
Quantum Error Correction - Theory and
Hands-on

Jérôme Lenssen, Delphine Martres, Hemanadhan Myneni,
Franz G. Fuchs

9:00 - 12:00, 3. December 2024

Table of Contents

Classical codes (parity check codes)

Need for QEC: Noise sources

First Quantum Code: The Repetition Code

Stabilizer Formalism

Fault-Tolerant Quantum Computation

The Surface Code

Correcting Errors: The Decoder
Minimum-Weight Perfect Matching
Neural Network Decoders

Realization of Quantum Memory

Outline

Classical codes (parity check codes)

Need for QEC: Noise sources

First Quantum Code: The Repetition Code

Stabilizer Formalism

Fault-Tolerant Quantum Computation

The Surface Code

Correcting Errors: The Decoder
Minimum-Weight Perfect Matching
Neural Network Decoders

Realization of Quantum Memory

Classical noisy channel

▶ Send k-bit message across a noisy channel.

▶ Channel flips one bit independently with low probability p

0

0

1

1−
p

p

▶ How do you protect from the noise?

Repetition code

▶ Repeat information, so e.g., send x = 000 instead of x = 0

x x̃
noise

▶ one receives:
▶ 000 with probability (1− p)3,
▶ 100, 010, 001 each with probability (1− p)2p,
▶ 011, 101, 110 each with probability (1− p)p2, and
▶ 111 with probability p3.

▶ Let’s say we receive x̃ = 010

▶ Assuming at most one error occurred, we can take a majority
vote to decode x = 000

Error correction process

x y ỹ x̃
encoding noise decoder

▶ E(x) = y encodes a k bit message x , into an n bits

▶ A codeword is an element of the image of E :
Set of all codewords C = Im(E)

▶ E.g., 3-repetition code 0, k = 1, n = 3, we have
C = {000, 111}

▶ If one or two bits are flipped, the error is detectable

▶ If all bits are flipped, the error is undetectable = logical
error

Simple Parity-Check Code

Encoding: Given a 3-bit message (a, b, c), the parity-check code
encodes it as:

E (a, b, c) = (a, b, c , z) where z = (a+ b + c) mod 2

Properties:

▶ z indicates whether the sum of a, b, c is even (z = 0) or odd
(z = 1).

▶ Any single-bit error can be detected:
▶ If a, b, or c is flipped, z ̸= (a+ b + c) mod 2.
▶ If z is flipped, it no longer corresponds to the parity of a, b, c .

Limitation: Errors cannot be corrected.

Hamming Codes - The Idea

▶ Hamming introduced a method to correct errors using
parity-check bits.

▶ Example: A 4-bit message x = (a, b, c , d) with 3 parity-check
bits:

z1 = a+ b + d , z2 = a+ c + d , z3 = b + c + d (mod2)

▶ Encoded message:

y = E (a, b, c, d) = (a, b, c , d , z1, z2, z3)

Parity-check Visualization

Error Detection:

▶ If a single bit is flipped, certain
parity-checks will fail.

▶ Example:
▶ If a is flipped, z1 and z2 will fail,

while z3 remains valid.

Error Correction:

▶ The pattern of failed parity-checks
indicates the position of the flipped
bit.

▶ Example: Flip in d causes all z1, z2, z3
to fail.

z1

z2 z3

a bd

c

Introduction to Linear Codes

▶ Linear codes generalize the concept of transmitting a message
with parity-check bits.

▶ A linear code uses a matrix G—called the generator
matrix—to encode the message:

y = Gx .

▶ The message x has length k, and is supplemented with m
parity-check bits such that the encoded message y has length
n = k +m.

▶ The generator matrix G can be written as:

G =

(
Ik
A

)
▶ Ik : k × k identity matrix (reproduces the message bits),
▶ A: m × k matrix (defines parity-check operations).

Example: Generator Matrix of the Hamming Code
For the [7,4]-Hamming code, the generator matrix is:

G =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1 1 0 1
1 0 1 1
0 1 1 1


Encoding a message x = (a, b, c, d)T :

Gx =



a
b
c
d

a+ b + d
a+ c + d
b + c + d


=



a
b
c
d
z1
z2
z3


.

Result: Encoded message includes the original message bits and
parity-check bits.

Properties of Generator Matrices

Code is defined as image of G :

1. The codewords are the set of all linear combinations of the
columns of G .

2. To find all the codewords, just calculate all the y of the form
y = a1g1 + · · ·+ akgk , where gi is the i th column of G and
a1, . . . , ak ∈ {0, 1}.

3. Elementary row and column operations on G do not change
the code.

4. Using Gaussian elimination, G can always be transformed into
the standard form:

G =

(
Ik
A

)
.

Parity-Check Matrix

An equivalent representation of a linear code is the parity-check
matrix H :

Hy = 0,

▶ H is an m × n matrix,

▶ y is a codeword if and only if Hy = 0.

▶ set of all codewords C = Ker(H)

For the [7,4]-Hamming code:

H =

 1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

 .

▶ A received word ỹ can be checked for errors by evaluating Hỹ .
▶ Errors can often be located and corrected using this method.

Generator Matrix and Parity-Check Matrix

For a generator matrix of the form:

G =

(
Ik
A

)
the corresponding parity-check matrix can be written as:

H =
(
A Im

)
.

Why Use the Parity-Check Matrix?

▶ A received vector ỹ = y + e combines the original codeword y
and an error vector e.

▶ Applying the parity-check matrix H gives:

Hỹ = H(y + e) = He.

▶ The result s = He is known as the syndrome.

▶ The syndrome identifies errors by revealing violated
parity-check equations: si = 1 indicates a violation.

Decoding:

▶ Decoding finds the most probable error e that explains the
syndrome s.

▶ A violated parity-check equation points to specific bits
involved in the error.

Syndrome Table for Error Correction

The following table shows the bit we choose to correct for each of
the 8 possible syndromes

Syndrome 000 100 010 001 110 101 011 111

Correction ∅ z1 z2 z3 a b c d

z1

z2 z3

a bd

c

In quantum error correction, the syndrome can/has to be measured
without disturbing the quantum state

Decoding linear codes

Decoding consists of finding the original message given its noisy
encoded version.

▶ There are 2n possible syndromes.

▶ We define an efficient decoder as an algorithm that
accomplishes this task in polynomial time in n.

Given the parity-check matrix H . Let’s assume errors follow a
certain distribution P(e).
▶ Given the received syndrome s, we want to find the most

likely error e.

▶ The goal of an ideal decoder:

Find the vector e that maximizes the probability P(e | s).

Applying Bayes’ Rule

Using Bayes’ rule, we can write:

P(e | s) = P(s | e)P(e)
P(s)

.

▶ P(s) does not depend explicitly on e, and can be ignore for
solving the maximization problem over e

▶ Any valid error e must satisfy He = s, so:

P(s | e) =

{
1, if He = s
0, otherwise.

Our optimization problem then becomes:

max
e∈{0,1}n

P(e) subject to He = s.

Special Case: Independent Errors

▶ In the case where errors are iid, we have:

P(e) =
n∏

i=1

P(ei).

▶ Let P(ei = 1) = p and P(ei = 0) = 1− p. Then:

P(e) = p|e|(1− p)n−|e|,

where |e| is the Hamming weight of e.
▶ For p < 0.5, the probability P(e) increases when the weight

of e decreases. Therefore, our optimization problem reduces
to finding the error of minimum weight that satisfies He = s:

min
e∈{0,1}n

|e| subject to He = s.

Maximum A Posteriori (MAP) Decoding and Its Challenges

MAP Decoder: Any decoder that explicitly solves

max
e∈{0,1}n

P(e | s),

is called MAP decoder, and is considered an ideal decoder.

Challenges:

▶ A naive approach requires searching all 2n possible error
vectors, leading to exponential time complexity.

▶ The MAP decoding problem is NP-complete, meaning no
general polynomial-time algorithm is likely to exist.

Efficient Decoding for Special Codes:

▶ Certain structured codes (e.g., Hamming codes, repetition
codes) allow polynomial-time decoding.

Heuristic Approaches to MAP Decoding

Heuristics: Approximate solutions for MAP decoding that are
efficient and perform well in practice.

Belief Propagation Algorithm:

▶ An iterative, linear-time algorithm.

▶ Exploits the factorization of P(e | s) over a graph (e.g.,
Tanner graph).

▶ Widely used in classical error-correction and also in quantum
error correction.

Outline

Classical codes (parity check codes)

Need for QEC: Noise sources

First Quantum Code: The Repetition Code

Stabilizer Formalism

Fault-Tolerant Quantum Computation

The Surface Code

Correcting Errors: The Decoder
Minimum-Weight Perfect Matching
Neural Network Decoders

Realization of Quantum Memory

Quantum Logic

▶ Quantum bit/Qubit

|ψ⟩ = α|0⟩+ β|1⟩

|α|2 + |β|2 = 1

▶ Universal logical operations, gates, unitaries:
Hadamard, S-gate, T-gate, CNOT

▶ Measurements:
▶ Set of operators {Mi} such that

∑
i M

†
i Mi = I

▶ Probability of outcome i is p(i) = ⟨ψ|M†
i Mi |ψ⟩

▶ State after obtaining outcome i is Mi |ψ⟩√
p(i)

Hardware: Superconducting Circuits

Ĥ = ωr â
†â Ĥ ∼ ωqb̂

†b̂ − Kb̂†2b̂2

PRA 69, 062320 (2004)

Sources of Quantum Noise / Errors
▶ Decoherence:

▶ T1 relaxation: Energy decay from the |1⟩ → |0⟩
▶ T2 dephasing: Loss of phase coherence in superposition states.

▶ Gate Errors: Imperfect implementation of quantum gate
operations, leading to inaccuracies.

▶ Measurement Errors: Errors during the readout of qubit
states, resulting in incorrect outputs.

▶ Cross-Talk: Interference between neighboring qubits during
operations, reducing fidelity.

▶ Leakage Errors: Qubits transitioning to higher energy
states outside the computational basis.

▶ Stray Interactions: Unintended couplings during gate
operations.

▶ Idle Errors: Errors occurring while qubits remain idle due to
environmental interactions.

▶ External Noise: Electromagnetic interference or cosmic rays.

Error budget distribution
distance-5 surface code on 72-qubit processor (arXiv:2408.13687v1)

Noisy Quantum Channels

▶ A noisy quantum channel introduces errors during
transmission or processing.

▶ Examples of noise effects:
▶ Degradation of quantum states.
▶ Reduction in entanglement and coherence.
▶ Significant impact on fidelity and performance.

▶ Kraus operators provide a powerful framework to describe and
analyze noise in quantum systems.

Kraus Operators

▶ Describe the evolution of quantum states in open systems.

▶ Evolution of a density matrix (ρ) under Kraus operators:

ρ′ =
∑
i

KiρK
†
i

▶ Completeness relation ensures trace preservation:∑
i

K †
i Ki = I

▶ These operators model common errors such as bit-flip,
phase-flip, and depolarization.

Bit-Flip Channel

▶ Models noise where qubits flip between |0⟩ and |1⟩ with
probability p.

▶ Quantum state evolution:

T (ρ) = (1− p)ρ+ pXρX †

▶ Kraus operators:

K0 =
√

1− p I , K1 =
√
p X

Depolarizing Channel

▶ Randomizes the qubit state with probability p.

▶ Channel action:

E(ρ) = (1− p)ρ+
p

3
(XρX † + Y ρY † + ZρZ †)

▶ Kraus operators:

K0 =
√
1− p I , K1 =

√
p

3
X , K2 =

√
p

3
Y , K3 =

√
p

3
Z

Amplitude Damping Channel

▶ Models energy dissipation, such as photon loss.

▶ Channel action:

E(ρ) = E0ρE
†
0 + E1ρE

†
1

▶ Kraus operators:

E0 =

[
1 0
0

√
1− γ

]
, E1 =

[
0

√
γ

0 0

]

Quantum Error Correction

▶ Quantum error correction (QEC) is essential for protecting
quantum information against noise and decoherence.

▶ The primary goals of QEC are:
▶ Detect errors without disturbing the quantum information.
▶ Correct errors to restore the original quantum state.
▶ Ensure fault-tolerant quantum computation.

Errors in quantum computers

▶ Classically, bits can flip (or be erased).
i.e., 0 → 1 and 1 → 0 with some probability p.

▶ Qubits have a larger state space, so more things can go
wrong.
▶ Any operation that can be considered a gate can also

introduce an error.
▶ Examples include Pauli errors (X ,Z ,Y).

X |0⟩ = |1⟩
X |1⟩ = |0⟩

Bit flip

Z |0⟩ = |0⟩
Z |1⟩ = −|1⟩

Phase flip

Y |0⟩ = i |1⟩ = iXZ |0⟩
Y |1⟩ = −i |0⟩ = iXZ |1⟩

Bit & phase flip

The Most Important Fact About QEC

▶ Errors are inherently continuous (analog). How can we hope
to correct these?

▶ Suppose some error E introduces a relative phase:

E |ψ⟩ = α|0⟩+ e iδβ|1⟩

▶ The angle δ could (in principle) be infinitesimal.

▶ Any error can be written as discrete Pauli errors with
continuous coefficients:
▶ This is because the Pauli matrices (+ the Identity) span C2×2.
▶ For any E and ψ:

E |ψ⟩ = (e0I + e1X + e2Y + e3Z)|ψ⟩

▶ But the coefficients ei could still be infinitesimal, in principle.

The Most Important Fact About QEC

▶ Measurement turns continuous errors into discrete errors.

▶ Suppose we measure the error state using operators {Mi}:

E |ψ⟩ = (e0I + e1X + e2Y + e3Z)|ψ⟩

▶ Then, with probability p(i), the state collapses to: MiE |ψ⟩√
p(i)

▶ This process collapses the superposition and reduces the
continuous coefficients to a global phase, which is irrelevant.
▶ For example, we could choose Mi such that: E |ψ⟩ → ηiσi |ψ⟩
▶ Here, σi ∈ {I ,X ,Y ,Z} is a discrete error that can be

corrected.
▶ The coefficient ηi ∈ C is continuous but represents a global

phase and hence does not matter.

Outline

Classical codes (parity check codes)

Need for QEC: Noise sources

First Quantum Code: The Repetition Code

Stabilizer Formalism

Fault-Tolerant Quantum Computation

The Surface Code

Correcting Errors: The Decoder
Minimum-Weight Perfect Matching
Neural Network Decoders

Realization of Quantum Memory

Classical error correction: The repetition code

▶ A key concept in error correction is adding redundancy.
▶ For example, given a bit, we can make three copies of it:

▶ 0 → 000, 1 → 111
▶ This is known as the (classical) repetition code.
▶ The idea is very simple: If an error occurs on one bit only, we

can correct it by looking at the other two bits and taking a
majority vote.

▶ Given the classical repetition code, we might try to do the
same with qubits, i.e. map

|ψ⟩ → |ψ⟩|ψ⟩|ψ⟩

▶ This is not possible due to the ”no cloning theorem”

QEC: Can We Add Any Redundancy?

▶ From the no-cloning theorem, we know it is not possible to
make exact copies of a quantum state as in the classical
repetition code.

▶ Can we copy information?

▶ Claim: We can ”copy basis information” in the following
sense:

α|0⟩+ β|1⟩ → α|000⟩+ β|111⟩

▶ Note that this encoding circuit entangles the ”input” qubit
with two other qubits.

▶ Errors in quantum computers are often caused by qubits
entangling with their environment.

Repetition code for bit flip errors

▶ The encoding α|0⟩+ β|1⟩ → α|000⟩+ β|111⟩ gives us
redundancy. Now what?

▶ We need to check which errors (if any) occured in the
encoded state.

▶ We do this by (projective) measurements. What projections
should we apply to find out what happened?

▶ There are four possible things that can happen:

No qubit was flipped. P0 = |000⟩⟨000|+ |111⟩⟨111|
The first qubit was flipped. P1 = |100⟩⟨100|+ |011⟩⟨011|
The second qubit was flipped. P2 = |010⟩⟨010|+ |101⟩⟨101|
The third qubit was flipped. P3 = |001⟩⟨001|+ |110⟩⟨110|

Turning the table

▶ By measuring these operators, we learn what errors (if any)
occurred.

▶ Since we know which error occurred, we can correct it.
Syndrome measurement Meaning Correction operator

P0 = |000⟩⟨000|+ |111⟩⟨111| No qubit was flipped. I

P1 = |100⟩⟨100|+ |011⟩⟨011| The first qubit was flipped. X0

P2 = |010⟩⟨010|+ |101⟩⟨101| The second qubit was flipped. X1

P3 = |001⟩⟨001|+ |110⟩⟨110| The third qubit was flipped. X2

▶ But since measurement collapses the state, we need to use
ancilla qubits for syndrome measurement.

Bitflip Repetition Code: circuit implementation

Encoding Syndrome measurement

|ψ⟩

Noise|0⟩

|0⟩

|0⟩

|0⟩

Bitflip Repetition Code: circuit implementation

Encoding Correction

|ψ⟩ X X

|0⟩

|0⟩

|0⟩

|0⟩

Syndrome Correction

00 I
10 X1

01 X3

11 X2

Bitflip Repetition Code: circuit implementation

Encoding Correction

|ψ⟩

|0⟩

|0⟩ X X

|0⟩

|0⟩

Syndrome Correction

00 I
10 X1

01 X3

11 X2

Bitflip Repetition Code: circuit implementation

Encoding Correction

|ψ⟩

|0⟩ X X

|0⟩

|0⟩

|0⟩

Syndrome Correction

00 I
10 X1

01 X3

11 X2

Outline

Classical codes (parity check codes)

Need for QEC: Noise sources

First Quantum Code: The Repetition Code

Stabilizer Formalism

Fault-Tolerant Quantum Computation

The Surface Code

Correcting Errors: The Decoder
Minimum-Weight Perfect Matching
Neural Network Decoders

Realization of Quantum Memory

Stabilizer Formalism: The Pauli Group

▶ Stabilizer codes are a class of quantum error correcting codes
defined by commuting sets of Pauli operators, called the
stabilizer generators

▶ Define the Pauli group
G1 = {±I ,±iI ,±X ,±iX ,±Y ,±iY ,±,Z ,±iZ} = ⟨X ,Y ,Z ⟩

▶ It is enough to consider X , Z together with the prefactors ±i
because Y = iXZ

▶ Any qubit unitary can be written as a linear combination of
elements of G

▶ We also define Gn as n-fold tensor products of elements in G1

▶ Notation: Z1Z3 ≡ Z ⊗ I ⊗ Z

The Stabilizer Group - definition 1

▶ Consider some subgroup S ⊂ Gn, where all elements
commute

▶ Let VS be a 2k-dimensional subspace of n-qubit states defined
by s |ψ⟩ = +1 |ψ⟩ ∀s ∈ S , ∀ |ψ⟩ ∈ Vs

▶ This defines a [[n, k]] stabilizer code, which encodes k logical
qubits into n physical qubits

▶ We say S is the stabilizer group of VS , and conversely call
VS the codespace stabilized by S

▶ Example: 3-qubit repetition code [[3, 1]]:
▶ Stabilizer group generators: S = ⟨Z1Z2,Z2Z3⟩
▶ Codespace: VS = {α |000⟩+β |111⟩ |α, β ∈ C, |α|2+ |β|2 = 1}

1D. Gottesmann, Stabilizer codes and quantum error correction,
arXiv:quant-ph/9705052

Stabilizer Codes: Error Detection and Correction

▶ Say some error g ∈ Gn occurs on |ψ⟩ ∈ VS . Since elements of
Gn either commute or anti-commute with each other, g will
either commute or anti-commute with each stabilizer in S

▶ If it anti-commutes with at least one stabilizer, it is a
detectable error

▶ If it commutes with all stabilizers and is not itself a stabilizer,
it is a non-detectable error (logical operator)

▶ Example: 3-qubit repetition code:
▶ {X1,Z1Z2} = 0 so X1 is a detectable error
▶ [X1X2X3,Z1Z2] = [X1X2X3,Z2Z3] = 0 so X1X2X3 is a

non-detectable (i.e. logical error). In fact it is logical X in this
code

▶ Measuring all the stabilizer generators on logical state |ψ⟩ will
give us a syndrome that we then use to apply the
corresponding correction (analogous to classical parity checks)
(see 3-qubit repetition code circuit from earlier)

Calderbank-Shor-Steane (CSS) codes

▶ In general, stabilizer generators can have mixed elements e.g.
X1Z2Z3X4...

▶ CSS codes are a ”nice” type of stabilizer codes built by taking
the parity check matrices HX and HZ of 2 classical codes C1

and C2 to define the X and Z stabilizers respectively. The
generators are thus only pure X or pure Z operators (see
hands-on session)

▶ Syndrome measurement: to measure a qubit in the X basis
we need to apply a Hadamard transform to the qubit since
⟨ψ|HZH |ψ⟩ = ⟨ψ|X |ψ⟩

Outline

Classical codes (parity check codes)

Need for QEC: Noise sources

First Quantum Code: The Repetition Code

Stabilizer Formalism

Fault-Tolerant Quantum Computation

The Surface Code

Correcting Errors: The Decoder
Minimum-Weight Perfect Matching
Neural Network Decoders

Realization of Quantum Memory

Transversal gates in CSS codes

▶ Transversal gates, gates that can
be written as a tensor product of
gates inside each code block, are
a type of fault-tolerant gates

▶ All Clifford gates are transversal in
CSS codes

▶ For example in some CSS codes
the CNOT gate on logical qubits 1
and 2 can be implemented by
applying a CNOT gate between
each homologous qubit of code
blocks 1 and 2

Block 1

Block 2

Figure: Transversal CNOT gate
implementation for a 3-qubit
CSS code

Transversal gates and error spread
An operation is said to be fault-tolerant if it does not increase the
weight of an error w(e) = the number of qubits that e affects
within one code block.

. . .

. . .

. . .

. . .

. . .

. . .

Block 1

e

Block 2

Figure: Non-fault tolerant CNOT gate
implementation for a 3-qubit code

e

Figure: Transversal CNOT gate

Eastin-Knill Theorem

▶ Theorem: There is no non-trivial local-error-detecting
quantum error correcting code that admits a universal set of
transversal gates2. :(

▶ But transversal is not the only fault-tolerant construction!

2Eastin, B., Knill, E. (2009). Restrictions on transversal encoded quantum
gate sets. Physical review letters, 102(11), 110502.

Universal Quantum Computing with Logical Qubits

Knill-Gottesman: Clifford-circuits efficiently simulable

▶ Generated by {H,S ,CNOT} gates

▶ Many codes allow transversal implementation

Non-Clifford (e.g. T -gate), required for universal gate set.

▶ Eastin-Knill: No transversal implementation for CSS codes

▶ Requires magic state preparation and teleportation

|0⟩L HL T SLXL TL |ψ⟩L

|ψ⟩L

Fault-tolerant T -gate

Goal: Apply logical T -gate to state |ψ⟩L = a |0⟩L + b |1⟩L
Need ancilla qubit. T gate is applied transversally → Does not
correspond to logical T -state.

State before measurement

1√
2
(a |0⟩+ be iπ/4 |1⟩) |0⟩+ (b |0⟩+ ae iπ/4 |1⟩) |1⟩

If we measure |0⟩, we are done, otherwise apply correction SX .
Preparation of ancilla has to be done fault-tolerantly!

Threshold Theorem

▶ Reliable quantum computation is possible if the physical error
rate p is below a certain threshold pth.

▶ For p < pth, error is exponentially suppressed as we scale
the code.

Figure: Exponential suppression as we scale the code

Outline

Classical codes (parity check codes)

Need for QEC: Noise sources

First Quantum Code: The Repetition Code

Stabilizer Formalism

Fault-Tolerant Quantum Computation

The Surface Code

Correcting Errors: The Decoder
Minimum-Weight Perfect Matching
Neural Network Decoders

Realization of Quantum Memory

Surface Code - Introduction

▶ 2D stabilizer code proposed by
Kitaev et al. [7]
Belongs to the class of CSS codes

▶ Pauli-Z and Pauli-X type checks

▶ Planar graph connectivity
Ideal for superconducting circuits

▶ High threshold (∼1%) against noise

▶ Parallel syndrome extraction
Figure: Surface code with 9
data and 8 ancilla qubits [15].

Surface Code - Stabilizers

Stabilizers at the interior of the surface check 4 qubits at a time.
For each group (called plaquette) we have:

S
(i)
X = XiXi+1Xi+2Xi+3 S

(i)
Z = ZiZi+1Zi+2Zi+3

Detect an odd number of X/Z errors per plaquette.

Order of CNOT gates matters to avoid hook errors.

Figure: Pauli-X and Pauli-Z type stabilizers for the surface code. CNOT gate
schedule measuring syndrome indicated by vertex index [15].

Surface Code - Error Classification

Only need to correct Pauli errors: E = P1 ⊗ . . .⊗ Pn where
Pi ∈ {I ,X ,Y ,Z}

Detectable Errors

▶ Anti-commute with stabilizers:
∃S ∈ S : SE = −ES

▶ Example: Single-qubit errors

Undetectable errors

▶ Product of stabilizers: E = S1 . . . Sn, Si ∈ S
▶ Logical operators: Normalizers of S

Beauty of surface code: Errors have topological interpretation!

Surface Code - Detectable Errors

Figure: Detectable chain of Pauli-Z errors [15].

Surface Code - Detectable Errors

Error Chain Properties:

▶ Errors manifest as chains on
surface

▶ Chain endpoints flagged by
syndromes:
▶ One syndrome if chain ends at

boundary
▶ Two syndromes for interior

chains

▶ Pauli-Y triggers 4 syndromes
Equivalent to X and Z errors

Figure: Detectable chain of
Pauli-Z errors [15].

Surface Code - Undetectable Errors

Figure: Undetectable errors which are products of stabilizers generators [15].

Surface Code - Logical Gates

Logical Gates Properties:

▶ Connect opposite borders

▶ Unique up to stabilizer product

▶ Anti-commuting logical operators
cross odd number of times

Figure: Chain of Pauli-X
forming logical XL operator
[15].

Surface Code - Logical Gates

Logical Gates Properties:

▶ Connect opposite borders

▶ Unique up to stabilizer product

▶ Anti-commuting logical operators
cross odd number of times

Figure: Chains of Pauli-Z
forming logical ZL operator
[15].

Surface Code - Logical Gates

Logical Gates Properties:

▶ Connect opposite borders

▶ Unique up to stabilizer product

▶ Anti-commuting logical operators
cross odd number of times

Figure: Equivalent logical XL

chains [15].

Surface Code - Code Distance

Question: How many errors can we correct?

For d2 data qubits, shortest logical error chain has length d .
→ We can correct up to

⌊
d−1
2

⌋
errors.

The surface code is a [[d2, 1, d]] CSS code with code distance d .

Surface Code - Entangling Gates

Figure: Transversal logical CNOT with pairwise matching physical qubits.
Suitable for neutral atom or ion-trapped architectures where qubits can be
moved [4].

Surface Code - Entangling Gates

Figure: Logical CNOT through lattice surgery. Involves an ancilla surface code
patch and stabilizer measurement along adjacent surface edges [4].

Surface Code - T -gate (via state-injection)

T -gate prepared via state
teleportation.

Need magic state: TL |+⟩L

|0⟩L HL T SLXL

|ψ⟩L

Protocol for faulty state-injection [12]:

▶ Prepare physical qubit in state |ψ⟩
▶ Initialize small distance surface code (e.g. d̂ = 3) in |0⟩L
▶ Spread state via CNOT operations

▶ Protect state with syndrome measurement rounds

▶ Grow to target distance: d̂ → d

Not fault-tolerant: Low-distance d̂ allows for errors

Surface Code - State injection example

Figure: Preparation of magic state by preparing a single physical qubit and
growing the surface code distance [12].

Surface Code - Magic State Distillation

Muller-Reed [[15, 1, 3]]-code: Smallest code with transversal T -gate

Example: 15-to-1 protocol

1. Encode by measuring stabilizers

2. Apply transversal (faulty) T -gate
Surface code: Via state-injection

3. Measure Stabilizers
Detect up to weight-3 errors

4. Discard and repeat, if errors
detected

Output: Magic state TL |+⟩L
Figure: 15-to-1 magic state
distillation protocol [13].

If error probability of T -gate is pin, success probability is pout = 35p3in.
Further distillation rounds can use teleportation for transversal TL.

Fault-Tolerant Quantum Architecture

Based on surface code with Clifford+T gate set. Gates are
implemented using fault-tolerant lattice surgery.

Core Processor Components

1. Memory Fabric
▶ Data storage
▶ Performs logical

operations

2. Magic State Buffer
▶ Stores prepared T -states
▶ Enables on-demand

T -gates

3. Magic State Factory
▶ 15:1 distillation protocol
▶ Continuous state

preparation
Figure: FTQC architecture [16].

Fault-Tolerant Quantum Computing - T -count

Figure: Ratio of magic state distillation (MSD) footprint to total computational
footprint for different number of logical qubits and T -counts for fusion-based
QC [11].

Fault-Tolerant Quantum Computing - Resource Estimation

Figure: Runtime of 3 applications for different gate times and modalities:
superconducting [ns], ion-traps [µs], and Majorana [3].

Observation: With 100 [µs] gate times, large algorithms will take
almost a year!

Outline

Classical codes (parity check codes)

Need for QEC: Noise sources

First Quantum Code: The Repetition Code

Stabilizer Formalism

Fault-Tolerant Quantum Computation

The Surface Code

Correcting Errors: The Decoder
Minimum-Weight Perfect Matching
Neural Network Decoders

Realization of Quantum Memory

The Decoder

Goal: Determine the state of the logical qubit

Input: Syndrome measurements and noise information
Output: Logical state estimate

Decoder
Syndrome

measurements

Noise model

Predict Logical state

The Backlog Problem

Non-Clifford operations (e.g. T -gates) require processing of all
prior syndrome measurements

When Decoder slower than syndrome generation rate:

1. Define rates:
▶ rgen: syndrome generation rate
▶ rproc : syndrome processing rate

2. Let f =
rgen
rproc

≥ 1 (backlog factor)

3. For initial T -gate (T0):
▶ Processing overhead time: ∆gen

▶ New syndromes during processing: D1 = rgen ×∆gen

Observation
Terhal [17] showed: Overhead for k-th T -gate grows as f kD1

The Backlog Problem

Figure: Exponential growth of syndrome processing overhead for f > 1 [10].

The Backlog Problem - Example

Circuit Parameters
▶ Logical qubits: 100

▶ Total gates: 2,356

▶ T-gates: 686

Timing Parameters

▶ Syndrome generation cycle: 400 [ns]

▶ Decoder processing time: 800 [ns]

▶ Backlog factor f =
rgen
rproc

= 2

Circuit execution time: 10196 seconds!

Decoder speed and T-gate count critical metrics for practical
quantum computation.

Real-Time Decoding for Superconducting QPU
Real-time decoding challenging for superconducting devices due to
gate speed: Cycle time < 1 [µs].

Figure: Integration of Riverlane’s FPGA decoder into Rigetti’s control system.
Latencies are represented by edge labels. Demonstrate mean decoding time
below 1 [µs] for Rigetti’s Ankaa-2 device [5].

Type of Decoders

Many types of decoders exist, with unique properties:

▶ Maximum-likelihood decoder
Optimal, but computationally infeasible

▶ Matching-based: (e.g. MWPM [9] or BP)
Optimal for independent errors, widely studied

▶ Clustering-based (e.g. Union Find [6])
Fast, near-linear time complexity

▶ Tensor Networks:
Handles correlations well, higher computational overhead

▶ Neural Networks: (e.g. AlphaQubit [2])
Potential for handling complex noise models

Key trade-off: decoding speed vs. correction accuracy

We are going to explore MWPM and neural decoders.

Graph Matching

Perfect Matching Problem: Given a
weighted graph G = (V ,E ,w), where
w : E → R
▶ Find matching M ⊆ E where each v ∈ V

appears in exactly one edge in M

▶ Minimize total weight: minM
∑

e∈M w(e) 5

2 3

1

MWPM Decoder - Idea

Observation: Error chains create distinct syndrome patterns

Types of Error Chains:

1. Boundary chains
▶ Single syndrome at interior of surface
▶ Other end terminates at code boundary

2. Interior chains
▶ Two syndromes: one at each end

Matching idea:

▶ Each chain has an associated occurrence probability

▶ Match all active syndromes minimizing error probability

MWPM Decoder - Example

Figure: Tanner graph for Pauli-Z type errors for the distance 5 surface code.

MWPM Decoder - Example

Figure: Active syndromes in Tanner graph for given Pauli-Z errors.

MWPM - Example

Figure: Syndrome graph for active syndromes.

MWPM - Example

Figure: Matched syndrome graph for active syndromes.

MWPM - Example

Figure: Decoded errors leading to logical ZL error by connecting chain of
Pauli-Z errors to opposite boundaries.

MWPM Decoder - Construction
Setup:
▶ Decode Pauli-Z and X errors separately
▶ Consider independent Z errors E ∈ {I ,Z}n for CSS code

For stabilizer generator set {Si}i define:
▶ Syndrome bits: si ∈ {0, 1}, where si = 1 if generator Si

anti-commutes with E
▶ Error vector: e ∈ {0, 1}n if Ei = Zi

Error Probability:

p(E) =
∏
i

(1− pi)
(1−ei) · peii =

∏
i

(1− pi)
∏
i

(
pi

1− pi

)ei

Use logarithmic form, avoiding numerical issues:

log(p(E)) =
∑
i

log(1− pi)−
∑
i

wi · ei ,

where wi = log((1− pi)/pi)

MWPM Decoder - Construction

Graph Construction:

▶ Condition: Each Z -error anti-commutes with two X -stabilizers

▶ Define matching graph G = (V ,E) with |V | = |s|
▶ (v ,w) ∈ E , if Sv and Sw anti-commute with Pauli-Z on qubit

▶ Set edge weight to wi for qubit i

Decoding Strategy:

▶ Perfect matching : Match all nodes with si = 1

▶ Minimum-weight: Find smallest chain with si = 1 at
boundaries
→ More probable errors have lower weight

Implementation:
▶ Matching: Edmond’s Blossom algorithm

▶ Complexity: O(|s|3 log(|s|))
▶ Syndrome graph: Dijkstra’s algorithm

Neural Network Decoder - AlphaQubit
QEC’s ”The Bitter Lesson” moment?

Figure: Decoder’s recurrent network structure. Syndromes update transformer
state. Outputs single-bit, indicating if logical bit was flipped. Evaluated up to
code distance 11 [2].

https://www.cs.utexas.edu/~eunsol/courses/data/bitter_lesson.pdf

AlphaQubit - Training

Pretraining
▶ 2.5 billion samples from 3 sources:

1. SI1000: 25 QEC rounds, no
device-fit

2. Noise estimate from XEB
3. Noise estimate for Tanner graph

weights pij

Finetuning

▶ Pauli+ simulator including leakage,
analogue readouts, and cross-talk

▶ 100 million samples

Figure: Training stages [2].

AlphaQubit - Stabilizer Embedding Layer
Input:

▶ Binary syndrome measurement and temporal differences

▶ Leakage events and their probability

▶ Embedded stabilizer index i

Output: d2 − 1 different embeddings

Figure: Stabilizer embeddings used as input for AlphaQubits internal
transformer state update round [2].

AlphaQubit - Results

Figure: Mean logical error per QEC round for Surface Code distances 3 and 5
on Google’s Sycamore device. Results averaged across bases {X ,Y ,Z} [2].

Decoder Threshold Analysis

Threshold Dependencies:

▶ Decoder algorithm

▶ Noise model

▶ QEC code structure

For distance d , physical error p
and threshold pthr :

Figure: Threshold example [15].

Logical Error Scaling:

εd ∝
(

p

pthr

) (d+1)
2

Error Suppression:

Λ =
εd
εd+2

∼ pthr
p

Note: Threshold comparisons must consider all factors!

Outline

Classical codes (parity check codes)

Need for QEC: Noise sources

First Quantum Code: The Repetition Code

Stabilizer Formalism

Fault-Tolerant Quantum Computation

The Surface Code

Correcting Errors: The Decoder
Minimum-Weight Perfect Matching
Neural Network Decoders

Realization of Quantum Memory

Google - Surface Code Experiment

Quantum Memory Experiment:
Preserve logical qubit for many QEC cycles

Setup:

▶ Sycamore: 105-qubits transmon device

▶ Distances: d = 3, 5, and 7

▶ X/Y 25 [ns], CZ 42 [ns]

▶ TLS mitigation strategy

Main Results:

▶ Demonstrate Λ > 2

▶ Life-time of logical qubit 2× of best
physical qubit on QPU

▶ Real-time decoding < 1.1[µs]

Figure: a Sycamore
topology. b Gate error
distribution [1].

Google - Real-Time Decoder Data Flow

1. Control electronics classify I/Q readout into 0/1

2. Transmitted to workstation via low-latency Ethernet

3. Measurements converted to detection events

4. Streamed to constant sized shared-buffer

5. Decoder reads from buffer

Figure: Windowed streaming decoder: Local Blossom algorithm with
subsequent fusing until global MWPM is found [1].

Google - Correlated Errors through Leakage

Transmons not ideal qubits → Leakage to |2⟩ , |3⟩ , ... possible.

Problem: QEC assumes uncorrelated errors. Leakage causes
correlated errors! Especially CZ gate prone to leakage.

DQLR: Use Leakage iSWAP to transfer leakage to ancillas [14].

Google - Results

Figure: Logical error rates (LER) over multiple QEC cycles demonstrating
Λ = 2.14± 0.02 [1].

Quantum Error Correction - Summary
Many more topics ...

▶ Quantum LDPC codes, color codes, ...

▶ Subsystem codes

▶ Bosonic codes

▶ Quantum resource estimation

▶ ...

An Interdisciplinary Field!

▶ QPU fabrication and control

▶ Software development and tooling

▶ Novel error correction code design

Theory Meets Practice

▶ Transition from theory to implementation

▶ Emerging real-world demonstrations

Figure: Source: [8]

References I

R. Acharya, L. Aghababaie-Beni, I. Aleiner, T. I. Andersen,
M. Ansmann, F. Arute, K. Arya, A. Asfaw, N. Astrakhantsev,
J. Atalaya, R. Babbush, D. Bacon, B. Ballard, J. C. Bardin,
J. Bausch, and et al.
Quantum error correction below the surface code threshold,
2024.

J. Bausch, A. W. Senior, F. J. H. Heras, M. Newman,
C. Gidney, C. Jones, H. Neven, S. Blackwell, and D. Kafri.
Learning high-accuracy error decoding for quantum processors.

Nature, 2024.

M. E. Beverland, P. Murali, M. Troyer, K. M. Svore,
T. Hoefler, V. Kliuchnikov, G. H. Low, M. Soeken,
A. Sundaram, and A. Vaschillo.
Assessing requirements to scale to practical quantum
advantage, 2022.

References II

E. Campbell.
How to develop the quantum error correction stack for every
qubit, 2024.

L. Caune, L. Skoric, N. S. Blunt, A. Ruban, J. McDaniel, J. A.
Valery, A. D. Patterson, A. V. Gramolin, J. Majaniemi, K. M.
Barnes, T. Bialas, O. Buğdaycı, O. Crawford, G. P. Gehér,
H. Krovi, E. Matekole, C. Topal, S. Poletto, M. Bryant,
K. Snyder, N. I. Gillespie, G. Jones, K. Johar, E. T. Campbell,
and A. D. Hill.
Demonstrating real-time and low-latency quantum error
correction with superconducting qubits, 2024.

N. Delfosse and N. H. Nickerson.
Almost-linear time decoding algorithm for topological codes.
Quantum, 5:595, Dec. 2021.

References III

E. Dennis, A. Kitaev, A. Landahl, and J. Preskill.
Topological quantum memory.
Journal of Mathematical Physics, 43(9):4452–4505, Sept.
2002.

P. Faist.
Quantum error correction.
Lecture Notes, aug 2024.

O. Higgott.
Pymatching: A python package for decoding quantum codes
with minimum-weight perfect matching, 2021.

References IV

A. Holmes, M. R. Jokar, G. Pasandi, Y. Ding, M. Pedram, and
F. T. Chong.
Nisq+: Boosting quantum computing power by approximating
quantum error correction.
2020 ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA), pages 556–569, 2020.

I. H. Kim, Y.-H. Liu, S. Pallister, W. Pol, S. Roberts, and
E. Lee.
Fault-tolerant resource estimate for quantum chemical
simulations: Case study on li-ion battery electrolyte molecules.
Physical Review Research, 4(2), Apr. 2022.

Y. Li.
A magic state’s fidelity can be superior to the operations that
created it.
New Journal of Physics, 17(2):023037, Feb. 2015.

References V

D. Litinski.
A game of surface codes: Large-scale quantum computing
with lattice surgery.
Quantum, 2018.

K. C. Miao, M. McEwen, J. Atalaya, D. Kafri, L. P. Pryadko,
A. Bengtsson, A. Opremcak, K. J. Satzinger, Z. Chen, P. V.
Klimov, C. Quintana, and e. a. Acharya.
Overcoming leakage in quantum error correction.
Nature Physics, 19(12):1780–1786, Oct. 2023.

R. W. J. Overwater, M. Babaie, and F. Sebastiano.
Neural-network decoders for quantum error correction using
surface codes: A space exploration of the hardware
cost-performance tradeoffs.
IEEE Transactions on Quantum Engineering, 3:1–19, 2022.

References VI

A. Silva, A. Scherer, Z. Webb, A. Khalid, B. Kulchytskyy,
M. Kramer, K. Nguyen, X. Kong, G. A. Dagnew, Y. Wang,
H. A. Nguyen, K. Olfert, and P. Ronagh.
Optimizing multi-level magic state factories for fault-tolerant
quantum architectures, 2024.

B. M. Terhal.
Quantum error correction for quantum memories.
Reviews of Modern Physics, 87(2):307–346, Apr. 2015.

	Classical codes (parity check codes)
	Need for QEC: Noise sources
	First Quantum Code: The Repetition Code
	Stabilizer Formalism
	Fault-Tolerant Quantum Computation
	The Surface Code
	Correcting Errors: The Decoder
	Minimum-Weight Perfect Matching
	Neural Network Decoders

	Realization of Quantum Memory

