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Classical noisy channel

▶ Send k-bit message across a noisy channel.

▶ Channel flips one bit independently with low probability p

0

0

1

1−
p

p

▶ How do you protect from the noise?



Repetition code

▶ Repeat information, so e.g., send x = 000 instead of x = 0

x x̃
noise

▶ one receives:
▶ 000 with probability (1− p)3,
▶ 100, 010, 001 each with probability (1− p)2p,
▶ 011, 101, 110 each with probability (1− p)p2, and
▶ 111 with probability p3.

▶ Let’s say we receive x̃ = 010

▶ Assuming at most one error occurred, we can take a majority
vote to decode x = 000



Error correction process

x y ỹ x̃
encoding noise decoder

▶ E(x) = y encodes a k bit message x , into an n bits

▶ A codeword is an element of the image of E :
Set of all codewords C = Im(E)

▶ E.g., 3-repetition code 0, k = 1, n = 3, we have
C = {000, 111}

▶ If one or two bits are flipped, the error is detectable

▶ If all bits are flipped, the error is undetectable = logical
error



Simple Parity-Check Code

Encoding: Given a 3-bit message (a, b, c), the parity-check code
encodes it as:

E (a, b, c) = (a, b, c , z) where z = (a+ b + c) mod 2

Properties:

▶ z indicates whether the sum of a, b, c is even (z = 0) or odd
(z = 1).

▶ Any single-bit error can be detected:
▶ If a, b, or c is flipped, z ̸= (a+ b + c) mod 2.
▶ If z is flipped, it no longer corresponds to the parity of a, b, c .

Limitation: Errors cannot be corrected.



Hamming Codes - The Idea

▶ Hamming introduced a method to correct errors using
parity-check bits.

▶ Example: A 4-bit message x = (a, b, c , d) with 3 parity-check
bits:

z1 = a+ b + d , z2 = a+ c + d , z3 = b + c + d (mod2)

▶ Encoded message:

y = E (a, b, c, d) = (a, b, c , d , z1, z2, z3)



Parity-check Visualization

Error Detection:

▶ If a single bit is flipped, certain
parity-checks will fail.

▶ Example:
▶ If a is flipped, z1 and z2 will fail,

while z3 remains valid.

Error Correction:

▶ The pattern of failed parity-checks
indicates the position of the flipped
bit.

▶ Example: Flip in d causes all z1, z2, z3
to fail.

z1

z2 z3

a bd

c



Introduction to Linear Codes

▶ Linear codes generalize the concept of transmitting a message
with parity-check bits.

▶ A linear code uses a matrix G—called the generator
matrix—to encode the message:

y = Gx .

▶ The message x has length k, and is supplemented with m
parity-check bits such that the encoded message y has length
n = k +m.

▶ The generator matrix G can be written as:

G =

(
Ik
A

)
▶ Ik : k × k identity matrix (reproduces the message bits),
▶ A: m × k matrix (defines parity-check operations).



Example: Generator Matrix of the Hamming Code
For the [7,4]-Hamming code, the generator matrix is:

G =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1 1 0 1
1 0 1 1
0 1 1 1


Encoding a message x = (a, b, c, d)T :

Gx =



a
b
c
d

a+ b + d
a+ c + d
b + c + d


=



a
b
c
d
z1
z2
z3


.

Result: Encoded message includes the original message bits and
parity-check bits.



Properties of Generator Matrices

Code is defined as image of G :

1. The codewords are the set of all linear combinations of the
columns of G .

2. To find all the codewords, just calculate all the y of the form
y = a1g1 + · · ·+ akgk , where gi is the i th column of G and
a1, . . . , ak ∈ {0, 1}.

3. Elementary row and column operations on G do not change
the code.

4. Using Gaussian elimination, G can always be transformed into
the standard form:

G =

(
Ik
A

)
.



Parity-Check Matrix

An equivalent representation of a linear code is the parity-check
matrix H :

Hy = 0,

▶ H is an m × n matrix,

▶ y is a codeword if and only if Hy = 0.

▶ set of all codewords C = Ker(H)

For the [7,4]-Hamming code:

H =

 1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

 .

▶ A received word ỹ can be checked for errors by evaluating Hỹ .
▶ Errors can often be located and corrected using this method.



Generator Matrix and Parity-Check Matrix

For a generator matrix of the form:

G =

(
Ik
A

)
the corresponding parity-check matrix can be written as:

H =
(
A Im

)
.



Why Use the Parity-Check Matrix?

▶ A received vector ỹ = y + e combines the original codeword y
and an error vector e.

▶ Applying the parity-check matrix H gives:

Hỹ = H(y + e) = He.

▶ The result s = He is known as the syndrome.

▶ The syndrome identifies errors by revealing violated
parity-check equations: si = 1 indicates a violation.

Decoding:

▶ Decoding finds the most probable error e that explains the
syndrome s.

▶ A violated parity-check equation points to specific bits
involved in the error.



Syndrome Table for Error Correction

The following table shows the bit we choose to correct for each of
the 8 possible syndromes

Syndrome 000 100 010 001 110 101 011 111

Correction ∅ z1 z2 z3 a b c d

z1

z2 z3

a bd

c

In quantum error correction, the syndrome can/has to be measured
without disturbing the quantum state



Decoding linear codes

Decoding consists of finding the original message given its noisy
encoded version.

▶ There are 2n possible syndromes.

▶ We define an efficient decoder as an algorithm that
accomplishes this task in polynomial time in n.

Given the parity-check matrix H . Let’s assume errors follow a
certain distribution P(e).
▶ Given the received syndrome s, we want to find the most

likely error e.

▶ The goal of an ideal decoder:

Find the vector e that maximizes the probability P(e | s).



Applying Bayes’ Rule

Using Bayes’ rule, we can write:

P(e | s) = P(s | e)P(e)
P(s)

.

▶ P(s) does not depend explicitly on e, and can be ignore for
solving the maximization problem over e

▶ Any valid error e must satisfy He = s, so:

P(s | e) =

{
1, if He = s
0, otherwise.

Our optimization problem then becomes:

max
e∈{0,1}n

P(e) subject to He = s.



Special Case: Independent Errors

▶ In the case where errors are iid, we have:

P(e) =
n∏

i=1

P(ei ).

▶ Let P(ei = 1) = p and P(ei = 0) = 1− p. Then:

P(e) = p|e|(1− p)n−|e|,

where |e| is the Hamming weight of e.
▶ For p < 0.5, the probability P(e) increases when the weight

of e decreases. Therefore, our optimization problem reduces
to finding the error of minimum weight that satisfies He = s:

min
e∈{0,1}n

|e| subject to He = s.



Maximum A Posteriori (MAP) Decoding and Its Challenges

MAP Decoder: Any decoder that explicitly solves

max
e∈{0,1}n

P(e | s),

is called MAP decoder, and is considered an ideal decoder.

Challenges:

▶ A naive approach requires searching all 2n possible error
vectors, leading to exponential time complexity.

▶ The MAP decoding problem is NP-complete, meaning no
general polynomial-time algorithm is likely to exist.

Efficient Decoding for Special Codes:

▶ Certain structured codes (e.g., Hamming codes, repetition
codes) allow polynomial-time decoding.



Heuristic Approaches to MAP Decoding

Heuristics: Approximate solutions for MAP decoding that are
efficient and perform well in practice.

Belief Propagation Algorithm:

▶ An iterative, linear-time algorithm.

▶ Exploits the factorization of P(e | s) over a graph (e.g.,
Tanner graph).

▶ Widely used in classical error-correction and also in quantum
error correction.
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Quantum Logic

▶ Quantum bit/Qubit

|ψ⟩ = α|0⟩+ β|1⟩

|α|2 + |β|2 = 1

▶ Universal logical operations, gates, unitaries:
Hadamard, S-gate, T-gate, CNOT

▶ Measurements:
▶ Set of operators {Mi} such that

∑
i M

†
i Mi = I

▶ Probability of outcome i is p(i) = ⟨ψ|M†
i Mi |ψ⟩

▶ State after obtaining outcome i is Mi |ψ⟩√
p(i)



Hardware: Superconducting Circuits

Ĥ = ωr â
†â Ĥ ∼ ωqb̂

†b̂ − Kb̂†2b̂2

PRA 69, 062320 (2004)



Sources of Quantum Noise / Errors
▶ Decoherence:

▶ T1 relaxation: Energy decay from the |1⟩ → |0⟩
▶ T2 dephasing: Loss of phase coherence in superposition states.

▶ Gate Errors: Imperfect implementation of quantum gate
operations, leading to inaccuracies.

▶ Measurement Errors: Errors during the readout of qubit
states, resulting in incorrect outputs.

▶ Cross-Talk: Interference between neighboring qubits during
operations, reducing fidelity.

▶ Leakage Errors: Qubits transitioning to higher energy
states outside the computational basis.

▶ Stray Interactions: Unintended couplings during gate
operations.

▶ Idle Errors: Errors occurring while qubits remain idle due to
environmental interactions.

▶ External Noise: Electromagnetic interference or cosmic rays.



Error budget distribution
distance-5 surface code on 72-qubit processor ( arXiv:2408.13687v1 )



Noisy Quantum Channels

▶ A noisy quantum channel introduces errors during
transmission or processing.

▶ Examples of noise effects:
▶ Degradation of quantum states.
▶ Reduction in entanglement and coherence.
▶ Significant impact on fidelity and performance.

▶ Kraus operators provide a powerful framework to describe and
analyze noise in quantum systems.



Kraus Operators

▶ Describe the evolution of quantum states in open systems.

▶ Evolution of a density matrix (ρ) under Kraus operators:

ρ′ =
∑
i

KiρK
†
i

▶ Completeness relation ensures trace preservation:∑
i

K †
i Ki = I

▶ These operators model common errors such as bit-flip,
phase-flip, and depolarization.



Bit-Flip Channel

▶ Models noise where qubits flip between |0⟩ and |1⟩ with
probability p.

▶ Quantum state evolution:

T (ρ) = (1− p)ρ+ pXρX †

▶ Kraus operators:

K0 =
√

1− p I , K1 =
√
p X



Depolarizing Channel

▶ Randomizes the qubit state with probability p.

▶ Channel action:

E(ρ) = (1− p)ρ+
p

3
(XρX † + Y ρY † + ZρZ †)

▶ Kraus operators:

K0 =
√
1− p I , K1 =

√
p

3
X , K2 =

√
p

3
Y , K3 =

√
p

3
Z



Amplitude Damping Channel

▶ Models energy dissipation, such as photon loss.

▶ Channel action:

E(ρ) = E0ρE
†
0 + E1ρE

†
1

▶ Kraus operators:

E0 =

[
1 0
0

√
1− γ

]
, E1 =

[
0

√
γ

0 0

]



Quantum Error Correction

▶ Quantum error correction (QEC) is essential for protecting
quantum information against noise and decoherence.

▶ The primary goals of QEC are:
▶ Detect errors without disturbing the quantum information.
▶ Correct errors to restore the original quantum state.
▶ Ensure fault-tolerant quantum computation.



Errors in quantum computers

▶ Classically, bits can flip (or be erased).
i.e., 0 → 1 and 1 → 0 with some probability p.

▶ Qubits have a larger state space, so more things can go
wrong.
▶ Any operation that can be considered a gate can also

introduce an error.
▶ Examples include Pauli errors (X ,Z ,Y ).

X |0⟩ = |1⟩
X |1⟩ = |0⟩

Bit flip

Z |0⟩ = |0⟩
Z |1⟩ = −|1⟩

Phase flip

Y |0⟩ = i |1⟩ = iXZ |0⟩
Y |1⟩ = −i |0⟩ = iXZ |1⟩

Bit & phase flip



The Most Important Fact About QEC

▶ Errors are inherently continuous (analog). How can we hope
to correct these?

▶ Suppose some error E introduces a relative phase:

E |ψ⟩ = α|0⟩+ e iδβ|1⟩

▶ The angle δ could (in principle) be infinitesimal.

▶ Any error can be written as discrete Pauli errors with
continuous coefficients:
▶ This is because the Pauli matrices (+ the Identity) span C2×2.
▶ For any E and ψ:

E |ψ⟩ = (e0I + e1X + e2Y + e3Z )|ψ⟩

▶ But the coefficients ei could still be infinitesimal, in principle.



The Most Important Fact About QEC

▶ Measurement turns continuous errors into discrete errors.

▶ Suppose we measure the error state using operators {Mi}:

E |ψ⟩ = (e0I + e1X + e2Y + e3Z )|ψ⟩

▶ Then, with probability p(i), the state collapses to: MiE |ψ⟩√
p(i)

▶ This process collapses the superposition and reduces the
continuous coefficients to a global phase, which is irrelevant.
▶ For example, we could choose Mi such that: E |ψ⟩ → ηiσi |ψ⟩
▶ Here, σi ∈ {I ,X ,Y ,Z} is a discrete error that can be

corrected.
▶ The coefficient ηi ∈ C is continuous but represents a global

phase and hence does not matter.
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Classical error correction: The repetition code

▶ A key concept in error correction is adding redundancy.
▶ For example, given a bit, we can make three copies of it:

▶ 0 → 000, 1 → 111
▶ This is known as the (classical) repetition code.
▶ The idea is very simple: If an error occurs on one bit only, we

can correct it by looking at the other two bits and taking a
majority vote.

▶ Given the classical repetition code, we might try to do the
same with qubits, i.e. map

|ψ⟩ → |ψ⟩|ψ⟩|ψ⟩

▶ This is not possible due to the ”no cloning theorem”



QEC: Can We Add Any Redundancy?

▶ From the no-cloning theorem, we know it is not possible to
make exact copies of a quantum state as in the classical
repetition code.

▶ Can we copy information?

▶ Claim: We can ”copy basis information” in the following
sense:

α|0⟩+ β|1⟩ → α|000⟩+ β|111⟩

▶ Note that this encoding circuit entangles the ”input” qubit
with two other qubits.

▶ Errors in quantum computers are often caused by qubits
entangling with their environment.



Repetition code for bit flip errors

▶ The encoding α|0⟩+ β|1⟩ → α|000⟩+ β|111⟩ gives us
redundancy. Now what?

▶ We need to check which errors (if any) occured in the
encoded state.

▶ We do this by (projective) measurements. What projections
should we apply to find out what happened?

▶ There are four possible things that can happen:

No qubit was flipped. P0 = |000⟩⟨000|+ |111⟩⟨111|
The first qubit was flipped. P1 = |100⟩⟨100|+ |011⟩⟨011|
The second qubit was flipped. P2 = |010⟩⟨010|+ |101⟩⟨101|
The third qubit was flipped. P3 = |001⟩⟨001|+ |110⟩⟨110|



Turning the table

▶ By measuring these operators, we learn what errors (if any)
occurred.

▶ Since we know which error occurred, we can correct it.
Syndrome measurement Meaning Correction operator

P0 = |000⟩⟨000|+ |111⟩⟨111| No qubit was flipped. I

P1 = |100⟩⟨100|+ |011⟩⟨011| The first qubit was flipped. X0

P2 = |010⟩⟨010|+ |101⟩⟨101| The second qubit was flipped. X1

P3 = |001⟩⟨001|+ |110⟩⟨110| The third qubit was flipped. X2

▶ But since measurement collapses the state, we need to use
ancilla qubits for syndrome measurement.



Bitflip Repetition Code: circuit implementation

Encoding Syndrome measurement

|ψ⟩

Noise|0⟩

|0⟩

|0⟩

|0⟩



Bitflip Repetition Code: circuit implementation

Encoding Correction

|ψ⟩ X X

|0⟩

|0⟩

|0⟩

|0⟩

Syndrome Correction

00 I
10 X1

01 X3

11 X2



Bitflip Repetition Code: circuit implementation

Encoding Correction

|ψ⟩

|0⟩

|0⟩ X X

|0⟩

|0⟩

Syndrome Correction

00 I
10 X1

01 X3

11 X2



Bitflip Repetition Code: circuit implementation

Encoding Correction

|ψ⟩

|0⟩ X X

|0⟩

|0⟩

|0⟩

Syndrome Correction

00 I
10 X1

01 X3

11 X2
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Stabilizer Formalism: The Pauli Group

▶ Stabilizer codes are a class of quantum error correcting codes
defined by commuting sets of Pauli operators, called the
stabilizer generators

▶ Define the Pauli group
G1 = {±I ,±iI ,±X ,±iX ,±Y ,±iY ,±,Z ,±iZ} = ⟨X ,Y ,Z ⟩

▶ It is enough to consider X , Z together with the prefactors ±i
because Y = iXZ

▶ Any qubit unitary can be written as a linear combination of
elements of G

▶ We also define Gn as n-fold tensor products of elements in G1

▶ Notation: Z1Z3 ≡ Z ⊗ I ⊗ Z



The Stabilizer Group - definition 1

▶ Consider some subgroup S ⊂ Gn, where all elements
commute

▶ Let VS be a 2k-dimensional subspace of n-qubit states defined
by s |ψ⟩ = +1 |ψ⟩ ∀s ∈ S , ∀ |ψ⟩ ∈ Vs

▶ This defines a [[n, k]] stabilizer code, which encodes k logical
qubits into n physical qubits

▶ We say S is the stabilizer group of VS , and conversely call
VS the codespace stabilized by S

▶ Example: 3-qubit repetition code [[3, 1]]:
▶ Stabilizer group generators: S = ⟨Z1Z2,Z2Z3⟩
▶ Codespace: VS = {α |000⟩+β |111⟩ |α, β ∈ C, |α|2+ |β|2 = 1}

1D. Gottesmann, Stabilizer codes and quantum error correction,
arXiv:quant-ph/9705052



Stabilizer Codes: Error Detection and Correction

▶ Say some error g ∈ Gn occurs on |ψ⟩ ∈ VS . Since elements of
Gn either commute or anti-commute with each other, g will
either commute or anti-commute with each stabilizer in S

▶ If it anti-commutes with at least one stabilizer, it is a
detectable error

▶ If it commutes with all stabilizers and is not itself a stabilizer,
it is a non-detectable error (logical operator)

▶ Example: 3-qubit repetition code:
▶ {X1,Z1Z2} = 0 so X1 is a detectable error
▶ [X1X2X3,Z1Z2] = [X1X2X3,Z2Z3] = 0 so X1X2X3 is a

non-detectable (i.e. logical error). In fact it is logical X in this
code

▶ Measuring all the stabilizer generators on logical state |ψ⟩ will
give us a syndrome that we then use to apply the
corresponding correction (analogous to classical parity checks)
(see 3-qubit repetition code circuit from earlier)



Calderbank-Shor-Steane (CSS) codes

▶ In general, stabilizer generators can have mixed elements e.g.
X1Z2Z3X4...

▶ CSS codes are a ”nice” type of stabilizer codes built by taking
the parity check matrices HX and HZ of 2 classical codes C1

and C2 to define the X and Z stabilizers respectively. The
generators are thus only pure X or pure Z operators (see
hands-on session)

▶ Syndrome measurement: to measure a qubit in the X basis
we need to apply a Hadamard transform to the qubit since
⟨ψ|HZH |ψ⟩ = ⟨ψ|X |ψ⟩
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Transversal gates in CSS codes

▶ Transversal gates, gates that can
be written as a tensor product of
gates inside each code block, are
a type of fault-tolerant gates

▶ All Clifford gates are transversal in
CSS codes

▶ For example in some CSS codes
the CNOT gate on logical qubits 1
and 2 can be implemented by
applying a CNOT gate between
each homologous qubit of code
blocks 1 and 2

Block 1

Block 2

Figure: Transversal CNOT gate
implementation for a 3-qubit
CSS code



Transversal gates and error spread
An operation is said to be fault-tolerant if it does not increase the
weight of an error w(e) = the number of qubits that e affects
within one code block.

. . .

. . .

. . .

. . .

. . .

. . .

Block 1

e

Block 2

Figure: Non-fault tolerant CNOT gate
implementation for a 3-qubit code

e

Figure: Transversal CNOT gate



Eastin-Knill Theorem

▶ Theorem: There is no non-trivial local-error-detecting
quantum error correcting code that admits a universal set of
transversal gates2. :(

▶ But transversal is not the only fault-tolerant construction!

2Eastin, B., Knill, E. (2009). Restrictions on transversal encoded quantum
gate sets. Physical review letters, 102(11), 110502.



Universal Quantum Computing with Logical Qubits

Knill-Gottesman: Clifford-circuits efficiently simulable

▶ Generated by {H,S ,CNOT} gates

▶ Many codes allow transversal implementation

Non-Clifford (e.g. T -gate), required for universal gate set.

▶ Eastin-Knill: No transversal implementation for CSS codes

▶ Requires magic state preparation and teleportation

|0⟩L HL T SLXL TL |ψ⟩L

|ψ⟩L



Fault-tolerant T -gate

Goal: Apply logical T -gate to state |ψ⟩L = a |0⟩L + b |1⟩L
Need ancilla qubit. T gate is applied transversally → Does not
correspond to logical T -state.

State before measurement

1√
2
(a |0⟩+ be iπ/4 |1⟩) |0⟩+ (b |0⟩+ ae iπ/4 |1⟩) |1⟩

If we measure |0⟩, we are done, otherwise apply correction SX .
Preparation of ancilla has to be done fault-tolerantly!



Threshold Theorem

▶ Reliable quantum computation is possible if the physical error
rate p is below a certain threshold pth.

▶ For p < pth, error is exponentially suppressed as we scale
the code.

Figure: Exponential suppression as we scale the code
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Surface Code - Introduction

▶ 2D stabilizer code proposed by
Kitaev et al. [7]
Belongs to the class of CSS codes

▶ Pauli-Z and Pauli-X type checks

▶ Planar graph connectivity
Ideal for superconducting circuits

▶ High threshold (∼1%) against noise

▶ Parallel syndrome extraction
Figure: Surface code with 9
data and 8 ancilla qubits [15].



Surface Code - Stabilizers

Stabilizers at the interior of the surface check 4 qubits at a time.
For each group (called plaquette) we have:

S
(i)
X = XiXi+1Xi+2Xi+3 S

(i)
Z = ZiZi+1Zi+2Zi+3

Detect an odd number of X/Z errors per plaquette.

Order of CNOT gates matters to avoid hook errors.

Figure: Pauli-X and Pauli-Z type stabilizers for the surface code. CNOT gate
schedule measuring syndrome indicated by vertex index [15].



Surface Code - Error Classification

Only need to correct Pauli errors: E = P1 ⊗ . . .⊗ Pn where
Pi ∈ {I ,X ,Y ,Z}

Detectable Errors

▶ Anti-commute with stabilizers:
∃S ∈ S : SE = −ES

▶ Example: Single-qubit errors

Undetectable errors

▶ Product of stabilizers: E = S1 . . . Sn, Si ∈ S
▶ Logical operators: Normalizers of S

Beauty of surface code: Errors have topological interpretation!



Surface Code - Detectable Errors

Figure: Detectable chain of Pauli-Z errors [15].



Surface Code - Detectable Errors

Error Chain Properties:

▶ Errors manifest as chains on
surface

▶ Chain endpoints flagged by
syndromes:
▶ One syndrome if chain ends at

boundary
▶ Two syndromes for interior

chains

▶ Pauli-Y triggers 4 syndromes
Equivalent to X and Z errors

Figure: Detectable chain of
Pauli-Z errors [15].



Surface Code - Undetectable Errors

Figure: Undetectable errors which are products of stabilizers generators [15].



Surface Code - Logical Gates

Logical Gates Properties:

▶ Connect opposite borders

▶ Unique up to stabilizer product

▶ Anti-commuting logical operators
cross odd number of times

Figure: Chain of Pauli-X
forming logical XL operator
[15].



Surface Code - Logical Gates

Logical Gates Properties:

▶ Connect opposite borders

▶ Unique up to stabilizer product

▶ Anti-commuting logical operators
cross odd number of times

Figure: Chains of Pauli-Z
forming logical ZL operator
[15].



Surface Code - Logical Gates

Logical Gates Properties:

▶ Connect opposite borders

▶ Unique up to stabilizer product

▶ Anti-commuting logical operators
cross odd number of times

Figure: Equivalent logical XL

chains [15].



Surface Code - Code Distance

Question: How many errors can we correct?

For d2 data qubits, shortest logical error chain has length d .
→ We can correct up to

⌊
d−1
2

⌋
errors.

The surface code is a [[d2, 1, d ]] CSS code with code distance d .



Surface Code - Entangling Gates

Figure: Transversal logical CNOT with pairwise matching physical qubits.
Suitable for neutral atom or ion-trapped architectures where qubits can be
moved [4].



Surface Code - Entangling Gates

Figure: Logical CNOT through lattice surgery. Involves an ancilla surface code
patch and stabilizer measurement along adjacent surface edges [4].



Surface Code - T -gate (via state-injection)

T -gate prepared via state
teleportation.

Need magic state: TL |+⟩L

|0⟩L HL T SLXL

|ψ⟩L

Protocol for faulty state-injection [12]:

▶ Prepare physical qubit in state |ψ⟩
▶ Initialize small distance surface code (e.g. d̂ = 3) in |0⟩L
▶ Spread state via CNOT operations

▶ Protect state with syndrome measurement rounds

▶ Grow to target distance: d̂ → d

Not fault-tolerant: Low-distance d̂ allows for errors



Surface Code - State injection example

Figure: Preparation of magic state by preparing a single physical qubit and
growing the surface code distance [12].



Surface Code - Magic State Distillation

Muller-Reed [[15, 1, 3]]-code: Smallest code with transversal T -gate

Example: 15-to-1 protocol

1. Encode by measuring stabilizers

2. Apply transversal (faulty) T -gate
Surface code: Via state-injection

3. Measure Stabilizers
Detect up to weight-3 errors

4. Discard and repeat, if errors
detected

Output: Magic state TL |+⟩L
Figure: 15-to-1 magic state
distillation protocol [13].

If error probability of T -gate is pin, success probability is pout = 35p3in.
Further distillation rounds can use teleportation for transversal TL.



Fault-Tolerant Quantum Architecture

Based on surface code with Clifford+T gate set. Gates are
implemented using fault-tolerant lattice surgery.

Core Processor Components

1. Memory Fabric
▶ Data storage
▶ Performs logical

operations

2. Magic State Buffer
▶ Stores prepared T -states
▶ Enables on-demand

T -gates

3. Magic State Factory
▶ 15:1 distillation protocol
▶ Continuous state

preparation
Figure: FTQC architecture [16].



Fault-Tolerant Quantum Computing - T -count

Figure: Ratio of magic state distillation (MSD) footprint to total computational
footprint for different number of logical qubits and T -counts for fusion-based
QC [11].



Fault-Tolerant Quantum Computing - Resource Estimation

Figure: Runtime of 3 applications for different gate times and modalities:
superconducting [ns], ion-traps [µs], and Majorana [3].

Observation: With 100 [µs] gate times, large algorithms will take
almost a year!
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The Decoder

Goal: Determine the state of the logical qubit

Input: Syndrome measurements and noise information
Output: Logical state estimate

Decoder
Syndrome

measurements

Noise model

Predict Logical state



The Backlog Problem

Non-Clifford operations (e.g. T -gates) require processing of all
prior syndrome measurements

When Decoder slower than syndrome generation rate:

1. Define rates:
▶ rgen: syndrome generation rate
▶ rproc : syndrome processing rate

2. Let f =
rgen
rproc

≥ 1 (backlog factor)

3. For initial T -gate (T0):
▶ Processing overhead time: ∆gen

▶ New syndromes during processing: D1 = rgen ×∆gen

Observation
Terhal [17] showed: Overhead for k-th T -gate grows as f kD1



The Backlog Problem

Figure: Exponential growth of syndrome processing overhead for f > 1 [10].



The Backlog Problem - Example

Circuit Parameters
▶ Logical qubits: 100

▶ Total gates: 2,356

▶ T-gates: 686

Timing Parameters

▶ Syndrome generation cycle: 400 [ns]

▶ Decoder processing time: 800 [ns]

▶ Backlog factor f =
rgen
rproc

= 2

Circuit execution time: 10196 seconds!

Decoder speed and T-gate count critical metrics for practical
quantum computation.



Real-Time Decoding for Superconducting QPU
Real-time decoding challenging for superconducting devices due to
gate speed: Cycle time < 1 [µs].

Figure: Integration of Riverlane’s FPGA decoder into Rigetti’s control system.
Latencies are represented by edge labels. Demonstrate mean decoding time
below 1 [µs] for Rigetti’s Ankaa-2 device [5].



Type of Decoders

Many types of decoders exist, with unique properties:

▶ Maximum-likelihood decoder
Optimal, but computationally infeasible

▶ Matching-based: (e.g. MWPM [9] or BP)
Optimal for independent errors, widely studied

▶ Clustering-based (e.g. Union Find [6])
Fast, near-linear time complexity

▶ Tensor Networks:
Handles correlations well, higher computational overhead

▶ Neural Networks: (e.g. AlphaQubit [2])
Potential for handling complex noise models

Key trade-off: decoding speed vs. correction accuracy

We are going to explore MWPM and neural decoders.



Graph Matching

Perfect Matching Problem: Given a
weighted graph G = (V ,E ,w), where
w : E → R
▶ Find matching M ⊆ E where each v ∈ V

appears in exactly one edge in M

▶ Minimize total weight: minM
∑

e∈M w(e) 5

2 3

1



MWPM Decoder - Idea

Observation: Error chains create distinct syndrome patterns

Types of Error Chains:

1. Boundary chains
▶ Single syndrome at interior of surface
▶ Other end terminates at code boundary

2. Interior chains
▶ Two syndromes: one at each end

Matching idea:

▶ Each chain has an associated occurrence probability

▶ Match all active syndromes minimizing error probability



MWPM Decoder - Example

Figure: Tanner graph for Pauli-Z type errors for the distance 5 surface code.



MWPM Decoder - Example

Figure: Active syndromes in Tanner graph for given Pauli-Z errors.



MWPM - Example

Figure: Syndrome graph for active syndromes.



MWPM - Example

Figure: Matched syndrome graph for active syndromes.



MWPM - Example

Figure: Decoded errors leading to logical ZL error by connecting chain of
Pauli-Z errors to opposite boundaries.



MWPM Decoder - Construction
Setup:
▶ Decode Pauli-Z and X errors separately
▶ Consider independent Z errors E ∈ {I ,Z}n for CSS code

For stabilizer generator set {Si}i define:
▶ Syndrome bits: si ∈ {0, 1}, where si = 1 if generator Si

anti-commutes with E
▶ Error vector: e ∈ {0, 1}n if Ei = Zi

Error Probability:

p(E ) =
∏
i

(1− pi )
(1−ei ) · peii =

∏
i

(1− pi )
∏
i

(
pi

1− pi

)ei

Use logarithmic form, avoiding numerical issues:

log(p(E )) =
∑
i

log(1− pi )−
∑
i

wi · ei ,

where wi = log((1− pi )/pi )



MWPM Decoder - Construction

Graph Construction:

▶ Condition: Each Z -error anti-commutes with two X -stabilizers

▶ Define matching graph G = (V ,E ) with |V | = |s|
▶ (v ,w) ∈ E , if Sv and Sw anti-commute with Pauli-Z on qubit

▶ Set edge weight to wi for qubit i

Decoding Strategy:

▶ Perfect matching : Match all nodes with si = 1

▶ Minimum-weight: Find smallest chain with si = 1 at
boundaries
→ More probable errors have lower weight

Implementation:
▶ Matching: Edmond’s Blossom algorithm

▶ Complexity: O(|s|3 log(|s|))
▶ Syndrome graph: Dijkstra’s algorithm



Neural Network Decoder - AlphaQubit
QEC’s ”The Bitter Lesson” moment?

Figure: Decoder’s recurrent network structure. Syndromes update transformer
state. Outputs single-bit, indicating if logical bit was flipped. Evaluated up to
code distance 11 [2].

https://www.cs.utexas.edu/~eunsol/courses/data/bitter_lesson.pdf


AlphaQubit - Training

Pretraining
▶ 2.5 billion samples from 3 sources:

1. SI1000: 25 QEC rounds, no
device-fit

2. Noise estimate from XEB
3. Noise estimate for Tanner graph

weights pij

Finetuning

▶ Pauli+ simulator including leakage,
analogue readouts, and cross-talk

▶ 100 million samples

Figure: Training stages [2].



AlphaQubit - Stabilizer Embedding Layer
Input:

▶ Binary syndrome measurement and temporal differences

▶ Leakage events and their probability

▶ Embedded stabilizer index i

Output: d2 − 1 different embeddings

Figure: Stabilizer embeddings used as input for AlphaQubits internal
transformer state update round [2].



AlphaQubit - Results

Figure: Mean logical error per QEC round for Surface Code distances 3 and 5
on Google’s Sycamore device. Results averaged across bases {X ,Y ,Z} [2].



Decoder Threshold Analysis

Threshold Dependencies:

▶ Decoder algorithm

▶ Noise model

▶ QEC code structure

For distance d , physical error p
and threshold pthr :

Figure: Threshold example [15].

Logical Error Scaling:

εd ∝
(

p

pthr

) (d+1)
2

Error Suppression:

Λ =
εd
εd+2

∼ pthr
p

Note: Threshold comparisons must consider all factors!
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Google - Surface Code Experiment

Quantum Memory Experiment:
Preserve logical qubit for many QEC cycles

Setup:

▶ Sycamore: 105-qubits transmon device

▶ Distances: d = 3, 5, and 7

▶ X/Y 25 [ns], CZ 42 [ns]

▶ TLS mitigation strategy

Main Results:

▶ Demonstrate Λ > 2

▶ Life-time of logical qubit 2× of best
physical qubit on QPU

▶ Real-time decoding < 1.1[µs]

Figure: a Sycamore
topology. b Gate error
distribution [1].



Google - Real-Time Decoder Data Flow

1. Control electronics classify I/Q readout into 0/1

2. Transmitted to workstation via low-latency Ethernet

3. Measurements converted to detection events

4. Streamed to constant sized shared-buffer

5. Decoder reads from buffer

Figure: Windowed streaming decoder: Local Blossom algorithm with
subsequent fusing until global MWPM is found [1].



Google - Correlated Errors through Leakage

Transmons not ideal qubits → Leakage to |2⟩ , |3⟩ , ... possible.

Problem: QEC assumes uncorrelated errors. Leakage causes
correlated errors! Especially CZ gate prone to leakage.

DQLR: Use Leakage iSWAP to transfer leakage to ancillas [14].



Google - Results

Figure: Logical error rates (LER) over multiple QEC cycles demonstrating
Λ = 2.14± 0.02 [1].



Quantum Error Correction - Summary
Many more topics ...

▶ Quantum LDPC codes, color codes, ...

▶ Subsystem codes

▶ Bosonic codes

▶ Quantum resource estimation

▶ ...

An Interdisciplinary Field!

▶ QPU fabrication and control

▶ Software development and tooling

▶ Novel error correction code design

Theory Meets Practice

▶ Transition from theory to implementation

▶ Emerging real-world demonstrations

Figure: Source: [8]
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