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Background – Quantum Computing
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Background - Quantum Gates
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Background – Extreme Learning Machine (ELM)
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• Feedward neural network

• Hidden layer: fixed and randomly assigned 
weights and biases

• Train the linear regression model on the output 
layer's weights to predict the target value
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Background – Quantum Extreme Learning Machine
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• Replace neural into quantum circuit

• Feed classical data into encoder circuit to 
transfer into quantum states

• Output state of the encoder goes into a quantum 
reservoir circuit, whose parameters are fixed and 
randomly assigned

• A set of observables are applied to obtain 
the output vector of measured values

• Train the linear regression model on the output 
layer's weights to predict the target value



Industrial Context

Dispatching algorithm is used to schedule the elevators as 
optimally as possible by assigning an elevator to each call.

A system of elevators aims to transport passengers as safely as 
possible while minimizing the time they need to wait for the elevator. 

Orona is one of the largest elevator companies in Europe, with 
over 250,000 installations in the world.
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Industrial Context

A dispatching algorithm undergoes regular maintenance and evolution. 

Regression 
TestingSiL HiL

CSV

Passenger Profile

Anticipated QoS

• Software in the loop (SiL): a domain-specific simulator, ELEVATE[1]

• Hardware in the loop (HiL): actual hardware components, e.g., 
real-time operating systems, and human-machine interace

• Passenger profile: passenger information with various attributes, 
e.g., destination floor, arrival floor, and mass

input
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• Quality of Service (QoS) metrics: obtained by re-running the test 
with a different algorithm or and older version , e.g., average 
waiting time

• The cost of re-execution is big.
• It’s impossible to re-execute any test at operation time.

!!!

Machine learning (ML)-based models are proposed to predict the QoS metrics 
and replace the regression testing oracle.

[1] Elevate 2024. Elevate. https://peters-research.com/index.php/elevate/



Motivation
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Passenger traffic data: extracted from passenger profiles 
for a time window of 5 minutes.
e.g., number of upward calls, travel distance

QoS Metric: average waiting time (𝐴𝑊𝑇).
i.e., average time passengers wait in a time window of 5 min.

Various installation 
configurations Operation time

Certain features of passenger 
traffic data might be unavailable

Number of features can be used 
for training is limited

!!!

Challenge: One promising solution: Quantum Extreme Learning Machine (QELM)

• A quantum machine learning algorithm.

• Maps classical input data into higher-dimensional quantum 
space using quantum dynamics of quantum reservoir.

• Enables efficient linear regression training with fewer features 
while maintaining good prediction quality.

We propose  a QELM-based approach, Quantum 
Extreme Learning eLevator (QUELL)[2].

[2] Wang, Xinyi, et al. "Application of quantum extreme learning machines for qos prediction of elevators’ software in an industrial 
context." Companion Proceedings of the 32nd ACM International Conference on the Foundations of Software Engineering. 2024.



QUELL – Encoder Types

9

Determined hardware efficient
(DHE) encoder

Randomized hardware efficient 
(RHE) encoder
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Time window 
of 5 min

Passenger Traffic Data

Features, e.g., number 
of upward calls
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• Encoders process input data by 
parameterizing Rotation Gate.

• To avoid multiple values being encoded in 
the same state, min-max normalization is 
used to scale feature values to a range of 0 
to 𝜋 radians.

• Feed normalized feature values of each time 
window into quantum encoder



QUELL – Reservoir Types
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CNOT reservoir Harr random (Harr) reservoir

Ising Mag Traverse (ISING) reservoir Rotation reservoir

• Gate angles and coefficients are randomly 
assigned



QUELL – Overview
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Research Questions

• RQ1: Which combination of encoder and reservoir of QUELL achieves the best 
prediction performance with a different number of features?

• RQ2: Using the optimal combination of encoder and reservoir, what is the 
minimum number of features for which QUELL achieves a prediction performance 
comparable to that achievable using the maximum number of features?

• RQ3: How well does QUELL perform compared to the baseline when using 
different numbers of features for predictions?
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Experiment Design

• 4 days passenger traffic data extracted from real operation of elevators installed in a 10-floor 

building with time window of 5 min: 𝐸𝑥𝑝𝐷𝑎𝑦1, 𝐸𝑥𝑝𝐷𝑎𝑦!, 𝐸𝑥𝑝𝐷𝑎𝑦" and 𝐸𝑥𝑝𝐷𝑎𝑦#

• QoS metric: average waiting time (𝐴𝑊𝑇) generated by elevator simulator ELEVATE

Datasets

Features
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𝑭 Description 𝑭 DescripOon
𝐹! Number of upward calls from low-level floors. 𝐹, Average distance of the travel from the upward calls.

𝐹$ Number of upward calls from medium-level floors. 𝐹- Average distance of the travel from the downward calls.

𝐹% Number of upward calls from high-level floors. 𝐹. Number of total upward calls in the past 5 minutes.

𝐹/ Number of downward calls from low-level floors. 𝐹!0 Number of total downward calls in the past 5 minutes.

𝐹1 Number of downward calls from medium-level floors. 𝐹!! Number calls going upwards.

𝐹2 Number of downward calls from high-level floors. 𝐹!$ Number calls going downwards.

Various configuration 
of elevators

Real operation

𝑭𝑺 Selected
𝐹𝑆$ 𝐹!!, 𝐹!$
𝐹𝑆%3 𝐹!!, 𝐹!$, 𝐹,
𝐹𝑆%4 𝐹!!, 𝐹!$, 𝐹!
𝐹𝑆/ 𝐹!!, 𝐹!$, 𝐹,, 𝐹-
𝐹𝑆1 𝐹!!, 𝐹!$, 𝐹,, 𝐹-, 𝐹!

𝐹𝑆!0
𝐹!, 𝐹$, 𝐹%, 𝐹/, 𝐹1, 
𝐹2, 𝐹,, 𝐹-, 𝐹., 𝐹!0

Feature Sets



Experiment Design

• DARIOPRED
[3] with SVM

• DARIOPRED with Regression Tree

Baseline:
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Quantum framework and ideal simulator:

• Qreservoir package

• Qulacs framework

Quantum environment

• Mean square error (𝑀𝑆𝐸) of predicted 𝐴𝑊𝑇 time: 

Evaluation metrics

𝑀𝑆𝐸 =
1
𝑃=
()&

*

(𝑡(
+,- − 𝑡().

𝐴𝑀𝑆𝐸 ==
")&

/!

𝑀𝑆𝐸"/30

• We repeat each experiment 30 times to reduce the randomness, 

thus, we will also calculate the average 𝑀𝑆𝐸 value. 

Statistical tests

• Mann-Whitney U test with C𝐴&. effect size

• One-sample Wilcoxon test with Cohen’s d to interpret magnitude

[3] Aitor Gartziandia, Aitor Arrieta, Jon Ayerdi, Miren Illarramendi, Aitor Agirre, Goiuria Sagardui, and Maite Arratibel. 2022. Machine learning-based test 
oracles for performance testing of cyber-physical systems: An industrial case study on elevators dispatching algorithms. Journal of Software: Evolution 
and Process 34, 11 (2022), e2465. https://doi/10.1002/smr.2465
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RQ1: Which combination is the optimal?

Selecting the optimal encoder_reservoir combination
Violin plot of 𝐴𝑀𝑆𝐸 values of 24 settings 

(6 features sets and 4 datasets)
1st, 2nd, and 3rd position of each 

combination for 24 settings

Overall, the ISING reservoir combined with the DHE encoder enables 
QUELL to perform the best.



RQ2: Which number of features is comparable to maximum

𝐸𝑥𝑝𝐷𝑎𝑦1 𝐸𝑥𝑝𝐷𝑎𝑦2 𝐸𝑥𝑝𝐷𝑎𝑦3 𝐸𝑥𝑝𝐷𝑎𝑦4

QUELL’s performance with the best setting on different feature sets
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Violin plot of 𝑀𝑆𝐸 values of 30 runs

Comparison of QUELL with different feature sets

Overall, QUELL with few features outperforms QUELL with the maximum number of 
features 10.  This shows the effectiveness of QELM in our industrial context。

𝑥 axis≡ 𝑦 axis
𝑥 axis< 𝑦 axis𝑥 axis> 𝑦 axis



RQ3: How well does QUELL perform compared to the baseline

17

• We perform a one-sample Wilcoxon signed rank test to compare 𝑀𝑆𝐸 values of DARIOPRED with QUELL

• We perform DARIOPRED with SVM and regression tree and QUELL on 6 feature sets of 4 datasets

• Results indicates significant difference between QUELL with all feature sets and 
datasets with two classical algorithms.

• We compute Cohen’s d effect size to see the magnitude of differences

• All calculated d values are lower than -1

• 𝑀𝑆𝐸 values generated by QUELL are greatly smaller than that generated by DARIOPRED

• All p-values are lower than 0.05

For the same prediction task in our industrial context, QUELL outperforms
classical machine learning approaches. This demonstrates the potential of QELM



Lessons Learned
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Potential Applications

• Run-time prediction
• Building digital twins
• Prediction problems in 

other contexts

Research Implications

• Classical and quantum 
software engineering

• Theoretical foundations 
of QELM

Future Work

• Involve hardware noise
• Further configuration of 

encoders and reservoirs



Conclusion

• An industrial application of quantum extreme learning machine (QELM) 
for solving the waiting time prediction task in the context of elevator

• Four real datasets from the elevators’ real operation

• QELM could offer benefits by performing significantly better prediction 
even with fewer features
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Motivation – QELM for Software Testing in Practice

Motivation

• Examining the impact of quantum noise on QELM models through three 

industrial, real-world case studies[4]

• Assessing the feasibility of combining QELMs with noise error mitigation 
techniques to enhance their applicability

20

Ideal simulations do 
not reflect the 
reality of with noise

Simulating large-scale 
industrial problems is 
unfeasible

QELM in real-world 
applications with 
the noise is rarely 
unexplored

[4] Muqeet, Asmar, et al. "Assessing Quantum Extreme Learning Machines for Software Testing in Practice." arXiv
preprint arXiv:2410.15494 (2024).
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Background

Source of quantum noise

• Decoherence
Interactions between qubits and environments lead to 
disturbances and loss of information in quantum states

• Crosstalk noise
Unwanted interactions between qubits leads to unintended 
quantum states 

• Hardware calibration
• Minor calibration errors can result in slight lead to 

undesirable states following a series of gate operations
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Error Mitigation Methods

• ML-based error mitigation: Zero Noise Extrapolation[5]

• Step 1: Intentionally scale noise by methods such as applying additional gates

• Step 2: Extrapolate to zero noise with mathematical approaches

• Non-ML error mitigatioin: Q-LEAR[6]

• Step 1: Extract circuit level features and output level features

• Step 2: Train a ML noise model based on the features and ideal outputs

[5] LaRose, Ryan, et al. "Mitiq: A software package for error mitigation on noisy quantum computers." Quantum 6 (2022): 774.

[6] Muqeet, Asmar, et al. "A machine learning-based error mitigation approach for reliable software development on IBM’s quantum 
computers." Companion Proceedings of the 32nd ACM International Conference on the Foundations of Software Engineering. 2024.
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Case Study – Oslo City Healthcare Data

• Oslo City provides healthcare services to its residents

• An Healthcare IoT-based platform connects medical 
devices with pharmacies, caregivers, patients

• Midical devices are allocated to patients to 
enable real-time alerts and personalized care

Karie midical dispenser

Challenge: System-level testing of IoT healthcare applications 
involves multiple medical devices, but using them in tests risks 
damage or server service interruptions
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Case Study – Oslo City Healthcare Data
• ML-based digital twins (DTs) are proposed to 

facilitate the automated and thorough testing[7]

• A testing tool generates REST API tests, and SUT 
communicates with DTs that manage all API calls

Devices only used for 
calibration or 
synchronization

• Based on the dataset for building DTs of Karie, we 
train QELM model to predict responses (HTTP 
status codes) to support automated testing

Inputs: 18 features, such as brightness setting, language 
preference, alarm configurations, network connectivity[4]
Outputs: success/fail (HTTP states codes)

[7] H. Sartaj, S. Ali, and J. M. Gjøby, “MeDeT: Medical Device Digital Twins Creation with Few-shot Meta-learning,” 2024. [Online]. 
Available: https://arxiv.org/abs/2410.03585§
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Case Study – Norway’s Cancer Registry Data
• The Cancer Registry of Norway (CRN) collects cancers cases across Norway by receiving cancer messages from 

health institutes

• Cancer messsages are validated with a set of rules by an automated Cancer Registration Support System (CaReSS)

• CaReSS also analyzes the collected data and generates statistics for policymakers and healthcare stakeholders

Challenge: When testing CaReSS, each request is running in real-time, executing invalid requests incurs
unnecessary execution costs and impacts performance of CaReSS during operation

(SUT)
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Case Study – Norway’s Cancer Registry Data

• A testing tool generates REST API tests, and an ML-
based approach, EvoClass, is proposed to filter test 
cases likely to be invalid[8]

Inputs: 57 features such as patient medical 
records, cancer type, tumor behavior.
Output: success/failure

• Based on the CaReSS rule engine dataset, 
we train a QELM model to predict 
potentially successful or unsuccessful tests

[8] Isaku, Erblin, et al. "Cost Reduction on Testing Evolving Cancer Registry System." 2023 IEEE International 
Conference on Software Maintenance and Evolution (ICSME). IEEE, 2023.
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Case Studies – Orana Elevator

Inputs: 12 features 
Output: average waiting time in 5 min

• Based on passenger information, we train 
a QELM model to predict the passenter 
average waiting time 
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Research Questions

• RQ1: How resistant is QELM to quantum noise?

• RQ2: How effective are current practical error mitigation methods for QELMs?
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Experiment Setting 

• Select key features based on feature importance scores

• Orana dataset: 3 features; Karie dataset: 4 features; 
CaReSS dataset: 8 features

• Features:
• IBM Sherbrook
• IBM Torino
• IBM Fez

• Noise model:

Optimal QELM configuration under ideal simulation comparing with classical baselines
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Resistance to Quantum Noise

Adding noise only training phase Adding noise both training and testing phases

• Noise in both training and testing phases reduces its impact on model performance
• Error mitigation is required for practical use
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Integration with Error Mitigation
Integration with ZNE

Integration with Q-LEAR

Values show the median percentage change (among 10 repeats) from the ideal values
Adding error mitigation both training and testing phases

• Integrating error mitigation methods 
enhances the noise resistance of 
QELMs, but their effectiveness is 
context-dependent.

• ZNE are constrained by qubit size and 
noise models

• ML-based methods like Q-LEAR excel in 
classification tasks but struggle with 
regression
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Lessons Learned

QELM Application

• Potential to outperform classical 
machine learning models

• Scalability issues due to quantum 
noise and qubit limitations, 
requiring solutions

Practical Limitations

• Real quantum computers and effective error mitigation 
techniques required for larger problems, which may 
introduce significant computational overhead

• QELMs with tailored error mitigation strategies may be 
valuable for specialized fields



Conclusion

• This paper evaluated the practical application of QELMs under realistic 
quantum noise conditions across three industrial case studies in 
classical software testing

• QELMs perform well in ideal simulations; however, they are affected by 
quantum noise

• Error mitigation techniques can enhance noise resistance, and tailored 
error mitigation strategies for QELM are needed to enhance their 
applicability

33



34

Acknowledgements
Collaborators

Shaukat Ali

Paolo Arcaini

Aitor Arrieta Marcos

Asmar Muqeet

Hassan Sartaj

Maite Arratibel

Julie Marie Gjøby

Narasimha Raghavan Veeraragavan

QELM in Practice[2]QUELL[1]

[1] Wang, Xinyi, et al. "Application of quantum extreme learning 
machines for qos prediction of elevators’ software in an 
industrial context." Companion Proceedings of the 32nd ACM 
International Conference on the Foundations of Software 
Engineering. 2024.
[2] Muqeet, Asmar, et al. "Assessing Quantum Extreme 
Learning Machines for Software Testing in Practice." arXiv
preprint arXiv:2410.15494 (2024).


