Tutorial - Pricing a European call option on a quantum computer

This notebook is based on the work of M. Q. Hlatshwayo, NQCC.

A call option is a financial contract in which the holder (buyer) has the right (but not the obligation) to buy a specified quantity of a security at a specified price (strike price) within a fixed period of time (until its expiration).

For the writer (seller) of a call option, it represents an obligation to sell the underlying security at the strike price if the option is exercised. The call option writer is paid a premium for taking on the risk associated with the obligation.

Suppose a European call option with strike price \(K\) and an underlying asset whose spot price at maturity \(S_T\) follows a given distribution. The corresponding payoff function is defined as:

\[f(S_T) = \max(S_T - K, 0)\]

In the following, a quantum algorithm based on amplitude estimation is used to estimate the expected payoff, i.e., the fair price before discounting, for the option:

\[\mathbb{E}\left[f(S_T) \right] \approx \frac{1}{N} \sum_{i=1}^{N} f\left(S_T^{(i)}\right). \]

The approximation of the objective function and a general introduction to option pricing and risk analysis on quantum computers are given in the following papers:

Encoding the probability distribution

We construct a circuit to load a log-normal random distribution into a quantum state. The distribution is truncated to a given interval \([x_{min}, x_{max}]\) and discretized using \(2^n\) grid points, where \(n\) denotes the number of qubits used. The unitary operator corresponding to the circuit implements the following:

\[\big|0\rangle_{n} \mapsto \big|\psi\rangle_{n} = \sum_{i=0}^{2^n-1} \sqrt{p_i}\big|i\rangle_{n},\]

where \(p_i\) denote the probabilities corresponding to the truncated and discretized distribution and where \(i\) is mapped to the right interval using the affine map:

\[ \{0, \ldots, 2^n-1\} \ni i \mapsto \frac{x_{max} - x_{min}}{2^n - 1} * i + x_{min} \in [x_{min}, x_{max}].\]
import numpy as np
import os
import matplotlib.pyplot as plt

from qiskit_finance.circuit.library import LogNormalDistribution
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, AncillaRegister
from qiskit.circuit.library import LinearAmplitudeFunction
from qiskit_algorithms import EstimationProblem
from qiskit_aer.primitives import Sampler
from qiskit.visualization import plot_distribution
#add python path, optional
#path = "some/path"
#os.environ['PATH'] += os.pathsep+path
# number of qubits to represent the stock price
num_uncertainty_qubits = 3

# parameters for considered random distribution
S = 2.0  # initial spot price
vol = 0.4  # volatility of 40%
r = 0.05  # annual interest rate of %
T = 40 / 365  # 40 days to maturity

# resulting parameters for log-normal distribution
mu = (r - 0.5 * vol**2) * T + np.log(S)
sigma = vol * np.sqrt(T)
mean = np.exp(mu + sigma**2 / 2)
variance = (np.exp(sigma**2) - 1) * np.exp(2 * mu + sigma**2)
stddev = np.sqrt(variance)

# lowest and highest value considered for the spot price; in between, an equidistant discretization is considered.
x_min = np.maximum(0, mean - 3 * stddev)
x_max = mean + 3 * stddev
# construct A operator for QAE for the payoff function by
# composing the uncertainty model and the objective
uncertainty_model = LogNormalDistribution(
    num_uncertainty_qubits, mu=mu, sigma=sigma**2, bounds=(x_min, x_max)
)
# view circuit 
uncertainty_model.draw('mpl')
../../_images/10b69a63968d602ff5065f270a0b70bd52cae0233e4da3100416f86c6aa97ec2.png
# view detailed circuit in terms of basis gates
uncertainty_model.decompose().decompose().decompose().draw("mpl")
../../_images/f0f683cf1e546da6ad7c3c3e00d45e17cf4be1267bb132ffa06acbe7d8f05341.png
%matplotlib inline
# plot probability distribution
x = uncertainty_model.values
y = uncertainty_model.probabilities
plt.figure()
plt.bar(x, y, width=0.2)
plt.xticks(x, size=15, rotation=90)
plt.yticks(size=15)
plt.grid()
plt.xlabel(r"Spot Price at Maturity $S_T$ (EUR)", size=15)
plt.ylabel(r"Probability ($\%$)", size=15)
plt.show()
../../_images/8592cd9e6710b2e90263323aaf86acf12bfafb5d93b119b79d5e88e669ead208.png

Encoding the payoff function

# set the strike price (should be within the low and the high value of the uncertainty)
strike_price = 1.896

# plot exact payoff function (evaluated on the grid of the uncertainty model)
x = uncertainty_model.values
y = np.maximum(0, x - strike_price)
plt.figure()
plt.plot(x, y, "ro-")
plt.grid()
plt.title("Payoff Function", size=15)
plt.xlabel(r"Spot Price at Maturity $S_T$ (EUR)", size=15)
plt.ylabel("Payoff Amount (EUR)", size=15)
plt.xticks(x, size=15, rotation=90)
plt.yticks(size=15)
plt.show()
../../_images/d1eb222efed11523c58957edea4d419dfe943404a98404cc36e6351e49fb11be.png

The payoff function equals zero as long as the spot price at maturity \(S_T\) is less than the strike price \(K\) and then increases linearly. The implementation uses a comparator, that flips an ancilla qubit from \(\big|0\rangle\) to \(\big|1\rangle\) if \(S_T \geq K\), and this ancilla is used to control the linear part of the payoff function.

Eventually, we are interested in the probability of measuring \(\big|1\rangle\) in the last qubit. Recall that

\[ \mathbb{P}(\textrm{measure 1}) = \mathbb{E}[f(X)] = \sum_{i=0}^{2^n-1}f(i)p_i.\]

For more details on the implementation, we refer to:

LinearAmplitudeFunction | IBM Qiskit Documentation

# set the approximation scaling for the payoff function
c_approx = 0.25

# setup piecewise linear objective function
breakpoints = [x_min, strike_price]
slopes = [0, 1]
offsets = [0, 0]
f_min = 0
f_max = x_max - strike_price
european_call_objective = LinearAmplitudeFunction(
    num_uncertainty_qubits,
    slopes,
    offsets,
    domain=(x_min, x_max),
    image=(f_min, f_max),
    breakpoints=breakpoints,
    rescaling_factor=c_approx,
)
# view payoff function circuit
european_call_objective.draw('mpl')
../../_images/fef22d9a461a1321f8f2476f2e340d1155902e29abab02676e8f17e95130f035.png
# view payoff function circuit
function_circuit = european_call_objective.decompose().decompose().decompose().decompose().decompose()
function_circuit.draw("mpl")
../../_images/72d433ecab5c00d1d11eb7ddcfe4b92e061131980f84e18481afcdaec64f52d5.png

Combining the distribution and payoff circuits

We combine the circuits for the underlying distribution and the payoff function, respectively. The \(q\) qubit contains the expected value of the payoff. We add a measurement operator for \(q\).

# construct A operator for QAE for the payoff function by
# composing the uncertainty model and the objective
num_qubits = european_call_objective.num_qubits
num_clbits = 1
qreg = QuantumRegister(num_uncertainty_qubits, 's')
qreg2 = QuantumRegister(1, 'q')
qreg3 = AncillaRegister(num_qubits-num_uncertainty_qubits-1, 'a')
creg = ClassicalRegister(num_clbits, 'creg')
european_call = QuantumCircuit(creg, qreg, qreg2, qreg3)
european_call.append(uncertainty_model, range(num_uncertainty_qubits))
european_call.append(european_call_objective, range(num_qubits))
european_call.measure(qreg2, creg)

# draw the circuit
european_call.draw("mpl")
../../_images/d96b341849e44bc588a66e2bcfd5c3e17b5aba041e389d0b9d6254d323cc5b00.png

Next, we run the combined circuit and calculate the average \(\hat p\). The average is scaled back from the \([0,1]\) interval to the original \([x_{min}, x_{max}]\) interval.

#run on local simulator
from qiskit.primitives import StatevectorSampler as Sampler
sampler = Sampler()
n_shots = 10000
result = sampler.run([european_call], shots=n_shots).result()
#dir(result[0].data)
dist = result[0].data.creg.get_int_counts()
plot_distribution(dist)
../../_images/d82a9b1266348df4216bf2f71c67689cf6a5eeaa4341d5ef3c64cac6cb8549d6.png
p_hat = dist[1]/n_shots
p_std = np.sqrt(p_hat*(1-p_hat)/n_shots)

print("raw estimated average:\t%.4f" % p_hat, ", standard deviation:\t%.4f" % p_std)

expectation = european_call_objective.post_processing(p_hat)
upper = european_call_objective.post_processing(p_hat + 2*p_std)
lower = european_call_objective.post_processing(p_hat - 2*p_std)

print("estimation of expected payoff:\t%.4f" % expectation)
print("lower confidence bound:\t%.4f" % lower)
print("upper confidence bound:\t%.4f" % upper)
raw estimated average:	0.3779 , standard deviation:	0.0048
estimation of expected payoff:	0.1735
lower confidence bound:	0.1508
upper confidence bound:	0.1961
# evaluate exact expected value (normalized to the [0, 1] interval)
exact_value = np.dot(uncertainty_model.probabilities, y)
print("exact expected value from discretization:\t%.4f" % exact_value)
exact expected value from discretization:	0.1623