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Classical codes (parity check codes)
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Classical noisy channel

» Send k-bit message across a noisy channel.

» Channel flips one bit independently with low probability p

» How do you protect from the noise?




Repetition code

» Repeat information, so e.g., send x = 000 instead of x =0

noise

P one receives:
> 000 with probability (1 — p)3,
> 100, 010, 001 each with probability (1 — p)?p,
> 011, 101, 110 each with probability (1 — p)p?, and
> 111 with probability p3.

P Let's say we receive X = 010

» Assuming at most one error occurred, we can take a majority
vote to decode x = 000




Error correction process

encoding noise . decoder
y y

» £(x) =y encodes a k bit message x, into an n bits
> A codeword is an element of the image of &:
Set of all codewords C = Im(&)
» E.g., 3-repetition code 0, k = 1,n = 3, we have
C = {000,111}
» If one or two bits are flipped, the error is detectable

» If all bits are flipped, the error is undetectable = logical
error




Simple Parity-Check Code

Encoding: Given a 3-bit message (a, b, ¢), the parity-check code
encodes it as:

E(a,b,c) =(a,b,c,z) where z=(a+ b+ c)mod?2

Properties:
» z indicates whether the sum of a, b, ¢ is even (z = 0) or odd
(z=1).
> Any single-bit error can be detected:

> If a,b, or cis flipped, z # (a+ b+ c) mod 2.
» If z is flipped, it no longer corresponds to the parity of a, b, c.

Limitation: Errors cannot be corrected.




Hamming Codes - The Idea

» Hamming introduced a method to correct errors using
parity-check bits.

» Example: A 4-bit message x = (a, b, ¢, d) with 3 parity-check
bits:

zn=a+b+d, m=a+c+d, zm=b+c+d (mod2)
» Encoded message:

y = E(aa b7 c, d) = (‘37 b: c, d7217227z3)




Parity-check Visualization

Error Detection:
» If a single bit is flipped, certain
parity-checks will fail.
» Example:
» If ais flipped, z; and z will fail,
while z3 remains valid.
Error Correction:

» The pattern of failed parity-checks
indicates the position of the flipped
bit.

» Example: Flip in d causes all z1, 2, z3
to fail.




Introduction to Linear Codes

» Linear codes generalize the concept of transmitting a message
with parity-check bits.

» A linear code uses a matrix G—called the generator
matrix—to encode the message:

y = Gx.

> The message x has length k, and is supplemented with m
parity-check bits such that the encoded message y has length
n==k+m.

» The generator matrix G can be written as:

» [0 k x k identity matrix (reproduces the message bits),
> A: m X k matrix (defines parity-check operatio

-
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Example: Generator Matrix of the Hamming Code
For the [7,4]-Hamming code, the generator matrix is:

1 000
0100
0 010
G=]0 0 01
1101
1 011
01 11
Encoding a message x = (a, b,c,d)":

0O T o

Gx = d =
a+b+d
at+c+d
b+c+d




Properties of Generator Matrices

Code is defined as image of G:
1. The codewords are the set of all linear combinations of the
columns of G.

2. To find all the codewords, just calculate all the y of the form
y = ai81 + - - - + ak8k, where g; is the it column of G and
a,...,ag € {0,1}.

3. Elementary row and column operations on G do not change
the code.

4. Using Gaussian elimination, G can always be transformed into
the standard form:




Parity-Check Matrix

An equivalent representation of a linear code is the parity-check
matrix H:

» H is an m X n matrix,
» y is a codeword if and only if Hy = 0.
» set of all codewords C = Ker(H)

For the [7,4]-Hamming code:

» A received word y can be checked for errors by evaluating Hy.

» Errors can often be located and corrected using this method.
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Generator Matrix and Parity-Check Matrix

For a generator matrix of the form:

_ (I
GC=1{a

the corresponding parity-check matrix can be written as:

H=(A In).




Why Use the Parity-Check Matrix?

» A received vector y = y + e combines the original codeword y
and an error vector e.

» Applying the parity-check matrix H gives:
Hy = H(y + e) = He.

» The result s = He is known as the syndrome.
» The syndrome identifies errors by revealing violated
parity-check equations: s; = 1 indicates a violation.
Decoding:
» Decoding finds the most probable error e that explains the
syndrome s.

» A violated parity-check equation points to specific bits
involved in the error.




Syndrome Table for Error Correction

The following table shows the bit we choose to correct for each of
the 8 possible syndromes

Syndrome 000 100 010 001 110 101 011 111

Correction 0 2 3 a b c d

In quantum error correction, the syndrome can/has to be measured
without disturbing the quantum state




Decoding linear codes

Decoding consists of finding the original message given its noisy
encoded version.

P> There are 2" possible syndromes.

» We define an efficient decoder as an algorithm that
accomplishes this task in polynomial time in n.

Given the parity-check matrix H. Let’s assume errors follow a
certain distribution P(e).

» Given the received syndrome s, we want to find the most
likely error e.

> The goal of an ideal decoder:

Find the vector e that maximizes the probability P(e | s).




Applying Bayes' Rule
Using Bayes' rule, we can write:

Ple|s) = Lele)Ple) |P?5))P (e)

» P(s) does not depend explicitly on e, and can be ignore for
solving the maximization problem over e

» Any valid error e must satisfy He = s, so:

P(s | &) = 1, fHe=s
B 0, otherwise.

Our optimization problem then becomes:

max P(e) subjectto He =s.
ec{0,1}n




Special Case: Independent Errors

» In the case where errors are iid, we have:
n
P(e) =] P(e).
i=1

» Let P(ej=1)=pand P(ej =0)=1—p. Then:
Ple) = pel(1 — p)1o,

where |e| is the Hamming weight of e.

» For p < 0.5, the probability P(e) increases when the weight
of e decreases. Therefore, our optimization problem reduces
to finding the error of minimum weight that satisfies He = s:

min_|e| subjectto He =s.
ec{0,1}"




Maximum A Posteriori (MAP) Decoding and Its Challenges
MAP Decoder: Any decoder that explicitly solves

P
oTR%, (e s),

is called MAP decoder, and is considered an ideal decoder.

Challenges:

» A naive approach requires searching all 27 possible error
vectors, leading to exponential time complexity.

» The MAP decoding problem is NP-complete, meaning no
general polynomial-time algorithm is likely to exist.

Efficient Decoding for Special Codes:

» Certain structured codes (e.g., Hamming codes, repetition
codes) allow polynomial-time decoding.




Heuristic Approaches to MAP Decoding

Heuristics: Approximate solutions for MAP decoding that are
efficient and perform well in practice.

Belief Propagation Algorithm:
» An iterative, linear-time algorithm.

» Exploits the factorization of P(e | s) over a graph (e.g.,
Tanner graph).

» Widely used in classical error-correction and also in quantum
error correction.
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Need for QEC: Noise sources
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Quantum Logic

» Quantum bit/Qubit
) = |0) + B[1)

o + 182 =1

» Universal logical operations, gates, unitaries:
Hadamard, S-gate, T-gate, CNOT

> Measurements:
> Set of operators {M;} such that ), MIM; =1
> Probability of outcome i is p(i) = (¢|M,-Jr/\/l,-|z/)>

> State after obtaining outcome i is M%)
J v/ p(i)




Hardware: Superconducting Circuits

—

Cavity/resonator Junction “artificial atom”

Josephson
Junct|on

£
E

—50mm—— (AI/AIOx/AI)

FIn = 3) K ~ 200 MHz
FIn=2) w=510GHz
In=1)
[n=0)

Qubit g ~ 100 MHz

H=wa's A ~ wyb'h — Kb2H?

PRA 69, 062320 (2004)




Sources of Quantum Noise / Errors

» Decoherence:
> T1 relaxation: Energy decay from the |1) — |0)
» T2 dephasing: Loss of phase coherence in superposition states.
» Gate Errors: Imperfect implementation of quantum gate
operations, leading to inaccuracies.
> Measurement Errors: Errors during the readout of qubit
states, resulting in incorrect outputs.
» Cross-Talk: Interference between neighboring qubits during
operations, reducing fidelity.

> Leakage Errors: Qubits transitioning to higher energy N
states outside the computational basis. 3

» Stray Interactions: Unintended couplings during gate [ cwo
operations.

» Idle Errors: Errors occurring while qubits remain idle due to
environmental interactions.

> External Noise: Electromagnetic interf% or | .§.r@c@,{ay5- ol



Error budget distribution
distance-5 surface code on 72-qubit processor ( arXiv:2408.13687v1 )

single qubit gates

Leakage

CZ gate
(w/o CT, leakagy

e
e)

Reset

Readout

Data qubit idle

CZ leakage

CZ crosstalk

Data
qubit

Measure
= qubit

Leakage
removal
u/qubil
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Noisy Quantum Channels

» A noisy quantum channel introduces errors during
transmission or processing.
» Examples of noise effects:

» Degradation of quantum states.
» Reduction in entanglement and coherence.
» Significant impact on fidelity and performance.

» Kraus operators provide a powerful framework to describe and
analyze noise in quantum systems.




Kraus Operators

» Describe the evolution of quantum states in open systems.

» Evolution of a density matrix (p) under Kraus operators:
p=>" KipK]
i
» Completeness relation ensures trace preservation:

S KK =1

» These operators model common errors such as bit-flip,
phase-flip, and depolarization.




Bit-Flip Channel

» Models noise where qubits flip between |0) and |1) with
probability p.

» Quantum state evolution:
T(p) = (1= p)p+ pXpXT

» Kraus operators:

K(J:\/].*p/, Klz\/ﬁX




Depolarizing Channel

» Randomizes the qubit state with probability p.

» Channel action:
p
E(p) = (1= p)p+ 3(XpXT +YpYT+ ZpZT)

» Kraus operators:

Ko=+1-pl, Klz\ﬁx, ng\f’;’v, K3:\ﬁz




Amplitude Damping Channel

» Models energy dissipation, such as photon loss.

» Channel action:
E(p) = EopE{ + ErpE]

» Kraus operators:




Quantum Error Correction

» Quantum error correction (QEC) is essential for protecting
quantum information against noise and decoherence.

» The primary goals of QEC are:
» Detect errors without disturbing the quantum information.

» Correct errors to restore the original quantum state.
» Ensure fault-tolerant quantum computation.




Errors in quantum computers

» Classically, bits can flip (or be erased).
i.e., 0 1 and 1 — 0 with some probability p.
» Qubits have a larger state space, so more things can go

wrong.

» Any operation that can be considered a gate can also
introduce an error.

» Examples include Pauli errors (X, Z,Y).

Xoy=11 |[ zloy=10) |[ vio)=il1) = ixz[o)
X|1=10) || Z1)=-J1) || Y1) = ~ilo) = ixZ|1)
Bit flip Phase flip Bit & phase flip
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The Most Important Fact About QEC

» Errors are inherently continuous (analog). How can we hope
to correct these?

» Suppose some error E introduces a relative phase:
Ely) = al0) + € 8|1)

» The angle § could (in principle) be infinitesimal.

» Any error can be written as discrete Pauli errors with
continuous coefficients:

> This is because the Pauli matrices (+ the Identity) span C2*2.
» For any E and #:

El) = (el + eeX + &Y + e3Z)|¢))

» But the coefficients e; could still be infinitesimal, in principle.




The Most Important Fact About QEC

» Measurement turns continuous errors into discrete errors.

» Suppose we measure the error state using operators {M;}:

E[¢) = (el + &1 X + &Y + e3Z)|4))

» Then, with probability p(/), the state collapses to: %
» This process collapses the superposition and reduces the
continuous coefficients to a global phase, which is irrelevant.
> For example, we could choose M; such that: E|¢) — n;o;|v)
» Here, 0; € {I, X, Y,Z} is a discrete error that can be
corrected.
» The coefficient n; € C is continuous but represents a global
phase and hence does not matter.
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First Quantum Code: The Repetition Code




Classical error correction: The repetition code

> A key concept in error correction is adding redundancy.
> For example, given a bit, we can make three copies of it:

> 0— 000, 1—111

» This is known as the (classical) repetition code.

» The idea is very simple: If an error occurs on one bit only, we
can correct it by looking at the other two bits and taking a
majority vote.

» Given the classical repetition code, we might try to do the
same with qubits, i.e. map

) = [9) ) |)

» This is not possible due to the "no cloning theorem”




QEC: Can We Add Any Redun

» From the no-cloning theorem,

dancy?

we know it is not possible to

make exact copies of a quantum state as in the classical

repetition code.
» Can we copy information?

» Claim: We can "copy basis in
sense:
a|0) + B[1) —

formation” in the following

a|000) + B|111)

P> Note that this encoding circuit entangles the "input” qubit

with two other qubits.

al0) +BI1)
10)
10) —4

» Errors in quantum computers

— - a|000) +B|111)
B—

are often caused by qubits

entangling with their environment.




Repetition code for bit flip errors

» The encoding a|0) + 5]|1) — «|000) + 3|111) gives us
redundancy. Now what?

» We need to check which errors (if any) occured in the
encoded state.

» We do this by (projective) measurements. What projections
should we apply to find out what happened?

» There are four possible things that can happen:

No qubit was flipped. Po = |000)(000| 4 |111)(111]

The first qubit was flipped. P1 = |100)(100| 4 |011)(011]

The second qubit was flipped. | P, = [010)(010] + |101)(101]

The third qubit was flipped. P3 =|001)(001| 4 |110)(110]




Turning the table

» By measuring these operators, we learn what errors (if any)

occurred.

» Since we know which error occurred, we can correct it.

Syndrome measurement Meaning Correction operator
Py = [000)(000] + |111)(111| No qubit was flipped. /
Py = [100)(100] + [011)(011| | The first qubit was flipped. Xo
P, =1010)(010| + |101)(101| | The second qubit was flipped. X1
P5 = [001)(001| + [110)(110| | The third qubit was flipped. Xa

» But since measurement collapses the state, we need to use
ancilla qubits for syndrome measurement.




Bitflip Repetition Code: circuit implementation

Encoding M Syndrome measurement
[¥) ;

o
~~
a
Ay

fan)
A\
D
A\




Bitflip Repetition Code: circuit implementation

Encoding Correction
v} = —{X] x| Syndrome | Correction
0) —-—p- 1 00 I
10) ———- - 10 X
------ |0) < ] 01 X3
11 Xo
o) &b~




Bitflip Repetition Code: circuit implementation

Encoding Correction
V) = : Syndrome | Correction
0) —-—1- —
: : : : 00 /
10) +—a=—x] =X 10 X1
0) —d—& 01 X3
11 Xo
|0) ©




Bitflip Repetition Code: circuit implementation

Encoding Correction
) Syndrome ‘ Correction
0 o] LT‘—" 00 /
0 - 10 Xq
-------- 0) — =] 01 X3
11 Xo

(=)
=~
fany
AY >
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Stabilizer Formalism
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Stabilizer Formalism: The Pauli Group

» Stabilizer codes are a class of quantum error correcting codes
defined by commuting sets of Pauli operators, called the
stabilizer generators

» Define the Pauli group
Gy = {£/, il , £ X, +iX, Y, +iY,+, Z, £iZ} = (X, Y, 2Z)

> It is enough to consider X, Z together with the prefactors +i
because Y = iXZ

» Any qubit unitary can be written as a linear combination of
elements of G

> We also define G, as n-fold tensor products of elements in Gy
» Notation: /1 3=72Q1 7




The Stabilizer Group - definition !

» Consider some subgroup S C G, where all elements
commute

> Let Vs be a 2k-dimensional subspace of n-qubit states defined
by s|) = +1]yp)Vs € S,V |¢) € Vs

» This defines a [[n, k]] stabilizer code, which encodes k logical
qubits into n physical qubits

> We say S is the stabilizer group of Vs, and conversely call
Vs the codespace stabilized by S

» Example: 3-qubit repetition code [[3, 1]]:

» Stabilizer group generators: S = (Z12,, 2, 73)
» Codespace: Vs = {«|000) + 3|111) |o, B € C, |a* +|8]? = 1}

!D. Gottesmann, Stabilizer codes and quantum erporTeRE
arXiv:quant-ph/9705052
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Stabilizer Codes: Error Detection and Correction

» Say some error g € G, occurs on |¢)) € Vs. Since elements of
G, either commute or anti-commute with each other, g will
either commute or anti-commute with each stabilizer in S

» If it anti-commutes with at least one stabilizer, it is a
detectable error

> If it commutes with all stabilizers and is not itself a stabilizer,
it is a non-detectable error (logical operator)
» Example: 3-qubit repetition code:
> {Xy,Z17Z,} =0 so X is a detectable error
> [X1X2X3, lez] = [X1X2X3, ZQZ3] =0so X1X2X3 is a
non-detectable (i.e. logical error). In fact it is logical X in this
code
» Measuring all the stabilizer generators on logical state [¢) will
give us a syndrome that we then use to apply the
corresponding correction (analogous to classical parity checks)
(see 3-qubit repetition code circuit from%r) "




Calderbank-Shor-Steane (CSS) codes

P In general, stabilizer generators can have mixed elements e.g.
X12:73X,...

» CSS codes are a "nice” type of stabilizer codes built by taking
the parity check matrices Hx and Hz of 2 classical codes C;
and G, to define the X and Z stabilizers respectively. The
generators are thus only pure X or pure Z operators (see
hands-on session)

» Syndrome measurement: to measure a qubit in the X basis
we need to apply a Hadamard transform to the qubit since

(WIHZH [¢) = (S X [¢)
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Fault-Tolerant Quantum Computation
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Transversal gates in CSS codes

» Transversal gates, gates that can
be written as a tensor product of Block 1
gates inside each code block, are
a type of fault-tolerant gates

» All Clifford gates are transversal in
CSS codes

» For example in some CSS codes Block 2 1
the CNOT gate on logical qubits 1
and 2 can be implemented by
applying a CNOT gate between
each homologous qubit of code Figure: Transversal CNOT gate

blocks 1 and 2 implementation for a 3-qubit
CSS code

a
A\

D
A\

o
A\




Transversal gates and error spread
An operation is said to be fault-tolerant if it does not increase the
weight of an error w(e) = the number of qubits that e affects
within one code block.

Block 1 1 &
D
N
Pan
\V%
Fany
i Pany
N
Block 2 1
Fany
\V
Figure: Non-fault tolerant CNOT gate Figure: giramsyersal:GN @fcgate. . .. [T
b 1050 e

implementation for a 3-qubit code



Eastin-Knill Theorem

» Theorem: There is no non-trivial local-error-detecting
quantum error correcting code that admits a universal set of

transversal gates?. :(
» But transversal is not the only fault-tolerant construction!

2Eastin, B., Knill, E. (2009). Restrictions on trangyensaigen coded- @RETUE. o o [T
gate sets. Physical review letters, 102(11), 110502.



Universal Quantum Computing with Logical Qubits

Knill-Gottesman: Clifford-circuits efficiently simulable
» Generated by {H,S,CNOT} gates

> Many codes allow transversal implementation

Non-Clifford (e.g. T-gate), required for universal gate set.

» Eastin-Knill: No transversal implementation for CSS codes

P> Requires magic state preparation and teleportation

10)r —

Hi

—7]

a
A\

S XL

— TL|¢>L




Fault-tolerant T-gate

Goal: Apply logical T-gate to state |¢));, = a|0), + b|1),;
Need ancilla qubit. T gate is applied transversally — Does not
correspond to logical T-state.

State before measurement

\}i(a 0) + be'™*[1))[0) + (b0) + ae™/*[1)) |1)

If we measure |0), we are done, otherwise apply correction SX.
Preparation of ancilla has to be done fault-tolerantly!




Threshold Theorem

» Reliable quantum computation is possible if the physical error
rate p is below a certain threshold py,.

» For p < pih, error is exponentially suppressed as we scale
the code.

1 T
(a) Simulation

2 o P
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The Surface Code
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Surface Code - Introduction

» 2D stabilizer code proposed by
Kitaev et al. [7]
Belongs to the class of CSS codes
» Pauli-Z and Pauli-X type checks
» Planar graph connectivity
Ideal for superconducting circuits
» High threshold (~1%) against noise

» Parallel syndrome extraction . .
Y % ! Figure: Surface code with 9

data and 8 ancilla qubits [15].




Surface Code - Stabilizers

Stabilizers at the interior of the surface check 4 qubits at a time.
For each group (called plaquette) we have:

5>(<i) = XiXit1Xi12Xiy3 Sg) = ZiZi1Zi+2Zi43

Detect an odd number of X/Z errors per plaquette.
Order of CNOT gates matters to avoid hook errors.

Figure: Pauli-X and Pauli-Z type stabilizers for the surface code. CNOT gate
schedule measuring syndrome indicated by vertex index [15].




Surface Code - Error Classification

Only need to correct Pauli errors: E = Py ® ... ® P, where
P, e{l,X,Y,Z}

Detectable Errors

» Anti-commute with stabilizers:
3Se€S:SE=—-ES

» Example: Single-qubit errors
Undetectable errors
» Product of stabilizers: E=5;...5,, S; € S

» Logical operators: Normalizers of S

Beauty of surface code: Errors have topological interpretation!




Surface Code - Detectable Errors




Surface Code - Detectable Errors

Error Chain Properties:

» Errors manifest as chains on

surface
» Chain endpoints flagged by
syndromes:
» One syndrome if chain ends at
boundary
» Two syndromes for interior
chains
» Pauli-Y triggers 4 syndromes Figure: Detectable chain of

Equivalent to X and Z errors Pauli-Z errors [15].




Surface Code - Undetectable Errors

10

15

11

16

12

22,

13,

18

14

19

Figure: Undetectable errors which are products of stabilizers generators [15].
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Surface Code - Logical Gates

Logical Gates Properties:
» Connect opposite borders
» Unique up to stabilizer product

» Anti-commuting logical operators
cross odd number of times

Figure: Chain of Pauli-X
forming logical X, operator
[15].

o vaversirerer [JO) £
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Surface Code - Logical Gates

Logical Gates Properties:
» Connect opposite borders
» Unique up to stabilizer product

» Anti-commuting logical operators
cross odd number of times

Figure: Chains of Pauli-Z
forming logical Z; operator
[15].




Surface Code - Logical Gates

Logical Gates Properties:

» Connect opposite borders
» Unique up to stabilizer product

» Anti-commuting logical operators
cross odd number of times

Figure: Equivalent logical X
chains [15].




Surface Code - Code Distance

Question: How many errors can we correct?
For d? data qubits, shortest logical error chain has length d.

— We can correct up to | 951 ] errors.

The surface code is a [[d?, 1, d]] CSS code with code distance d.




Surface Code - Entangling Gates

Figure: Transversal logical CNOT with pairwise matching physical qubits.
Suitable for neutral atom or ion-trapped architectures where qubits can be
moved [4].




Surface Code - Entangling Gates

Step 3. Split

patches

Measure data qubits to
split into two separate

L
—

patches prep
0 state

Step 1. Prepare
Data qubits between

ared in

Figure: Logical CNOT through lattice surgery. Involves an ancilla surface code

Step 2. Merge

Measure stabilisers for
one long patch & repeat
(e.g. d times)

patch and stabilizer measurement along adjacent surface edges [4].

m]

rﬁ'

e | <§; R vt |

DA



Surface Code - T-gate (via state-injection)

T-gate prepared via state |0), — H, —E S X1
teleportation.
Need magic state: T, |+), V), S— K

Protocol for faulty state-injection [12]:
» Prepare physical qubit in state |¢)
» Initialize small distance surface code (e.g. d = 3) in |0),
» Spread state via CNOT operations
P Protect state with syndrome measurement rounds
» Grow to target distance: d—d

Not fault-tolerant: Low-distance d allows for errors




Surface Code - State injection example

= | d |
= f 1
s -
> 1e)y=Ce o-
= —\\/-\//'! w
7 N Lo
o . @ |5
%‘J _ L qg.
= () =5
i /“\\ //-; N
N (=}
L@ 1 @] v e ! |2
I,/ N 7, N N 7, N I 2
L, N J s N\ =4
\Q = TN =N ]
| I
(1 e, e |
| > N 7, N |
[ \yars N\ ol
o o [ ]
[N N N 1
| N (/ \ (/ N (/ |
C @ '@ )
| P N 7, N 7, N
{ J [ [ o
T\
LLogical X operator

Figure: Preparation of magic state by preparing a single physical qubit and

growing the surface code distance [12].
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Surface Code - Magic State Distillation

Muller-Reed [[15, 1, 3]]-code: Smallest code with transversal T-gate

NN

[+) {2

Example: 15-to-1 protocol "

=
L

pa

1. Encode by measuring stabilizers @

1
I
|
I
1
I
1
I

2. Apply transversal (faulty) T-gate
Surface code: Via state-injection o

3. Measure Stabilizers 1o
Detect up to weight-3 errors o

EEEEREERER

=
[><><~><"-><~><><

4. Discard and repeat, if errors o
detected

P
T
T

NN
o

Figure: 15-to-1 magic state

Output: Magic state T,
P 8! L distillation protocol [13].

If error probability of T-gate is p;,, success probability is poyr = 35pﬁ,.
Further distillation rounds can use teleportation for transversal T;.
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Fault-Tolerant Quantum Architecture

Based on surface code with Clifford4+ T gate set. Gates are
implemented using fault-tolerant lattice surgery.

Core Processor Components

1. Memory Fabric
» Data storage
» Performs logical
operations
2. Magic State Buffer
» Stores prepared T-states
» Enables on-demand
T-gates
3. Magic State Factory
» 15:1 distillation protocol
» Continuous state
preparation

Auto-correcting

Multi-level magic state

Memory fabric

buffers

distillation factory

|

Bus qubit
Data qubit

Magic state storage qubit
Ancillary qubit

Distilling port

'13 Logical qubit expansion space

Magic state distilatio
Il 1o ot repaao

| xbasis edge
| Zbasis edge

A H Ll

o

A NS SNE e S e S )|

Figure: FTQC architecture [16].




Fault-Tolerant Quantum Computing - T-count
1015

0.5
1014

s
S}
L

1013

_10—2

T-count
= = =
o o o
5 B 5

6 FeMoco

RSAz048

RSA1024

10° 10-3

MSD relative footprint

108

107 T
10? 103 104 10°

Number of logical qubits
Figure: Ratio of magic state distillation (MSD) footprint to total computational
footprint for different number of logical qubits and T-counts for fusion-based

QC [11].




Fault-Tolerant Quantum Computing - Resource Estimation

100.00
- °
A "
factoring
10.00 - B %
= A a = T ol
S A
2 ° quantum chemistry
E quantum dynamics ie - 4
£ 1.00 —
'-g A O ‘/ =L
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run time (seconds)

Figure: Runtime of 3 applications for different gate times and modalities:
superconducting [ns], ion-traps [us], and Majorana [3].

Observation: With 100 [us| gate times, large algonthms will take
almost a year! G e or o [

3 pymesimere
10810




Outline

Correcting Errors: The Decoder
Minimum-Weight Perfect Matching
Neural Network Decoders




The Decoder

Goal: Determine the state of the logical qubit

Input: Syndrome measurements and noise information
Output: Logical state estimate

Noise model

Syndrome

Decoder Predict Logical state
measurements




The Backlog Problem

Non-Clifford operations (e.g. T-gates) require processing of all
prior syndrome measurements
When Decoder slower than syndrome generation rate:
1. Define rates:
» rgen: syndrome generation rate
» rproc: syndrome processing rate
2. Let f = % > 1 (backlog factor)

3. For initial T-gate (Tp):
> Processing overhead time: Ag,
» New syndromes during processing: D; = rgen X Dgen

Observation
Terhal [17] showed: Overhead for k-th T-gate grows as Dy




The Backlog Problem

R, ,- line c (if no backlog after R,)
//I
o T . v . line b (if no backlog after R,)
£ ~ p
=1 7 .- line a (if no backlog at all)
~ 4 a ’
%]
o
> R, ) -
< 4 s T, time to encounter the x*" T-
; S gate if there is no backlog
R R, : time required to decode
[ L t the  backlog  after  we
encounter the x" T-gate
Ro’ Idle
4 t,=Tp
L t, =TT, for x>0
4 ty
4
” I I

-
. . Compute time (no backlog)
Figure: Exponential growth of syndrome processing overhead for f > 1 [10].
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The Backlog Problem - Example

Circuit Parameters
» Logical qubits: 100
> Total gates: 2,356
> T-gates: 636

Timing Parameters

» Syndrome generation cycle: 400 [ns]
» Decoder processing time: 800 [ns]
> Backlog factor f = & =2

proc

Circuit execution time: 1019 seconds!

Decoder speed and T-gate count critical metrics for practical
quantum computation.




Real-Time Decoding for Superconducting QPU

Real-time decoding challenging for superconducting devices due to
gate speed: Cycle time < 1 [us].

[ Control | [
[f Control | :

Control
System

)

Gate Sequencer

river Real Time Decoder i
> Gate Sequencer .

o FPGABoundary
o
o

Sequencer
Processor

Results
Crossbar
D:40 ns

) @ @®® C
) @O® C

Multi-node IO F:260ns |

Figure: Integration of Riverlane’'s FPGA decoder into Rigetti's control system.
Latencies are represented by edge labels. Demonstrate mean decoding time
below 1 [us] for Rigetti's Ankaa-2 device [5].
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Type of Decoders

Many types of decoders exist, with unique properties:
» Maximume-likelihood decoder
Optimal, but computationally infeasible

> Matching-based: (e.g. MWPM [9] or BP)
Optimal for independent errors, widely studied

» Clustering-based (e.g. Union Find [6])
Fast, near-linear time complexity

» Tensor Networks:
Handles correlations well, higher computational overhead

> Neural Networks: (e.g. AlphaQubit [2])
Potential for handling complex noise models

Key trade-off: decoding speed vs. correction accuracy

We are going to explore MWPM and neural decoders.




Graph Matching

Perfect Matching Problem: Given a
weighted graph G = (V, E, w), where
w:E—R
» Find matching M C E where each v € V
appears in exactly one edge in M

» Minimize total weight: miny -y, w(e)




MWPM Decoder - Idea

Observation: Error chains create distinct syndrome patterns

Types of Error Chains:
1. Boundary chains

» Single syndrome at interior of surface
» Other end terminates at code boundary

2. Interior chains
» Two syndromes: one at each end

Matching idea:
» Each chain has an associated occurrence probability

> Match all active syndromes minimizing error probability




MWPM Decoder - Example

Figure: Tanner graph for Pauli-Z type errors for the distance 5 surface code.
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MWPM Decoder - Example

®

Figure: Active syndromes in Tanner graph for given Pauli-Z errors.
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MWPM - Example

Figure: Syndrome graph for active syndromes.
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MWPM - Example
[]

]

Figure: Matched syndrome graph for active syndromes.
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MWPM - Example

Figure: Decoded errors leading to logical Z; error by connecting chain of
Pauli-Z errors to opposite boundaries.
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MWPM Decoder - Construction

Setup:
» Decode Pauli-Z and X errors separately
» Consider independent Z errors E € {/,Z}" for CSS code

For stabilizer generator set {S;}; define:
» Syndrome bits: s; € {0,1}, where s; = 1 if generator S;
anti-commutes with E
» Error vector: e € {0,1}" if E; = Z;

Error Probability:

p(E) =[x —p)0=) - ps =TJ@ =) [] ( a >ei

1—pj

i i i
Use logarithmic form, avoiding numerical issues:

log(p(E)) = Z log(1 — pi) — Z w; - €j,

where w; = log((1 — pi)/pi) L [ T v |



MWPM Decoder - Construction

Graph Construction:
» Condition: Each Z-error anti-commutes with two X-stabilizers
» Define matching graph G = (V, E) with |V| = |s|
» (v,w) € E,if S, and S,, anti-commute with Pauli-Z on qubit
> Set edge weight to w; for qubit /

Decoding Strategy:
» Perfect matching: Match all nodes with s; =1

» Minimum-weight: Find smallest chain with s; =1 at

boundaries
— More probable errors have lower weight

Implementation:
» Matching: Edmond’s Blossom algorithm
> Complexity: O(|s|*log(|s|))
» Syndrome graph: Dijkstra’s algorithm




Neural Network Decoder - AlphaQubit

QEC’s "The Bitter Lesson” moment?

Prob(error)

LORRRX11101.

StabilizerEmbedder
3| StabilizerEmbedder

..0100011101,

(0]

1100011110.¢

1

StabilizerEmbedder 5
StabilizerEmbedder
StabilizerEmbedder =3

1011011100

1011010000,

Zero

Figure: Decoder's recurrent network structure. Syndromes update transformer
state. Outputs single-bit, indicating if logical bit was flipped. Evaluated up to
code distance 11 [2]. = P © [ Tt vrr |



https://www.cs.utexas.edu/~eunsol/courses/data/bitter_lesson.pdf

AlphaQubit - Training

. . Finetune
Pretraining

» 2.5 billion samples from 3 sources:
1. SI1000: 25 QEC rounds, no
device-fit
2. Noise estimate from XEB
3. Noise estimate for Tanner graph
weights pj;

Finetuning preven
» Pauli+ simulator including leakage, ’ L I

analogue readouts, and cross-talk

Device data

-
SI1000 o m:‘;:l
» 100 million samples data ' fiing

agnostic

Figure: Training stages [2].
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AlphaQubit - Stabilizer Embedding Layer
Input:
» Binary syndrome measurement and temporal differences
> Leakage events and their probability
» Embedded stabilizer index i
Output: d° — 1 different embeddings

Decoder state,

(StabilizerEmbedder (RNN core

Measurement,;

—> Linear

Event,; .
*, = m—ge—p | inear

Linear

Leakage,,

!

Event leakage,;

|

index i

*, = s Embed

r

Decoder state,,

Figure: Stabilizer embeddings used as input for AlphaQubits internal
transformer state update round [2].
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AlphaQubit - Results

0.0450

0.0425

0.0400

0.0375

0.0350

Mean LER

0.0325

0.0300

0.0275

0.0250

Varbanov et al. (ref. 36)

LSTM 200M

Pretrained

Finetuned

Tensor network

MWPM-BP

MWPM-Corr

@
5 3
£ .
= L
2 =
2 e
= %
-3 >

3
g 5
= £
s S

LSTM 200M

Code distance

X
5
E
%
2
2

Pretrained
Finetuned

MWPM-BP

MWPM-Corr

MWPM (PyMatching)

Figure: Mean logical error per QEC round for Surface Code distances 3 and 5
on Google's Sycamore device. Results averaged across bases {X, Y, Z} [2].
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Decoder Threshold Analysis

Threshold Dependencies:
» Decoder algorithm
» Noise model
» QEC code structure

For distance d, physical error p
and threshold p:p,:

Logical Error Scaling:

(d+1)

p 2
Pthr

Logical Error Rate (log)

LER = PER

/ urface Code D

Physi'cal Error Rate (Iog)'

Figure: Threshold example [15].
Error Suppression:
9
A — d -~ Pthr
€d+2 P

Note: Threshold comparisons must consider all factors!




Outline

Realization of Quantum Memory
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Google - Surface Code Experiment

Quantum Memory Experiment:

Preserve logical qubit for many QEC cycles a b =
gical g y y o@ 8@ @y
oldioid o)
Setup: ER-R-51- )
» Sycamore: 105-qubits transmon device élnﬂnﬂuﬂ}—mﬁ?“’“

» Distances: d =3, 5, and 7 {8noln

o

> X/Y 25 [ns], CZ 42 [ns]
» TLS mitigation strategy

Cumulative

_. o Distribution

=)
!

Main Results:
> Demonstrate A > 2 Figure: a Sycamore
> Life-time of logical qubit 2 of best topology. b Gate error
physical qubit on QPU distribution [1].
» Real-time decoding < 1.1[us]

Error probability




Google - Real-Time Decoder Data Flow

Control electronics classify 1/Q readout into 0/1
Transmitted to workstation via low-latency Ethernet
Measurements converted to detection events

Streamed to constant sized shared-buffer

AR A

Decoder reads from buffer

Error graph  Complete Nc')w Not started

Figure: Windowed streaming decoder: Local Blossom algorithm with
subsequent fusing until global MWPM is found [1].
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Google - Correlated Errors through Leakage

Transmons not ideal qubits — Leakage to |2),]3),... possible.

Problem: QEC assumes uncorrelated errors. Leakage causes
correlated errors! Especially CZ gate prone to leakage.

DQLR: Use Leakage iSWAP to transfer leakage to ancillas [14].

0.6

[~ Excess leakage population ¢ Data qubit
O Measure qubit

107 5 10° ® ,:\

(x%) SC0) ()
(©©© C

02 )

IO OS5 )

o
IS
I

&

1S3
)
|

Surface
code

Leakage population on
injected qubit (No reset)

S~ T, of |2)
~

S~

-~
~

T T
[0] 5 10 15 20 25 30
Surface code cycles after injection
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Google - Results

0.5

0.4 A
< 3
= 1 [y
3 ] o
‘20.3 3
Q B —
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o b o
5 ]
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g ] ki
2 ] e
9 1 a
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1/ - = Best physical qubit 105Q
0.0 Y+—r—/——m—m—p—r—"r—7+—7T"—T"—"—"T"T7T"—T—TT T
0 50 100 150 200 250

Quantum error correction cycle, t

Figure: Logical error rates (LER) over multiple QEC cycles demonstrating

A =214+0.02 [1]. . a o
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Quantum Error Correction - Summary
Many more topics ...

» Quantum LDPC codes, color codes, ...

» Subsystem codes
» Bosonic codes

» Quantum resource estimation

> ..
An Interdisciplinary Field!
» QPU fabrication and control
» Software development and tooling

» Novel error correction code design

Theory Meets Practice 3 )

» Transition from theory to implementation Figure: Source: [8]

» Emerging real-world demonstrations
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