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Projectors and exponentials
A projector operator acts on a quantum state of the Hilbert space and forces allcomponents to zero, except those of the subspace it projects onto.

Π2 = Π, Π
∣∣
span({ψi})d

i=1
=

d∑
i

|ψi⟩ ⟨ψi| ,
〈
ψi
∣∣ψj
〉
= δij (1)

eiθΠ =
∑
n=0

(iθ)n

n!
Πn = I+ (

∑
n=1

(iθ)n

n!
)Π = I+ (eiθ − 1)Π (2)

eiθ|0⟩⟨0| P(θ) = Zθ =
(

1 0
0 eiθ

)
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Observables

• An observable H is a self-adjoint operator on the Hilbert space C⊗n.
• Spectral theorem: ∃ orthonormal basis {|ψi⟩}i of C⊗n consisting of eigenvectors of

H, and all eigenvalues λi are real.
• We can write: H =

∑
i λi |ψi⟩ ⟨ψi|

• To each energy λj corresponds to an energy eigenstate.– ground state: energy eigenstate |v1⟩ corresponding to the lowest energy– first excited state, second excited state, ...: |v2⟩ , |v3⟩ , ...
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Expectation values
Given
• a state |ϕ⟩ prepared on a quantum computer using the unitary U such that

U |0⟩ = |ϕ⟩
• an observable H we are interested to measure

Then the expectation value of H respect to the state |ϕ⟩ is given by
⟨H⟩|ϕ⟩ := ⟨ϕ|H |ϕ⟩ = ⟨0|UHU† |0⟩ (3)

From the spectral theorem it follows:
⟨H⟩|ϕ⟩ = ⟨ϕ|

∑
i

λi |ψi⟩ ⟨ψi|ϕ⟩ =
∑

i

λi |⟨ϕ|ψi⟩|2 =
∑

i

λi |⟨ 0|U|ψi⟩|2 . (4)
Particularly: ⟨H⟩|ψi⟩ = λi
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The Variational Principle

⟨H⟩|ϕ⟩ =
∑

i

λi |⟨ϕ|ψi⟩|2 ≥
∑

i

λmin |⟨ϕ|ψi⟩|2 = λmin (5)

• H can encode a problem as ground state
• Prepare parametrized state |ψ(θ)⟩
• Find θ∗ s.t. | ⟨H⟩|ϕ(θ∗⟩ − λmin|minimal

initial state
solution

5



The Variational Quantum Eigensolver

E0 ≤ ⟨ψ(θ)|H |ψ(θ)⟩ (6)

• H =
∑

α wασ⃗α, σ⃗α ∈ I, X, Y, Z⊗N,

• ∣∣∣ψ(θ⃗)〉 =
∏

i Uθi |0⟩ = U(θ⃗) |0⟩

• EVQE = min
θ⃗

∑
α wa ⟨0|U†(θ⃗)σ⃗αU(θ⃗) |0⟩

6



The Ansatz problem
The right choice of ansatz is critical to obtain a solution that is close to the ground state.• Expressability: Refers the range of feasible states that the ansatz can achieve.• Trainability: Refers to the ability to find the best set of parameters of the ansatz respect to expectationvalues of the Hamiltonian in a finite amount of time.• Depth of the circuit: Refers to the number of sequential operations required for the implementation,which impacts the overall runtime of the method and its resilience to noise

Hardware Efficient Ansatz
|ψ(θ)⟩HEA =

∏d
i=1 UentUrot(θi) |0⟩

Hamiltonian Variational Ansatz |ψ(θ)⟩ =∏p
l=1(

∏
j eiθljHj) |ψ0⟩ , H =

∑
j Hj
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The Classical Optimizer choice

Gradient Descent Based
Use the analytical property of
the ansatz, the gradient of
observables can be directly
computed on a quantum
computer.

Gradient Descent,Quantum Natural Gradient

Stochastic Gradient Based
Approximated the true gradient
using random sampled data at
each iteration.SPSA,QNSPSA,Adam

Gradient-free searching
Do not rely on gradient
information and instead explore
the parameter space using
alternative techniques as
random search, evolutionary
algorithms or Bayesian
optimization.COBYLA, Nelder-Mead
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The Quantum Alternating Operator Ansatz
• Objective function f : {0, 1}n → R
• Where are looking for the optimal vector x∗ = argminx∈{0,1}f (x)
• Problem Hamiltonian HP |z⟩ = f (z) |z⟩ , ⟨HP⟩|z⟩ = f (z)
• Ground states of HP minimize the objective function.
• Ansatz: ∣∣∣γ⃗, β⃗〉 = UM(βp)UP(γp) · · ·UM(β1)UP(γ1) |ϕ0⟩
• Find γ, β ∈ Rp, such that ⟨γ, β|HP |γ, β⟩ is minimized.
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Energy Landscape p=1 Multiple layers QAOA performance
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Combinatorial Optimization: MaxKcut
max

x∈{1,...,k}n
C(x), C(x) =

∑
(i,j)∈E

wij

{
1, if xi ̸= xj

0, otherwise. (7)
Solving NP hard optimization problems.
• Heuristic algorithms. No polynomial run timeguarantee; appear to perform well on someinstances.
• Approximate algorithms. Efficient and provideprovable guarantees. With high probability weget a solution x∗ such that

C(x∗)−minx C(x)
maxx C(x)−minx C(x)

≥ α, (8)
where 0 < α ≤ 1 is the approximation ratio.
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The problem Hamiltonian
For a given k we encode the information of a vertex belonging to one of the sets by |i⟩Lk

,which requires
Lk := ⌈log2(k)⌉ (9)

qubits.
HP =

∑
e∈E

weHe, He = I − Ĥe, UP(γ) = eiγHP =
∏
e∈E

eiγweIe−iγweĤe (10)

Ĥe =
2Lk∑

i,j=1|i∼clrj

|i⟩ ⟨i| ⊗ |j⟩ ⟨j| =
2Lk∑

i,j=1|i∼clrj

|ij⟩ ⟨ij| (11)

Here,∼clr is an equivalence relation clr = {sets of equivalent colors states}. With this, itis clear that Hi,j has eigenvalue 0 for a state |i⟩ |j⟩ if i ∼clr j and+1 if not.
12



The power of two case
When k = 2Lk the equivalence relation for the problem Hamiltonian becomes trivialbecause each color ci → |bin(i)⟩ we assigned the related binary state

Ĥe =

k−1∑
i=0

|i⟩ ⟨i| ⊗ |i⟩ ⟨i| =
k−1∑
i=0

|ii⟩ ⟨ii| = CXA→B (IA ⊗ |0⟩B ⟨0|B) CXA→B. (12)
CXA→B |qA⟩ |qB⟩ =

∣∣q0
A

〉
. . .
∣∣qL−1

A

〉 ∣∣q0
B ⊕ q0

A

〉
. . .
∣∣qL−1

B ⊕ qL−1
A

〉 (13)

e−iϕĤe = CXA→B
(

IA ⊗ e−iϕ|0⟩B⟨0|B
)

CXA→B

Where the⊕ operation is modulo 2.This means that the state of the qubits belonging to jhas zero entries if and only if all qubits have the samestate as in the register i.
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The Maxcut case

Ĥe = |00⟩ ⟨00|+ |11⟩ ⟨11| = I− Z ⊗ Z
2

⇒ HMaxcut =
∑
(i,j)∈E

wij
1 − ZiZj

2
(14)

e−iθZ⊗Z =


e−iθ/2 0 0 0

0 eiθ/2 0 0
0 0 eiθ/2 0
0 0 0 e−iθ/2

 = Rz(−θ) (15)
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EXERCISE 1.1) Try to implement the Max4cut Hamiltonian He for one edge.EXERCISE 1.2): Plot landscape for p = 1 and performance up to depth p = 5.
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The degenerate color method
When k ̸= 2Lk we can think to encode the k colors into all the computational basis stateswith some equivalence class degeneracy for some choices of colors. One possible choiceis to assign c0 → |0⟩ , c1 → |1⟩ , · · · , ck−2 → |k − 2⟩ , ck−1 → ∪2Lk−1

i=k−1{|i⟩}.

Ĥe =

2Lk∑
i,j=1|i∼clrj

|i⟩ ⟨i| ⊗ |j⟩ ⟨j| =
2Lk∑

i,j=1|i∼clrj

|ij⟩ ⟨ij| . (16)
We should find a way to construct the exponential UP(γ) = eiγHP using the minimumamount of resources for the specific choices of k and the equivalence class clr.

c0 → |00⟩ , c1 → |01⟩ , c2 → |10⟩ , |11⟩ (17)
Ĥe = |0000⟩ ⟨0000|+ |0101⟩ ⟨0101|+ |1010⟩ ⟨1010| (18)

+ |1111⟩ ⟨1111|+ |1110⟩ ⟨1110|+ |1011⟩ ⟨1011| (19)
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Realizing exponentials of diagonal Projectors operators
We want to realize the exponential of a diagonal square binary matrix Λ, i.e.,

Λi,j ∈

{
{0, 1}, if i = j

{0}, otherwise, ∀ 0 ≤ i, j ≤ 2n − 1 (20)
with quantum gates. Let’s start with the case of where the number of ones elements in Λare m, a power of two. There exists a permutation Pπ, such that
Λ = Pπ(|0⟩A ⟨0|A ⊗ IB)P−1

π where |B| = log(m) and |A| = n − |B|. From this it followsthat
eiθΛ =

( ∞∑
l=0

(iθ)l

l!
Λl

)
= I +

( ∞∑
l=1

(iθ)l

l!
Λ

)
= I + (eiθ − 1)Λ =

= Pπ
(
(IA + (eiθ − 1) |0⟩A ⟨0|A)⊗ IB

)
P−1
π .

(21)
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In general we can rewrite m as m = 2q1 + 2q2 + · · ·+ 2qp and consequently divide Λ intoa sum of diagonal matrices with corresponding many non-zero elements, i.e.,
Λ = Λq1 + Λq2 + · · ·+ Λqp . (22)

For all matrices Λqi in the above sum the number of non-zero elements is a power of two,then
e−iθΛ =

p∏
j=1

e−iθΛj =

p∏
j=1

Pπj(IAj ⊗ Dzj)P
−1
πj

= P̂π0

p∏
j=1

D̂jP̂πj . (23)
Each permutation Pπ can be in principle implemented using only gates from the set
{X, CX, CCX}.
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The k=3 case
In the edge Hamiltonian |0000⟩ , |0101⟩ , |1010⟩ , |1111⟩ , |1011⟩ , |1110⟩ are the+1eigenstates so the number of ones in Ĥe is m = 6 = 22 + 21. Dividing Ĥe = H1 + H2 ,where H1 represent the first two colors and H2 the remaing ones.

H1 =
∑

(i,j)∈clr3
<3 |i,j≤1

|ij⟩ ⟨ij| = CX2,4 (|0⟩ ⟨0| ⊗ I ⊗ |0⟩ ⟨0| ⊗ |0⟩ ⟨0|) CX2,4, (24)
H2 =

∑
(i,j)∈clr3

<3 |i,j≥2

|ij⟩ ⟨ij| = X1X3(|0⟩ ⟨0| ⊗ I ⊗ |0⟩ ⟨0| ⊗ I)X1X3, (25)
where CXa,b denotes a CX gate with control index a and target index b.
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EXERCISE 2.1) Realize the quantum circuit for the cost function for the partition
{|0000⟩ , |0101⟩ , |1010⟩ , |1111⟩} ∪ {|1011⟩ , |1110⟩}.EXERCISE 2.2) Plot Landscape for p=1 and performance up to depth p=5.
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The Constrained to a Subspace method
When k is not a power of two instead of using equivalence color classes we can define thefeasible set B and constraint the QAOA ansatz to explore only this set. We then need toinitialize a feasible initial state and a define a constraint Mixer.For each vertex the feasible set of color states can be defined as
Bk = {|i⟩ | 0 ≤ i ≤ k − 1}.Since the feasible bit-strings admit a Cartesian product structure (the vertices areindependent), the feasible subspace becomes a tensor product of the form

B = B1
k ⊗ · · · ⊗ B|V|

k . (26)
We observe that

Hbin
P (2Lk)

∣∣
span(B) = Hbin

P (k), (27)
Using this approach we shift the complexity from the Phase or Cost Hamiltonian to theMixer Hamiltonian.
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Constrained QAOA
The solutions constrained to a feasible subspace span(B) ⊂ H = (C2)⊗n:

B =
{
|zj⟩ , 1 ≤ j ≤ J, zj ∈ {0, 1}n} . (28)

Definition valid mixer
• Preserve the feasible subspace

UM(β) |v⟩ ∈ span(B) , ∀ |v⟩ ∈ span(B) , ∀β ∈ R, (29)
• Provide transitions between all pairs of feasible states, i.e., for each pair ofcomputational basis states |x⟩ , |y⟩ ∈ B there exist β∗ ∈ R and r ∈ N∪ {0}, such that

| ⟨x|UM(β
∗) · · ·UM(β

∗)︸ ︷︷ ︸
r times

|y⟩ | > 0. (30)
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Example of Valid Mixers
Unconstrained case: X mixer

UX(β) =
∏

i

RXi(β) =
∏

i

(cos(β)I+isin(β)Xi)

(31)

UX(
π
2 ) =

1
2
√

2
(I+ i(X1 + X2 + X3)−

(X1X2 + X2X3 + X1X3)− iX1X2X3)

Constrained case: Grover mixer

|F⟩ = 1√
|B|

∑
i∈B

|i⟩ = |F⟩ = US |O⟩ ⇒ (32)
UGrover(β) = eiβ|F⟩⟨F| = USeiβ|0⟩⟨0|U†

S (33)

(|F⟩ ⟨F|)2 = |F⟩ ⟨F| ⇒ UGrover(β) =∑
i
(iβ)n

n! (|F⟩ ⟨F|)n = I+ (eiβ − 1) |F⟩ ⟨F|
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EXERCISE 3.1) Pen and paper exercise: Prove that the Grover mixer and the X mixer arevalid mixer .EXERCISE 3.2) Try to prove that the mixer are valid choosing different pair of comp statesand check the overlap for a certain range of parameters.
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Valid mixer as connected graphs
We consider mixers of the following form

UM(β) = e−iβHM , HM =
∑
j<k

(T)j,kHzj↔zk ,
∣∣zj
〉
, |zk⟩ ∈ B (34)

Hzj↔zk =
∣∣zj
〉
⟨zk|+ |zk⟩

〈
zj
∣∣ = Xzk↔zj(

∣∣zj
〉 〈

zj
∣∣+ |zk⟩ ⟨zk|) = Xzk↔zjΠzk,zj . (35)

T =



|z1⟩ |z2⟩ · · · |zi⟩
∣∣zj
〉

· · · |zJ⟩
|z1⟩ 1 1
|z2⟩ 1...
|zi⟩ 1∣∣zj
〉

1...
|zJ⟩ 1


|z1⟩

|z2⟩|zi⟩

∣∣zj
〉

|zJ⟩

Valid mixer
The mixer Hamiltonian HM is valid if the graph GT of the adjacency matrix T is undirectedand connected.
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Examples of Graphs and mixers

X mixer as Hypercube
graph

Grover mixer as Complete
Graph
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Initial state preparation

Given the independence of the different color constraints for each vertex of the problemthe initial state can be prepared as the uniform superposition of all feasible basis state asfollows: ∣∣∣Φ<k
0

〉⊗|V|

= US ⊗ · · · ⊗ US |0⟩ , where ∣∣∣Φ<k
0

〉
= US |0⟩ =

1
k

k−1∑
i=0

|i⟩ . (36)
Where we prepare independently on each vertex the equal superposition of all feasiblecolors due to the property of the tensor product:

(
∑
i∈Bk

ai |i⟩)⊗ (
∑
j∈Bk

bj |j⟩) =
∑

i∈Bk,j∈Bk

aibj |ij⟩ =
∑

m∈Bk⊗Bk

cm |m⟩ (37)
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Grover Mixer construction
Now we need to define a valid mixer for the feasible subspace B.The first possibility is to use directly the initial state preparation circuit US ⊗ · · · ⊗ US toimplement the Grover mixer

UGrover(β) = (US ⊗ · · · ⊗ US)eiβ(|0⟩⟨0|)⊗|V|
(U†

S ⊗ · · · ⊗ U†
S) (38)

.The total cost of this mixer is 2|V| times the cost of implementing the initial state for avertex and the cost of implementing the |V|Lk − 1 control phase operator.Alternative we can take advantage from the structure of B and define the Grover Mixerindependently for each vertex
UM(β) = USeiβ|0⟩⟨0|U†

S ⊗ · · · ⊗ USeiβ|0⟩⟨0|U†
S (39)
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This Grover mixer can be obtained by exponentiation of the following Hamiltonian Mixer
HM = G□|V|

= G□G · · ·□G, G = |F⟩ ⟨F| (40)
where the Cartesian or Box product is defined as

G□H = G ⊗ I+ I⊗ H. (41)
If G and H are connected graphs then G□H is connected too and the mixer is valid.
Cost Circuit for an edge of the
Maxkcut problem

Grover Mixer for a 16 < k ≤ 32
MaxKCut vertex

Initial state for a 16 < k ≤ 32
MaxKCut vertex
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EXERCISE 3.3) Implement the tensorize or box product Grover mixer for k=3.EXERCISE 3.4) Computing landscapes and performance up to depth p=5 and compare itwith the degenerate color case.
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