iy

Q;Dge = S&Qe
FKTH Y

VETENSKAP
28 OCH KONST 2%

Boat®

Quantum Algorithms: A Top-Down Approach

Stefano Markidis
KTH Royal Institute of Technology

How a Quantum Computer
Looks Today — IBM System

I

/technology/in-photos-journey-to-the-center-of-a-quantum-computer/

Measurement Command

1L

Signal Generator, Analyzer and Scheduler

https://www.popsci.com/technology/in-photos-journey-to-the-center-of-a-quantum-computer/
https://www.popsci.com/technology/in-photos-journey-to-the-center-of-a-quantum-computer/
https://www.popsci.com/technology/in-photos-journey-to-the-center-of-a-quantum-computer/
https://www.popsci.com/technology/in-photos-journey-to-the-center-of-a-quantum-computer/
https://www.popsci.com/technology/in-photos-journey-to-the-center-of-a-quantum-computer/
https://www.popsci.com/technology/in-photos-journey-to-the-center-of-a-quantum-computer/
https://www.popsci.com/technology/in-photos-journey-to-the-center-of-a-quantum-computer/
https://www.popsci.com/technology/in-photos-journey-to-the-center-of-a-quantum-computer/
https://www.popsci.com/technology/in-photos-journey-to-the-center-of-a-quantum-computer/
https://www.popsci.com/technology/in-photos-journey-to-the-center-of-a-quantum-computer/
https://www.popsci.com/technology/in-photos-journey-to-the-center-of-a-quantum-computer/
https://www.popsci.com/technology/in-photos-journey-to-the-center-of-a-quantum-computer/
https://www.popsci.com/technology/in-photos-journey-to-the-center-of-a-quantum-computer/
https://www.popsci.com/technology/in-photos-journey-to-the-center-of-a-quantum-computer/
https://www.popsci.com/technology/in-photos-journey-to-the-center-of-a-quantum-computer/
https://www.popsci.com/technology/in-photos-journey-to-the-center-of-a-quantum-computer/
https://www.popsci.com/technology/in-photos-journey-to-the-center-of-a-quantum-computer/
https://www.popsci.com/technology/in-photos-journey-to-the-center-of-a-quantum-computer/
https://www.popsci.com/technology/in-photos-journey-to-the-center-of-a-quantum-computer/

EEEEEEEEE

Quantum Processor Unit (QPU) Abstraction

Accelerator
Quantum Processing Unit

iy The Host-Accelerator Quantum Machine Model
W

q[o] [0}

I ommal

al4l o ?—

0 1 2 4

Execute Quantum Circuit (Kernel)

5
R

Memory Memory Accelerator

Classical registers Quantum registers Quantum Processing Unit

Measurements / Sampling

Similar to classical Von Neumann architectures, note the presence of memories on both the CPU and
QPU sides.

EEEEEEEEE

QPU (and Accelerators) Characteristics

Usually, a program running on a CPU will issue QPU instructions and later

retrieve the results.
Some tasks are very well suited to the QPU, and others are not.

The QPU runs on a separate clock from the CPU and usually has its own
dedicated hardware interfaces to external devices (such as optical outputs).
A typical QPU has its own special RAM, which the CPU cannot efficiently
access.

When a computation is done, a projection of the result is returned to the CPU,
and most of the QPU’s internal working data is discarded.

Programming a Quantum Computer

Express our program as a quantum circuit (define the combination of quantum gates acting
on the qubit)

Offload our code (definition of our quantum circuit)

Prepare the distribution

Sample the distribution (measure many times)

ﬁfﬁ% 1. Express our Code as a Quantum Circuit and Offload to QPU

9
g vans £

1. Offload circuit (program)
X 0
CNOT 0 1

The closest classical accelerator to
QPU is FPGAs, where we can
provide configuration of hardware
and network (our code is the
classical circuit for FPGAs.)

-y QPU & FPGAs (loose analogy for QPU)

Example of FPGA

https://www.amazon.com/Altera-Cyclone-

FPGA-Development-Board/dp/BO188D4ENO

https://www.amazon.com/Altera-Cyclone-FPGA-Development-Board/dp/B0188D4ENO
https://www.amazon.com/Altera-Cyclone-FPGA-Development-Board/dp/B0188D4ENO
https://www.amazon.com/Altera-Cyclone-FPGA-Development-Board/dp/B0188D4ENO
https://www.amazon.com/Altera-Cyclone-FPGA-Development-Board/dp/B0188D4ENO
https://www.amazon.com/Altera-Cyclone-FPGA-Development-Board/dp/B0188D4ENO
https://www.amazon.com/Altera-Cyclone-FPGA-Development-Board/dp/B0188D4ENO
https://www.amazon.com/Altera-Cyclone-FPGA-Development-Board/dp/B0188D4ENO
https://www.amazon.com/Altera-Cyclone-FPGA-Development-Board/dp/B0188D4ENO
https://www.amazon.com/Altera-Cyclone-FPGA-Development-Board/dp/B0188D4ENO

3. Prepare Distribution

2. Prepare the

distribution

(apply
transformations

to input)

VVVVVVVVV

R 4. Sample the Distribution

3. Sample the

distribution
(measure many times)

EEEEEEEEE

QuantumRegister(2,'q")
ClassicalRegister(2,'c")

firstBellState():
circuit = QuantumCircuit(qg,c)

circuit.h(q[@])

circuit.cx(q[9],q[1])
circuit. measure(qg,c)

print(circuit)

job execute(circuit, backend, shots-8192)

job_monitor(job)
counts = job.result().get counts()

print(counts)

Define variables on
the host and
accelerator

Define the kernel as
a quantum circuit
acting on quantum
registers

Launch the Kernel

. Quantum Applications Mechanism

* Initialize the system in a classical state, e.g., a zero state

* Apply gates to execute an algorithm

* Spawn a superposition of quantum states
 Use special gates: HAD (Hadamard), RY (Rotation Y), ...

« Use (wave) destructive/constructive interference to eliminate/reinforce potential solutions
« Change the phases to interfere

superposition interference
s
1 with prob: 0.5 j i +

Apply
Gate
0 %ﬁvﬁv

O with prob: 0.5

Credits: https://byjus.com/physics/constructive-interference/

https://byjus.com/physics/constructive-interference/
https://byjus.com/physics/constructive-interference/
https://byjus.com/physics/constructive-interference/

Quantum Algorithms

H®N

: Encode Explore all the possible solutions &
Spawn all the available :
: Input / Prune the wrong Solutions
quantum parallelism : :
- via entanglement and interference

Oracle

Pl

/

sy Quantum Algorithms Compose Quantum Primitives

EEEEEEEEE

- Quantum algorithms are a composition of
different quantum primitives

- Think about libraries and templates in CS

- Primitives associated

r 1 with the computation
create compute in in superposition enable
superposition — superposition us to perform
H — & computations using the
o+ implicit parallelism of
superposition.
I - Phase manipulation:
Primitives that realize
manpingaetion readout phase manipulation
— ensure that our results
@ —D can actually
be read practically.

EEEEEEEEE

Example of Quantum Primitives

Quantum Arithmetics Compute in superposition
Amplitude amplification Phase manipulation
Quantum Fourier Transform Phase manipulation

Phase estimation Phase manipulation

) The Abstraction of Qubit

« The quantum bit (gbit) is an extension of the probabilistic bit, which is a generalization of the
bit
* Bit = scalar
* Probabilistic bit = vector column with probability encoded in real numbers >=0 and <=1

* Quantum bit = probabilistic bit where the probability is encoded in the squared modulus of a
complex number (called amplitude)

S Quantum Bit = Qubit

« Similar to the probabilistic bit, but there are main
essential differences
* |tis expressed by a vector and not a scalar
* As the probabilistic bit
* |ts entries are expressed by a complex number instead of
a real number
* This complex number is called amplitude.
* The modulus square of the complex number is the
probability

e

(%} Same Probability of Observing O and 1
Probabilistic Bit Quantum Bit
0.5 " 1T T

0.5

SIS
SISk

w=i Qubit as 2-dimensional Complex Vector

We represent a qubit as a 2-by-1 matrix with complex numbers

0 Co
1 C1

where |cg|? + |cq[? = 1.
« Aclassical bit is a special type of qubit.

o |eol? is| to be interpreted as the probability that after measuring the qubit, it will be found in
state |O).

o ley? is| to be interpreted as the probability that after measuring the qubit it will be found in
state |1).

Whenever we measure a qubit, it automatically becomes a bit.
We will never measure a general qubit.

Superconducting Loops

Current

Capacitors

ar
=)

V— Microwaves

Inductor

Implementation of a Qubit

Trapped lons

Laser

Photonics

Neutral
Atoms

Electron

20

EEEEEEEEE

The Abstraction of Quantum Gate - |

Transformations acting on one or multiple qubits
« Each qubit = wire

The transformation on a qubit can be expressed by matrix multiplication with the
probabilistic qubit

Valid transformations are only those respecting QM laws

Transformation must:
* Bereversible, e.g., matrix A can be inverted do

* Preserve the normalization of the probabilistic qubit
« Also, conserve the “inner product” or the “geometry”
* These two properties make A unitary

o}

a1 =Ado

A is a matrix

21

The Abstraction of Quantum Gate - Il

Single-qubit Gate: 2x2 matrix

* The quantum gates can act on
 single qubit = 1 wires do
« Two or multiple qubits

« Act on the combined input
qubit (2 or more qubits)

* Controlled version of a single
qubit gate Two-qubit Gate: 4x4 matrix

o}

22

Circuits = Combine Gate Sequence

Combinations of sequential and
parallel operations, such as
gates/matrices, will be referred
to as circuits.

Circuits can be decomposed
into the sequential and parallel
compositions of simple gates.

Classical circuit

{>.
I
),

Z>_

Quantum circuit

/n H®n /n

/n

/n n
/ H®" 8 A

/n

Ak
ixtns Only a Few Gates Implemented on Quantum Computers
°°%‘%‘;>Xé?£zg
Examples of basis gates on IBM Brisbane and Torino Quantum Systems
cands = service.backends(simulator=False, operational=True, min_num_qubits=6)
for b in cands: print(b.name, b.num_qubits)
A = service.least_busy(simulator=False, operational=True, min_num_qubits=6) .
B = next(b for b in cands if b.name != A.name) ¢ USG baS!S gates
A, B and equivalences
5% ibm_torino 133 to EXpress the
ibm_brisbane 127 I
(<IBMBackend('ibm_brisbane')>, <IBMBackend('ibm_torino')>) Erhansformatlfns Of
e given gates
cfgA = A.configuration(); cfgB = B.configuration()
print("A basis_gates:", cfgA.basis_gates)

(¥

print("B basis_gates:", cfgB.basis_gates)
cmapA = A.coupling_map; cmapB = B.coupling_map

A basis_gates: ['ecr', 'id', 'rz', ‘'sx', 'x']

B basis gates: ["cz'; '1d'; ‘rz's "sx'y %)

from qiskit.visualization import plot_coupling_map
plot_coupling_map(A.num_qubits, None, cmapA.get_edges())

24

{xriy Not all the Qubits are
et Connected

Topology of qubits connection on IBM Brisbane

from qiskit.visualization import plot_coupling_map
plot_coupling_map(A.num_qubits, None, cmapA.get_edges())

)

 When we use a C-operation, it

might be that the qubits we use are
not connected

* We need a sort of “routing”

* Possible to add quantum gates to
perform the routing

25

- The Need for Compilation/Transpilation when Running on
Quantum Computers

[

« Ecr
« s1_0 -> 47 —| X '—(Rz(m/2) I— —‘ VX H Rz(-n/2) Hl H VX
« r 1 T ™ r 1 Ecr |} 1r

»
I1 H VX H Rz(n/2) l—»
|| Ecr |} 1r »

[circuit] Single-node (middle) — untranspiled:
s@: 4 Ry(1.4706) H X T X H a X H X - X -
sl: Ry(0.88102) H X + X +
anc: Ry(2.8635) Ry (1) Ry(2.8635) —[;}
c_anc: 1/
0
depth: 12 ops: {'x': 8, 'cry': 2, 'ccry': 2, 'ry': 1, 'measure':
Transpilation L :

[circuit] Single-node (middle) - transpiled for backend: Transpll.atlon = AUtomatIC
global phase: 3mn/2 . tranSIatlon from the SourCe
$0_0 -> 46 —[VX H Rz(1.4706) I—I X |—| Rz(-n/2) |—6 Rz(-n/2) 2] -I Rz(-n/2) I— VX » . . .
s1_0 -> 47 Rz(-m) } X { Rz(2.7011) I———————l s —(Rz(-m) H X I———1 Rz(-2.7011)]—1 ——{ Rz (-m) }—— VX -i Rz(n/2) }-: quantum CIrCUIt to us.e baSIS
anc_0 > a8 { mzwn) —] o [| G gates and the underlymg

c_anc: 1/

‘ topolo
E s0_0 -> 46 o /2) H X l——e -{ Rz(-n/2) H X }-—-0 . E p gy
« $1_0 -> 47 41 H VX o H VX 1 X t— Rz(n/2) H —{ VX H Rz(-n/2) }-1 =
« Ecr Ecr »
«anc_0 -> 48 40 H VX -{ Rz(0.71587) H VX H Rz(m/2) |—0 H VX -—{ Rz(-0.71587) }-———- — Rz(m/2)
. c_anc: 1/
: s@_0 —> 46* Rz(n/2) H VX Q -| Rz(-n/2) II
ESL6_>47% okl | +R”"“)%1ECY——4JXF_+RZPM2)FI | e depth: 118 ops: {'rz': 80, 'sx': 65, 'ecr': 29, 'x': 5, 'measure': 1}
«anc_0 -> 48] H VX -I Rz(-0.71587) H VX H_R) : i) ’ i) i ’ g ’ i)

c_anc: 1/
: s0_0 -> 46] —| Rz(-n/2) }

26

Forh
Y-l KTH vO
G, verenswar
L

Conclusions

Quantum computing systems are complex experimental facilities for computation.
Abstractions help us in dealing with complexity

Qubit = probabilistic bit with probability encoded in amplitude

Quantum gates = apply a unitary transformation on probabilistic qubits

Algorithms combine qubits and quantum gates

