 0 \ 1 & 0 & 1 & 1 & | & 0 & 1 & 0 \ 0 & 1 & 1 & 1 & | & 0 & 0 & 1 \end{array}
ight)$$

A received word ỹ can be checked for errors by evaluating H̃ỹ.
Errors can often be located and corrected using this method.

 Generator Matrix and Parity-Check Matrix

For a generator matrix of the form:

$$\boldsymbol{G} = \left(\begin{matrix} \boldsymbol{I}_k \\ \boldsymbol{A} \end{matrix}
ight)$$

the corresponding parity-check matrix can be written as:

$$\boldsymbol{H} = \begin{pmatrix} \boldsymbol{A} & \boldsymbol{I}_m \end{pmatrix}$$
.

Why Use the Parity-Check Matrix?

- A received vector $\tilde{y} = y + e$ combines the original codeword y and an error vector e.
- Applying the parity-check matrix H gives:

$$H\widetilde{y} = H(y + e) = He.$$

- The result s = He is known as the syndrome.
- The syndrome identifies errors by revealing violated parity-check equations: $s_i = 1$ indicates a violation.

Decoding:

- Decoding finds the most probable error *e* that explains the syndrome *s*.
- A violated parity-check equation points to specific bits involved in the error.

Syndrome Table for Error Correction

The following table shows the bit we choose to correct for each of the 8 possible syndromes

Syndrome	000	100	010	001	110	101	011	111
Correction	Ø	<i>z</i> 1	<i>z</i> ₂	<i>z</i> 3	а	Ь	с	d

In quantum error correction, the syndrome can/has to be measured without disturbing the quantum state

イロト イポト イヨト イヨト

э

Decoding linear codes

Decoding consists of finding the original message given its noisy encoded version.

- ▶ There are 2^{*n*} possible syndromes.
- ▶ We define an **efficient decoder** as an algorithm that accomplishes this task in polynomial time in *n*.

Given the parity-check matrix \boldsymbol{H} . Let's assume errors follow a certain distribution $P(\boldsymbol{e})$.

- Given the received syndrome s, we want to find the most likely error e.
- ► The goal of an ideal decoder:

Find the vector e that maximizes the probability $P(e \mid s)$.

Applying Bayes' Rule

Using Bayes' rule, we can write:

$$P(\boldsymbol{e} \mid \boldsymbol{s}) = rac{P(\boldsymbol{s} \mid \boldsymbol{e})P(\boldsymbol{e})}{P(\boldsymbol{s})}.$$

- P(s) does not depend explicitly on e, and can be ignore for solving the maximization problem over e
- Any valid error e must satisfy He = s, so:

$$P(\boldsymbol{s} \mid \boldsymbol{e}) = \begin{cases} 1, & \text{if } \boldsymbol{H} \boldsymbol{e} = \boldsymbol{s} \\ 0, & \text{otherwise.} \end{cases}$$

Our optimization problem then becomes:

$$\max_{\boldsymbol{e}\in\{0,1\}^n} P(\boldsymbol{e}) \quad \text{subject to} \quad \boldsymbol{H}\boldsymbol{e} = \boldsymbol{s}.$$

Special Case: Independent Errors

In the case where errors are iid, we have:

$$P(\boldsymbol{e}) = \prod_{i=1}^{n} P(e_i).$$

• Let
$$P(e_i = 1) = p$$
 and $P(e_i = 0) = 1 - p$. Then:

$$P(\boldsymbol{e}) = p^{|\boldsymbol{e}|}(1-p)^{n-|\boldsymbol{e}|},$$

where $|\boldsymbol{e}|$ is the Hamming weight of \boldsymbol{e} .

For p < 0.5, the probability P(e) increases when the weight of e decreases. Therefore, our optimization problem reduces to finding the error of minimum weight that satisfies He = s:

$$\min_{oldsymbol{e}\in\{0,1\}^n}|oldsymbol{e}|$$
 subject to $oldsymbol{He}=oldsymbol{s}$

Maximum A Posteriori (MAP) Decoding and Its Challenges

MAP Decoder: Any decoder that explicitly solves

 $\max_{\boldsymbol{e}\in\{0,1\}^n} P(\boldsymbol{e} \mid \boldsymbol{s}),$

is called MAP decoder, and is considered an *ideal decoder*.

Challenges:

- A naive approach requires searching all 2ⁿ possible error vectors, leading to exponential time complexity.
- The MAP decoding problem is NP-complete, meaning no general polynomial-time algorithm is likely to exist.

Efficient Decoding for Special Codes:

 Certain structured codes (e.g., Hamming codes, repetition codes) allow polynomial-time decoding.

> New Clubest () UNIVERSITY OF CLAND VII < □ > < @ > < ≧ > < ≧ > < ≧ > < ≧ > < ○ < ♡

Heuristic Approaches to MAP Decoding

Heuristics: Approximate solutions for MAP decoding that are efficient and perform well in practice.

Belief Propagation Algorithm:

- An iterative, linear-time algorithm.
- Exploits the factorization of P(e | s) over a graph (e.g., Tanner graph).
- Widely used in classical error-correction and also in quantum error correction.

Outline

Classical codes (parity check codes) Need for QEC: Noise sources

Quantum Logic

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

 $|\alpha|^2 + |\beta|^2 = 1$

イロト イポト イヨト イヨト

 Universal logical operations, gates, unitaries: Hadamard, S-gate, T-gate, CNOT

Measurements:

- Set of operators $\{M_i\}$ such that $\sum_i M_i^{\dagger} M_i = I$
- Probability of outcome *i* is $p(i) = \langle \psi | M_i^{\dagger} M_i | \psi \rangle$
- State after obtaining outcome *i* is $\frac{M_i|\psi\rangle}{\sqrt{\pi(i)}}$

Hardware: Superconducting Circuits

 $\hat{H} = \omega_r \hat{a}^\dagger \hat{a}$

 $\hat{H} \sim \omega_a \hat{b}^\dagger \hat{b} - K \hat{b}^{\dagger 2} \hat{b}^2$

PRA 69, 062320 (2004)

Sources of Quantum Noise / Errors

Decoherence:

- $\blacktriangleright\,$ T1 relaxation: Energy decay from the $|1\rangle \rightarrow |0\rangle$
- ► T2 dephasing: Loss of phase coherence in superposition states.
- Gate Errors: Imperfect implementation of quantum gate operations, leading to inaccuracies.
- Measurement Errors: Errors during the readout of qubit states, resulting in incorrect outputs.
- Cross-Talk: Interference between neighboring qubits during operations, reducing fidelity.
- Leakage Errors: Qubits transitioning to higher energy states outside the computational basis.

- Stray Interactions: Unintended couplings during gate operations.
- Idle Errors: Errors occurring while qubits remain idle due to environmental interactions.
- External Noise: Electromagnetic interference or cosmic rays.

Error budget distribution

distance-5 surface code on 72-qubit processor (arXiv:2408.13687v1)

Noisy Quantum Channels

- A noisy quantum channel introduces errors during transmission or processing.
- Examples of noise effects:
 - Degradation of quantum states.
 - Reduction in entanglement and coherence.
 - Significant impact on fidelity and performance.
- Kraus operators provide a powerful framework to describe and analyze noise in quantum systems.

Kraus Operators

- Describe the evolution of quantum states in open systems.
- Evolution of a density matrix (ρ) under Kraus operators:

$$ho' = \sum_i \kappa_i
ho \kappa_i^\dagger$$

Completeness relation ensures trace preservation:

$$\sum_{i} K_{i}^{\dagger} K_{i} = I$$

 These operators model common errors such as bit-flip, phase-flip, and depolarization.

Bit-Flip Channel

- Models noise where qubits flip between |0⟩ and |1⟩ with probability p.
- Quantum state evolution:

$$\mathcal{T}(\rho) = (1 - p)\rho + pX\rho X^{\dagger}$$

Kraus operators:

$$K_0 = \sqrt{1-p} I, \quad K_1 = \sqrt{p} X$$

Depolarizing Channel

Randomizes the qubit state with probability p.

Channel action:

$$\mathcal{E}(\rho) = (1-p)\rho + \frac{p}{3}(X\rho X^{\dagger} + Y\rho Y^{\dagger} + Z\rho Z^{\dagger})$$

Kraus operators:

$$K_0 = \sqrt{1-p} I, \quad K_1 = \sqrt{\frac{p}{3}} X, \quad K_2 = \sqrt{\frac{p}{3}} Y, \quad K_3 = \sqrt{\frac{p}{3}} Z$$

Amplitude Damping Channel

Models energy dissipation, such as photon loss.

Channel action:

$$\mathcal{E}(\rho) = E_0 \rho E_0^{\dagger} + E_1 \rho E_1^{\dagger}$$

Kraus operators:

$$E_0 = egin{bmatrix} 1 & 0 \ 0 & \sqrt{1-\gamma} \end{bmatrix}, \quad E_1 = egin{bmatrix} 0 & \sqrt{\gamma} \ 0 & 0 \end{bmatrix}$$

Quantum Error Correction

- Quantum error correction (QEC) is essential for protecting quantum information against noise and decoherence.
- ► The primary goals of QEC are:
 - Detect errors without disturbing the quantum information.
 - Correct errors to restore the original quantum state.
 - Ensure fault-tolerant quantum computation.

Errors in quantum computers

- Classically, bits can flip (or be erased).
 i.e., 0 → 1 and 1 → 0 with some probability p.
- Qubits have a larger state space, so more things can go wrong.
 - Any operation that can be considered a gate can also introduce an error.
 - Examples include Pauli errors (X, Z, Y).

$\mathbf{V}_{1} = \mathbf{V}_{1} + \mathbf{V}_{1} $	$X 1\rangle = 0\rangle$	$ Z 1\rangle = - 1\rangle$	$ Y 1 \rangle = -I 0 \rangle = I X Z 1 \rangle$
	Bit flin	Phase flip	Bit & phase flip
$X 0\rangle = 1\rangle$ $ $ $Z 0\rangle = 0\rangle$ $ $ $Y 0\rangle = 1\rangle = XZ 0\rangle$	$egin{array}{c} X 0 angle = 1 angle \ X 1 angle = 0 angle \end{array}$	$\begin{array}{c c} Z 0\rangle = 0\rangle \\ Z 1\rangle = - 1\rangle \end{array}$	$\begin{array}{c} Y 0\rangle = i 1\rangle = iXZ 0\rangle \\ Y 1\rangle = -i 0\rangle = iXZ 1\rangle \end{array}$

The Most Important Fact About QEC

- Errors are inherently continuous (analog). How can we hope to correct these?
- Suppose some error *E* introduces a relative phase:

$$E|\psi\rangle = \alpha|0\rangle + e^{i\delta}\beta|1\rangle$$

- The angle δ could (in principle) be infinitesimal.
- Any error can be written as discrete Pauli errors with continuous coefficients:
 - This is because the Pauli matrices (+ the Identity) span $\mathbb{C}^{2\times 2}$.
 - For any *E* and ψ :

$$E|\psi\rangle = (e_0I + e_1X + e_2Y + e_3Z)|\psi\rangle$$

But the coefficients e_i could still be infinitesimal, in principle.

The Most Important Fact About QEC

- Measurement turns continuous errors into discrete errors.
- Suppose we measure the error state using operators $\{M_i\}$:

$$E|\psi\rangle = (e_0I + e_1X + e_2Y + e_3Z)|\psi\rangle$$

- Then, with probability p(i), the state collapses to: $\frac{M_i E|\psi\rangle}{\sqrt{p(i)}}$
- This process collapses the superposition and reduces the continuous coefficients to a global phase, which is irrelevant.
 - For example, we could choose M_i such that: $E|\psi\rangle \rightarrow \eta_i \sigma_i |\psi\rangle$
 - Here, σ_i ∈ {I, X, Y, Z} is a discrete error that can be corrected.
 - The coefficient η_i ∈ C is continuous but represents a global phase and hence does not matter.

Outline

Classical codes (parity check codes)

First Quantum Code: The Repetition Code

Stabilizer Formalism

Fault-Tolerant Quantum Computation

The Surface Code

Correcting Errors: The Decoder Minimum-Weight Perfect Matching Neural Network Decoders

Realization of Quantum Memory

Classical error correction: The repetition code

- A key concept in error correction is adding **redundancy**.
- ▶ For example, given a bit, we can make three copies of it:
 - $\blacktriangleright \ 0 \rightarrow 000, \quad 1 \rightarrow 111$
 - This is known as the (classical) **repetition code**.
 - The idea is very simple: If an error occurs on one bit only, we can correct it by looking at the other two bits and taking a majority vote.
- Given the classical repetition code, we might try to do the same with qubits, i.e. map

$$|\psi\rangle \rightarrow |\psi\rangle |\psi\rangle |\psi\rangle$$

This is not possible due to the "no cloning theorem"

QEC: Can We Add Any Redundancy?

- From the no-cloning theorem, we know it is not possible to make exact copies of a quantum state as in the classical repetition code.
- Can we copy information?
- Claim: We can "copy basis information" in the following sense:

 $\alpha |\mathbf{0}\rangle + \beta |\mathbf{1}\rangle \to \alpha |\mathbf{000}\rangle + \beta |\mathbf{111}\rangle$

Note that this encoding circuit entangles the "input" qubit with two other qubits.

$$\begin{array}{c} \alpha \left| 0 \right\rangle + \beta \left| 1 \right\rangle \\ \left| 0 \right\rangle \\ \left| 0 \right\rangle \\ \left| 0 \right\rangle \end{array} - \alpha \left| 000 \right\rangle + \beta \left| 111 \right\rangle \end{array}$$

Errors in quantum computers are often caused by qubits entangling with their **environment**.

Repetition code for bit flip errors

- ► The encoding $\alpha |0\rangle + \beta |1\rangle \rightarrow \alpha |000\rangle + \beta |111\rangle$ gives us redundancy. Now what?
- We need to check which errors (if any) occured in the encoded state.
- We do this by (projective) measurements. What projections should we apply to find out what happened?
- There are four possible things that can happen:

No qubit was flipped.	$P_0 = 000 angle\langle 000 + 111 angle\langle 111 $
The first qubit was flipped.	$P_1 = 100 angle\langle 100 + 011 angle\langle 011 $
The second qubit was flipped.	$P_2 = 010 angle\langle 010 + 101 angle\langle 101 $
The third qubit was flipped.	$P_3 = 001 angle\langle 001 + 110 angle\langle 110 $

Turning the table

- By measuring these operators, we learn what errors (if any) occurred.
- Since we know which error occurred, we can **correct** it.

Syndrome measurement	Meaning	Correction operator
$P_0 = 000 angle\langle 000 + 111 angle\langle 111 $	No qubit was flipped.	1
$P_1 = 100 angle\langle 100 + 011 angle\langle 011 $	The first qubit was flipped.	X ₀
$P_2 = 010 angle\langle 010 + 101 angle\langle 101 $	The second qubit was flipped.	X1
$P_3 = 001 angle\langle 001 + 110 angle\langle 110 $	The third qubit was flipped.	X ₂

But since measurement collapses the state, we need to use ancilla qubits for syndrome measurement.

Outline

Classical codes (parity check codes) Need for QEC: Noise sources First Quantum Code: The Repetition (

Stabilizer Formalism

Fault-Tolerant Quantum Computation

The Surface Code

Correcting Errors: The Decoder Minimum-Weight Perfect Matching Neural Network Decoders

Realization of Quantum Memory

Stabilizer Formalism: The Pauli Group

- Stabilizer codes are a class of quantum error correcting codes defined by commuting sets of Pauli operators, called the stabilizer generators
- Define the Pauli group $G_1 = \{\pm I, \pm iI, \pm X, \pm iX, \pm Y, \pm iY, \pm, Z, \pm iZ\} = \langle X, Y, Z \rangle$
- ► It is enough to consider X, Z together with the prefactors $\pm i$ because Y = iXZ
- Any qubit unitary can be written as a linear combination of elements of G
- We also define G_n as n-fold tensor products of elements in G_1
- Notation: $Z_1Z_3 \equiv Z \otimes I \otimes Z$

The Stabilizer Group - definition ¹

- Consider some subgroup S ⊂ G_n, where all elements commute
- Let V_S be a 2k-dimensional subspace of n-qubit states defined by s |ψ⟩ = +1 |ψ⟩ ∀s ∈ S, ∀ |ψ⟩ ∈ V_s
- This defines a [[n, k]] stabilizer code, which encodes k logical qubits into n physical qubits
- We say S is the stabilizer group of V_S, and conversely call V_S the codespace stabilized by S
- Example: 3-qubit repetition code [[3, 1]]:
 - Stabilizer group generators: $S = \langle Z_1 Z_2, Z_2 Z_3 \rangle$
 - Codespace: $V_S = \{ \alpha | 000 \rangle + \beta | 111 \rangle | \alpha, \beta \in \mathbb{C}, |\alpha|^2 + |\beta|^2 = 1 \}$

¹D. Gottesmann, Stabilizer codes and quantum eror correction in a stabilizer codes and quantum eror correction in a stabilizer codes and quantum eror correction in a stabilizer codes and quantum eror correction in the stabilizer codes and quantum eror codes and quantume eror codes and

Stabilizer Codes: Error Detection and Correction

- Say some error g ∈ G_n occurs on |ψ⟩ ∈ V_S. Since elements of G_n either commute or anti-commute with each other, g will either commute or anti-commute with each stabilizer in S
- If it anti-commutes with at least one stabilizer, it is a detectable error
- If it commutes with all stabilizers and is not itself a stabilizer, it is a non-detectable error (logical operator)
- Example: 3-qubit repetition code:
 - $\{X_1, Z_1Z_2\} = 0$ so X_1 is a detectable error
 - ► [X₁X₂X₃, Z₁Z₂] = [X₁X₂X₃, Z₂Z₃] = 0 so X₁X₂X₃ is a non-detectable (i.e. logical error). In fact it is logical X in this code
- Measuring all the stabilizer generators on logical state |ψ⟩ will give us a syndrome that we then use to apply the corresponding correction (analogous to classical parity checks) (see 3-qubit repetition code circuit from earlier).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Calderbank-Shor-Steane (CSS) codes

- In general, stabilizer generators can have mixed elements e.g. X₁Z₂Z₃X₄...
- CSS codes are a "nice" type of stabilizer codes built by taking the parity check matrices H_X and H_Z of 2 classical codes C₁ and C₂ to define the X and Z stabilizers respectively. The generators are thus only pure X or pure Z operators (see hands-on session)

Outline

Classical codes (parity check codes)

Need for QEC: Noise sources

First Quantum Code: The Repetition Code

Stabilizer Formalism

Fault-Tolerant Quantum Computation

The Surface Code

Correcting Errors: The Decoder Minimum-Weight Perfect Matching Neural Network Decoders

Realization of Quantum Memory

Transversal gates in CSS codes

- Transversal gates, gates that can be written as a tensor product of gates inside each code block, are a type of fault-tolerant gates
- All Clifford gates are transversal in CSS codes
- For example in some CSS codes the CNOT gate on logical qubits 1 and 2 can be implemented by applying a CNOT gate between each homologous qubit of code blocks 1 and 2

Figure: Transversal CNOT gate implementation for a 3-qubit CSS code

(日)

UNIVERSITY OF ICELAND

Transversal gates and error spread

An operation is said to be **fault-tolerant** if it does not increase the weight of an error w(e) = the number of qubits that *e* affects within one **code block**.

Figure: Non-fault tolerant CNOT gate implementation for a 3-qubit code

Eastin-Knill Theorem

- Theorem: There is no non-trivial local-error-detecting quantum error correcting code that admits a universal set of transversal gates². :(
- But transversal is not the only fault-tolerant construction!

²Eastin, B., Knill, E. (2009). Restrictions on transversal encoded at the sets. Physical review letters, 102(11), 110502.

Universal Quantum Computing with Logical Qubits

Knill-Gottesman: Clifford-circuits efficiently simulable

- Generated by $\{H, S, CNOT\}$ gates
- Many codes allow transversal implementation

Non-Clifford (e.g. *T*-gate), required for universal gate set.

Eastin-Knill: No transversal implementation for CSS codes

Requires magic state preparation and teleportation

Fault-tolerant *T*-gate

Goal: Apply logical *T*-gate to state $|\psi\rangle_L = a |0\rangle_L + b |1\rangle_L$ Need ancilla qubit. *T* gate is applied transversally \rightarrow Does not correspond to logical *T*-state.

State before measurement

$$rac{1}{\sqrt{2}}(a\ket{0}+be^{i\pi/4}\ket{1})\ket{0}+(b\ket{0}+ae^{i\pi/4}\ket{1})\ket{1}$$

If we measure $|0\rangle$, we are done, otherwise apply correction *SX*. Preparation of ancilla has to be done fault-tolerantly!

Threshold Theorem

- Reliable quantum computation is possible if the physical error rate p is below a certain threshold p_{th}.
- For p < p_{th}, error is exponentially suppressed as we scale the code.

Figure: Exponential suppression as we scale the code

UNIVERSITY OF ICE

ヘロマ ヘヨマ ヘロマ

Outline

Classical codes (parity check codes)

Need for QEC: Noise sources

First Quantum Code: The Repetition Code

Stabilizer Formalism

Fault-Tolerant Quantum Computation

The Surface Code

Correcting Errors: The Decoder Minimum-Weight Perfect Matching Neural Network Decoders

Realization of Quantum Memory

Surface Code - Introduction

- 2D stabilizer code proposed by Kitaev et al. [7] Belongs to the class of CSS codes
- Pauli-Z and Pauli-X type checks
- Planar graph connectivity Ideal for superconducting circuits
- ▶ High threshold (~1%) against noise
- Parallel syndrome extraction

Figure: Surface code with 9 data and 8 ancilla qubits [15].

Surface Code - Stabilizers

Stabilizers at the interior of the surface check 4 qubits at a time. For each group (called *plaquette*) we have:

$$S_X^{(i)} = X_i X_{i+1} X_{i+2} X_{i+3}$$
 $S_Z^{(i)} = Z_i Z_{i+1} Z_{i+2} Z_{i+3}$

Detect an odd number of X/Z errors per plaquette.

Order of CNOT gates matters to avoid hook errors.

Figure: Pauli-X and Pauli-Z type stabilizers for the surface code. CNOT gate schedule measuring syndrome indicated by vertex index [15].

Surface Code - Error Classification

Only need to correct Pauli errors: $E = P_1 \otimes \ldots \otimes P_n$ where $P_i \in \{I, X, Y, Z\}$

Detectable Errors

- Anti-commute with stabilizers: $\exists S \in S : SE = -ES$
- Example: Single-qubit errors

Undetectable errors

- ▶ Product of stabilizers: $E = S_1 \dots S_n$, $S_i \in S$
- Logical operators: Normalizers of S

Beauty of surface code: Errors have topological interpretation!

Surface Code - Detectable Errors

Figure: Detectable chain of Pauli-Z errors [15].

Surface Code - Detectable Errors

Error Chain Properties:

- Errors manifest as chains on surface
- Chain endpoints flagged by syndromes:
 - One syndrome if chain ends at boundary
 - Two syndromes for interior chains
- Pauli-Y triggers 4 syndromes
 Equivalent to X and Z errors

Figure: Detectable chain of Pauli-Z errors [15].

Surface Code - Undetectable Errors

Figure: Undetectable errors which are products of stabilizers generators [15].

Surface Code - Logical Gates

Logical Gates Properties:

- Connect opposite borders
- Unique up to stabilizer product
- Anti-commuting logical operators cross odd number of times

Figure: Chain of Pauli-X forming logical X_L operator [15].

Surface Code - Logical Gates

Logical Gates Properties:

- Connect opposite borders
- Unique up to stabilizer product
- Anti-commuting logical operators cross odd number of times

Figure: Chains of Pauli-Z forming logical Z_L operator [15].

Surface Code - Logical Gates

Logical Gates Properties:

- Connect opposite borders
- Unique up to stabilizer product
- Anti-commuting logical operators cross odd number of times

Figure: Equivalent logical X_L chains [15].

Question: How many errors can we correct?

For d^2 data qubits, shortest logical error chain has length d. \rightarrow We can correct up to $\lfloor \frac{d-1}{2} \rfloor$ errors.

The surface code is a $[[d^2, 1, d]]$ CSS code with code distance d.

Surface Code - Entangling Gates

Figure: **Transversal** logical CNOT with pairwise matching physical qubits. Suitable for neutral atom or ion-trapped architectures where qubits can be moved [4].

Surface Code - Entangling Gates

Figure: Logical CNOT through **lattice surgery**. Involves an ancilla surface code patch and stabilizer measurement along adjacent surface edges [4].

Surface Code - *T*-gate (via state-injection)

Protocol for faulty state-injection [12]:

- Prepare physical qubit in state $|\psi
 angle$
- ▶ Initialize small distance surface code (e.g. $\hat{d} = 3$) in $|0\rangle_L$
- Spread state via CNOT operations
- Protect state with syndrome measurement rounds
- Grow to target distance: $\hat{d} \rightarrow d$

Not fault-tolerant: Low-distance \hat{d} allows for errors

Surface Code - State injection example

Figure: Preparation of magic state by preparing a single physical qubit and growing the surface code distance [12].

UNIVERSITY OF ICELAND

< □ > < 同 > <

Surface Code - Magic State Distillation

Muller-Reed [[15, 1, 3]]-code: Smallest code with transversal T-gate

Example: 15-to-1 protocol

- 1. Encode by measuring stabilizers
- 2. Apply transversal (faulty) *T*-gate Surface code: Via state-injection
- 3. Measure Stabilizers Detect up to weight-3 errors
- 4. Discard and repeat, if errors detected

Output: Magic state $T_L |+\rangle_L$

Figure: 15-to-1 magic state distillation protocol [13].

If error probability of *T*-gate is p_{in} , success probability is $p_{out} = 35p_{in}^3$. Further distillation rounds can use teleportation for transversal T_L .

Fault-Tolerant Quantum Architecture

Based on surface code with Clifford+T gate set. Gates are implemented using fault-tolerant lattice surgery.

Fault-Tolerant Quantum Computing - T-count

Figure: Ratio of magic state distillation (MSD) footprint to total computational footprint for different number of logical qubits and *T*-counts for fusion-based QC [11].

< □ > < /□ >

- ∢ ≣ ▶

Fault-Tolerant Quantum Computing - Resource Estimation

Figure: Runtime of 3 applications for different gate times and modalities: superconducting [ns], ion-traps [μ s], and Majorana [3].

Observation: With 100 $[\mu s]$ gate times, large algorithms will take almost a year!

Outline

Classical codes (parity check codes)

Need for QEC: Noise sources

First Quantum Code: The Repetition Code

Stabilizer Formalism

Fault-Tolerant Quantum Computation

The Surface Code

Correcting Errors: The Decoder Minimum-Weight Perfect Matching Neural Network Decoders

Realization of Quantum Memory

The Decoder

Goal: Determine the state of the logical qubit

Input: Syndrome measurements and noise information **Output:** Logical state estimate

UNIVERSITY OF ICELAND

э

イロト イポト イヨト イヨト

The Backlog Problem

Non-Clifford operations (e.g. *T*-gates) require processing of *all* prior syndrome measurements

- When Decoder slower than syndrome generation rate:
 - 1. Define rates:
 - *r_{gen}*: syndrome generation rate
 - *r*_{proc}: syndrome processing rate
 - 2. Let $f = rac{r_{gen}}{r_{proc}} \geq 1$ (backlog factor)
 - 3. For initial T-gate (T_0) :
 - Processing overhead time: Δ_{gen}
 - New syndromes during processing: $D_1 = r_{gen} \times \Delta_{gen}$

Observation

Terhal [17] showed: Overhead for k-th T-gate grows as $f^k D_1$

The Backlog Problem

Compute time (no backlog) Figure: Exponential growth of syndrome processing overhead for f > 1 [10].

The Backlog Problem - Example

Circuit Parameters

- Logical qubits: 100
- Total gates: 2,356
- T-gates: 686

Timing Parameters

- Syndrome generation cycle: 400 [ns]
- Decoder processing time: 800 [ns]

• Backlog factor
$$f = \frac{r_{gen}}{r_{proc}} = 2$$

Circuit execution time: 10^{196} seconds!

Decoder speed and **T-gate count** critical metrics for practical quantum computation.

Real-Time Decoding for Superconducting QPU

Real-time decoding challenging for superconducting devices due to gate speed: Cycle time $<1~[\mu s].$

Figure: Integration of Riverlane's FPGA decoder into Rigetti's control system. Latencies are represented by edge labels. Demonstrate mean decoding time below 1 [μ s] for Rigetti's Ankaa-2 device [5].

UNIVERSITY OF ICELAND

< ロ > < 同 > < 回 > < 回 > < 国 > < 国

Type of Decoders

Many types of decoders exist, with unique properties:

- Maximum-likelihood decoder
 Optimal, but computationally infeasible
- Matching-based: (e.g. MWPM [9] or BP)
 Optimal for independent errors, widely studied
- Clustering-based (e.g. Union Find [6])
 Fast, near-linear time complexity
- Tensor Networks: Handles correlations well, higher computational overhead
- Neural Networks: (e.g. AlphaQubit [2]) Potential for handling complex noise models

Key trade-off: decoding speed vs. correction accuracy

We are going to explore MWPM and neural decoders.

Graph Matching

Perfect Matching Problem: Given a weighted graph G = (V, E, w), where $w : E \to \mathbb{R}$

- Find matching M ⊆ E where each v ∈ V appears in exactly one edge in M
- Minimize total weight: $\min_M \sum_{e \in M} w(e)$

MWPM Decoder - Idea

Observation: Error chains create distinct syndrome patterns

Types of Error Chains:

- 1. Boundary chains
 - Single syndrome at interior of surface
 - Other end terminates at code boundary
- 2. Interior chains
 - Two syndromes: one at each end

Matching idea:

- Each chain has an associated occurrence probability
- Match all active syndromes minimizing error probability

MWPM Decoder - Example

Figure: Tanner graph for Pauli-Z type errors for the distance 5 surface code.

MWPM Decoder - Example

Figure: Active syndromes in Tanner graph for given Pauli-Z errors.

MWPM - Example

Figure: Syndrome graph for active syndromes.

MWPM - Example

Figure: Matched syndrome graph for active syndromes.

MWPM - Example

Figure: Decoded errors leading to logical Z_L error by connecting chain of Pauli-Z errors to opposite boundaries.

MWPM Decoder - Construction

Setup:

v

- Decode Pauli-Z and X errors separately
- Consider **independent** Z errors $E \in \{I, Z\}^n$ for CSS code

For stabilizer generator set $\{S_i\}_i$ define:

- Syndrome bits: s_i ∈ {0,1}, where s_i = 1 if generator S_i anti-commutes with E
- Error vector: $e \in \{0,1\}^n$ if $E_i = Z_i$

Error Probability:

$$p(E) = \prod_{i} (1-p_i)^{(1-e_i)} \cdot p_i^{e_i} = \prod_{i} (1-p_i) \prod_{i} \left(\frac{p_i}{1-p_i}\right)^{e_i}$$

Use logarithmic form, avoiding numerical issues:

$$\log(p(E)) = \sum_{i} \log(1 - p_i) - \sum_{i} w_i \cdot e_i,$$
where $w_i = \log((1 - p_i)/p_i)$

MWPM Decoder - Construction

Graph Construction:

- ► Condition: Each Z-error anti-commutes with two X-stabilizers
- Define matching graph G = (V, E) with |V| = |s|
- ▶ $(v, w) \in E$, if S_v and S_w anti-commute with Pauli-Z on qubit

Set edge weight to w_i for qubit i

Decoding Strategy:

- Perfect matching: Match all nodes with $s_i = 1$
- Minimum-weight: Find smallest chain with s_i = 1 at boundaries

 \rightarrow More probable errors have lower weight

Implementation:

- Matching: Edmond's Blossom algorithm
 - Complexity: $\mathcal{O}(|s|^3 \log(|s|))$
- Syndrome graph: Dijkstra's algorithm

Neural Network Decoder - AlphaQubit QEC's "The Bitter Lesson" moment?

Figure: Decoder's recurrent network structure. Syndromes update transformer state. Outputs single-bit, indicating if logical bit was flipped. Evaluated up to code distance 11 [2].

イロト イポト イヨト イヨト

э

AlphaQubit - Training

Pretraining

- 2.5 billion samples from 3 sources:
 - 1. SI1000: 25 QEC rounds, no device-fit
 - 2. Noise estimate from XEB
 - Noise estimate for Tanner graph weights p_{ij}

Finetuning

- Pauli+ simulator including leakage, analogue readouts, and cross-talk
- 100 million samples

Figure: Training stages [2].

UNIVERSITETET

イロト イポト イヨト イヨト

UNIVERSITY OF ICELAND

э

AlphaQubit - Stabilizer Embedding Layer

Input:

- Binary syndrome measurement and temporal differences
- Leakage events and their probability
- Embedded stabilizer index i

Output: $d^2 - 1$ different embeddings

イロト イヨト イヨト

э

Figure: Stabilizer embeddings used as input for AlphaQubits internal transformer state update round [2].

AlphaQubit - Results

Figure: Mean logical error per QEC round for Surface Code distances 3 and 5 on Google's Sycamore device. Results averaged across bases $\{X, Y, Z\}$ [2].

UNIVERSITY OF ICELAND

VTT

Decoder Threshold Analysis

Threshold Dependencies:

- Decoder algorithm
- Noise model
- QEC code structure

For distance d, physical error p and threshold p_{thr} :

Logical Error Scaling:

$$arepsilon_{d} \propto \left(rac{p}{p_{thr}}
ight)^{rac{(d+1)}{2}}$$

Decoder Threshold LER = PER Pseudo-Threshold Surface Code Distance Physical Error Rate (log)

Figure: Threshold example [15].

Error Suppression:

$$\Lambda = \frac{\varepsilon_d}{\varepsilon_{d+2}} \sim \frac{p_{thr}}{p}$$

Note: Threshold comparisons must consider all factors!

Outline

Classical codes (parity check codes)

Need for QEC: Noise sources

First Quantum Code: The Repetition Code

Stabilizer Formalism

Fault-Tolerant Quantum Computation

The Surface Code

Correcting Errors: The Decoder Minimum-Weight Perfect Matching Neural Network Decoders

Realization of Quantum Memory

Google - Surface Code Experiment

Quantum Memory Experiment:

Preserve logical qubit for many QEC cycles

Setup:

- Sycamore: 105-qubits transmon device
- Distances: d = 3, 5, and 7
- X/Y 25 [ns], CZ 42 [ns]
- TLS mitigation strategy

Main Results:

- Demonstrate Λ > 2
- Life-time of logical qubit 2× of best physical qubit on QPU
- Real-time decoding $< 1.1[\mu s]$

Figure: **a** Sycamore topology. **b** Gate error distribution [1].

Google - Real-Time Decoder Data Flow

- 1. Control electronics classify I/Q readout into $\mathsf{0}/\mathsf{1}$
- 2. Transmitted to workstation via low-latency Ethernet
- 3. Measurements converted to detection events
- 4. Streamed to constant sized shared-buffer
- 5. Decoder reads from buffer

Figure: Windowed streaming decoder: Local Blossom algorithm with subsequent fusing until global MWPM is found [1].

Google - Correlated Errors through Leakage

Transmons not ideal qubits \rightarrow Leakage to $\left|2\right\rangle, \left|3\right\rangle, ...$ possible.

Problem: QEC assumes uncorrelated errors. Leakage causes correlated errors! Especially **CZ gate** prone to leakage.

DQLR: Use Leakage iSWAP to transfer leakage to ancillas [14].

Google - Results

Figure: Logical error rates (LER) over multiple QEC cycles demonstrating $\Lambda = 2.14 \pm 0.02$ [1].

UNIVERSITY OF ICELAND

・ロト ・四ト ・回ト ・回

VTT

Quantum Error Correction - Summary

Many more topics ...

- Quantum LDPC codes, color codes, …
- Subsystem codes
- Bosonic codes
- Quantum resource estimation
- ► ..

An Interdisciplinary Field!

- QPU fabrication and control
- Software development and tooling
- Novel error correction code design

Theory Meets Practice

- Transition from theory to implementation
- Emerging real-world demonstrations

References I

 R. Acharya, L. Aghababaie-Beni, I. Aleiner, T. I. Andersen, M. Ansmann, F. Arute, K. Arya, A. Asfaw, N. Astrakhantsev, J. Atalaya, R. Babbush, D. Bacon, B. Ballard, J. C. Bardin, J. Bausch, and et al.
 Quantum error correction below the surface code threshold, 2024.

J. Bausch, A. W. Senior, F. J. H. Heras, M. Newman,
 C. Gidney, C. Jones, H. Neven, S. Blackwell, and D. Kafri.
 Learning high-accuracy error decoding for quantum processors.

Nature, 2024.

M. E. Beverland, P. Murali, M. Troyer, K. M. Svore,
 T. Hoefler, V. Kliuchnikov, G. H. Low, M. Soeken,
 A. Sundaram, and A. Vaschillo.
 Assessing requirements to scale to practical quantum advantage, 2022.

・ロット (雪) ・ (目) ・ (日) ・ (日)

References II

E. Campbell.

How to develop the quantum error correction stack for every qubit, 2024.

L. Caune, L. Skoric, N. S. Blunt, A. Ruban, J. McDaniel, J. A. Valery, A. D. Patterson, A. V. Gramolin, J. Majaniemi, K. M. Barnes, T. Bialas, O. Buğdaycı, O. Crawford, G. P. Gehér, H. Krovi, E. Matekole, C. Topal, S. Poletto, M. Bryant, K. Snyder, N. I. Gillespie, G. Jones, K. Johar, E. T. Campbell, and A. D. Hill.

Demonstrating real-time and low-latency quantum error correction with superconducting qubits, 2024.

N. Delfosse and N. H. Nickerson.

Almost-linear time decoding algorithm for topological codes. *Quantum*, 5:595, Dec. 2021.

References III

E. Dennis, A. Kitaev, A. Landahl, and J. Preskill. Topological quantum memory. *Journal of Mathematical Physics*, 43(9):4452–4505, Sept. 2002.

P. Faist.

Quantum error correction.

Lecture Notes, aug 2024.

O. Higgott.

Pymatching: A python package for decoding quantum codes with minimum-weight perfect matching, 2021.

References IV

A. Holmes, M. R. Jokar, G. Pasandi, Y. Ding, M. Pedram, and F. T. Chong.

Nisq+: Boosting quantum computing power by approximating quantum error correction.

2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA), pages 556–569, 2020.

I. H. Kim, Y.-H. Liu, S. Pallister, W. Pol, S. Roberts, and E. Lee.

Fault-tolerant resource estimate for quantum chemical simulations: Case study on li-ion battery electrolyte molecules. *Physical Review Research*, 4(2), Apr. 2022.

Y. Li.

A magic state's fidelity can be superior to the operations that created it.

UNIVERSITETET

◆□▶ ◆圖▶ ◆温▶ ◆温▶ 「温」

New Journal of Physics, 17(2):023037, Feb. 2015.

References V

D. Litinski.

A game of surface codes: Large-scale quantum computing with lattice surgery.

Quantum, 2018.

 K. C. Miao, M. McEwen, J. Atalaya, D. Kafri, L. P. Pryadko, A. Bengtsson, A. Opremcak, K. J. Satzinger, Z. Chen, P. V. Klimov, C. Quintana, and e. a. Acharya.
 Overcoming leakage in quantum error correction. *Nature Physics*, 19(12):1780–1786, Oct. 2023.

R. W. J. Overwater, M. Babaie, and F. Sebastiano. Neural-network decoders for quantum error correction using surface codes: A space exploration of the hardware cost-performance tradeoffs.

IEEE Transactions on Quantum Engineering, 3:1–19, 2022.

References VI

 A. Silva, A. Scherer, Z. Webb, A. Khalid, B. Kulchytskyy, M. Kramer, K. Nguyen, X. Kong, G. A. Dagnew, Y. Wang, H. A. Nguyen, K. Olfert, and P. Ronagh.
 Optimizing multi-level magic state factories for fault-tolerant quantum architectures, 2024.

B. M. Terhal.

Quantum error correction for quantum memories. *Reviews of Modern Physics*, 87(2):307–346, Apr. 2015.

