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Figure 1: Biomolecular quantum simulation quadrangle: The complexity of the electronic structure problem is
indicated on the horizontal axis. The importance and complexity of the sampling problem is indicated on the
vertical axis. Considering the four paradigmatic situations where the energetic and entropic complexities are low
or high gives rise to four quadrants. In each, we indicate a characteristic example.

iron-sulfur cluster as active site whose mechanism depends on the configurational flexibility of
the surrounding protein sca!old (see, e.g., [17, 18, 19])). We note that for many systems in the
top-left corner of the quadrangle standard force fields can in principle perform well, especially
if the system only has top-row elements from the periodic table. However, in the presence of
transition metals, accuracy is often poor.

In this work, we present a framework and implementation of an end-to-end pipeline for
the calculation of free energies that makes e”cient use of expensive high-accuracy quantum-
mechanical calculations. We demonstrate the accuracy, reliability and plasticity of our algo-
rithmic workflow with the example of a ruthenium-based anticancer compound binding to a
target protein (GRP78/NKP-1339), where the quantum data is obtained by traditional quan-
tum chemical wave function-based methods. Our pipeline has the flexibility to allow for the
direct replacement of this traditional computing engine with a quantum computing. We provide
requirements for when this replacement will impact the free energy calculation. This is an im-
portant step towards charting and realizing the conditions for quantum advantage in computing
free energies for large and complex biological systems.

In previous work [20, 21], we have already demonstrated that (i) we can e”ciently represent
a hybrid low-cost-quantum–classical model of a protein–guest complex by a machine learning
potential from which a free energy of binding can be obtained and that (ii) this machine learning
model can be improved by transfer learning with local high-accuracy quantum energies obtained
in a second embedding, where smaller quantum cores embedded in the large, low-cost quantum
region of the hybrid model.

In this work, we now build the FreeQuantum pipeline by incorporating these building blocks
into a general framework that (i) can deal with complex atomistic situations such as transition
metal complexes, open-shell electronic structures and multi-configurational electronic substruc-
tures in the quantum cores, that (ii) can switch from traditional electronic structure methods
for the quantum cores to quantum algorithms, and that (iii) can be driven fully automatically
according to various outer constraints such as the amount of computational resources, classical
and quantum, available (e.g., measured in terms of the number and quality of qubits available).
In this way, the pipeline can tailor the atomistic modeling of the multilayer embedding pro-
cedure to the hardware available for the most accurate quantum calculations on the quantum
cores. For a graphical representation of our FreeQuantum pipeline, see Fig. 2.

We demonstrate the FreeQuantum pipeline by calculating the free energy of binding of the
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Figure 2: Workflow of the FreeQuantum pipeline: After a structure preparation step for the host protein and
bound guest molecule by equilibration (grey), structural sampling with classical force fields starts in an initial
alchemical Free Energy Perturbation (FEP) step (red, top). The structures are then forwarded to the hybrid
QM/MM modeling step, which defines the quantum region that covers the parts of the protein-ligand system
to be subjected to a quantum-mechanical description (orange). For the resulting QM/MM structures with
associated energies and forces, a first machine learning (ML) potential (ML1) is trained with an active learning
loop to interlace the QM subsystem data with the MM force field data (turquoise, top). The loop involves
non-equilibrium (NEQ) switching calculations, the final result of which is output as the MM+ML1 FEP(red,
middle). In a further step, the QM/MM hybrid model is refined by introducing a second type of embedding, where
quantum-in-quantum subregions (quantum cores) are defined (blue), for which then highly accurate quantum-
mechanical calculations are carried out, either by traditional quantum chemical calculations or by future quantum
computation (violet). The resulting QM/QM/MM data are fed into a refining process of the earlier ML model
(ML1) by transfer learning (turquoise, bottom). Sampling from this refined model (ML2) yields the third tier of
free energy results (red, bottom). With the active learning and the FEP calculations, we automated all parts of
the pipeline which otherwise would require frequent manual intervention and substantial human time.

aforementioned open-shell transition-metal-containing anticancer drug to its protein target with
a series of traditional correlated electronic structure methods. Based on our earlier work devel-
oping qubit-e!cient quantum algorithms for groundstate energy estimation [22, 23, 24], as well
as the algorithms based on the qubitization framework [25, 26, 27], we can exploit this example
to arrive at general conclusions for the constraints on future quantum computers to achieve a
quantum advantage in the general field of atomistic modeling for free energy calculations in
biochemistry.

The remainder is organized as follows. In Section 2 we describe the scientific aspects of
the computational pipeline as well as the results from a pipeline run for the anticancer drug-
host complex obtained with traditional computational methods. In Section 3, we discuss the
prospect of future quantum computing methods. Emerging from an analysis of the quantum
resources required for impacting the free energy calculation for the ruthenium-based system, we
o”er general insights for quantum advantage in computational molecular biology. A conclusion is
o”ered in Section 4. Additional technical information is provided in the Supporting Information.
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2 The computational pipeline FreeQuantum

The partition function Z of a molecular system in the Born-Oppenheimer approximation is given
by

Z =

∫
d
3NnucR tr exp(→ωH(R))

where ω = 1
kBT is the inverse temperature with kB the Boltzmann constant, T the tempera-

ture. H(R) is the electronic Hamiltonian for given nuclear coordinates R of the Nnuc nuclei.
We include in H(R) the electrostatic interaction of the nuclei. At ambient temperature in
biological systems higher electronic states can be neglected, resulting in the approximation
tr exp(→ωH(R)) ↑ exp(→ωEg(R)) where Eg(R) is the electronic ground state energy for a fixed
nuclear configuration; varying over R gives the potential energy surface (PES).

Thermodynamic quantities, such as the Gibbs free energy G can be obtained from Z and
therefore involve a sampling problem over a vast PES. We do this by traditional molecular
dynamics methods, which carve out a discretized trajectory of nuclear positions with help of a
force field. We can restrict to states with specific properties, e.g., bound or unbound for our
protein-ligand system, and indicate this in subscript.

Our main goal is the computation of the di!erence

”Gbinding = Gbound →Gunbound

to high accuracy as this is key to any design attempt that would rely on di!erences of ”Gbinding

obtained for di!erent host molecules (for instance, within a drug discovery campaign). For
each step in the trajectory, we therefore have to compute the ground state energy, i.e., the
corresponding point on the PES to high accuracy. Ideally, we would here employ a full quantum-
mechanical energy calculation. As the system consists of thousands of atoms, this is infeasible
and we resort to a two-fold quantum embedding strategy resulting in a three-layer quantum-in-
quantum-in-classical embedding (QM/QM/MM).

As in Refs. [20, 21], we begin by considering the initial force field (MM) which has been
used for the trajectory computation. We then choose the quantum region which will be treated
with DFT giving rise to the QM/MM embedding. As the computation of the DFT data is more
expensive, we do not compute it for every point on the trajectory but only for some, which
we then use to train an ML potential in an active learning loop (ML1). To obtain a further
refinement, we identify one or more quantum cores within the quantum region giving rise to the
QM/QM/MM embedding. The energies of the quantum cores can be computed with traditional
quantum chemical methods (currently) or with quantum computing (in the future). In either
case, these data points are used to obtain a refined ML potential (ML2) replacing ML1 via
transfer learning.

In the following we describe the main aspects of the implementation. First, regarding the
free energy perturbation method, second, regarding the ML potentials and, third, regarding the
quantum embedding.

Free energy perturbation

The calculation of the binding free energy ”Gbinding = Gbound→Gunbound by direct computation
of the free energies as outlined above is challenging as the molecular dynamics simulation used
in order to sample the phase space is slow and would therefore only explore a very small part.
This leads to large uncompensated errors when computing free energy di!erences, since the
sampling for Gbound and Gunbound is over distributions with little overlap.

Free energy perturbation (FEP) o!ers a way of avoiding this di#culty, by telescoping the

5

expression

Gbound →Gunbound =
s→1∑

k=1

Gωk →Gωk+1︸ ︷︷ ︸
!Gωk

(2.1)

with s steps along a path (e.g., a reaction coordinate) parametrized by ω (see e.g., [15, Fig. 7]).
Here, 1 = ω1 > · · · > ωs = 0, where 0 and 1 correspond to the unbound and bound situation [6,
Section 1.3], and where Gωk and Gωk+1 involve very similar sampling when suitable paths are
chosen giving rise to error compensation and thus to an e!ective algorithm (see e.g., [7]).

An elegant alternative strategy that connects the thermodynamically stable states with a
path is to introduce an unphysical parameter into the Hamiltonian and to change this parameter
so as to walk along the resulting ’alchemical’ path. In protein-ligand binding, this parameter is
simply switching o! the interaction between protein and ligand:

Hω = Hprotein +Hligand + ωHinteraction.

This defines Gω with Gbound = G1 and Gunbound = G0 = Gprotein +Gligand.

This idea is especially useful as it can be easily adapted to tackle the solvated situation,
where it is hard to find a reaction coordinate path due to the presence of the water molecules.
Here one first switches o! the protein-ligand interaction in the solvated complex. The result
corresponds to the sum of the solvated protein and the ligand in vacuum. Considering now the
ligand separately, one can switch on the interaction with surrounding water molecules, resulting
in

”Gsolvated binding = Gsolvated complex → (Gsolvated protein +Gligand)︸ ︷︷ ︸
!Gpartially solvated binding

+(Gligand →Gsolvated ligand)︸ ︷︷ ︸
→!Gligand solvation

.

The telescoping sum (2.1), can be used for each of the two free energy di!erences on the right,
leading to the alchemical FEP method that we implemented [28, 29, 30]. Here, the free energy
di!erences ”Gωk are determined jointly using the multistate Bennett acceptance ratio (MBAR)
[31], which has a low variance and bias. We carefully choose the step sizes as to ensure su#cient
overlap of the potential energy distributions along the steps taken on the path, so that the free
energies computed with MBAR are reliable.

Machine learning potentials

We compute three types of free energy di!erences corresponding to three di!erent, but succes-
sively refined, potential energy surfaces. The first corresponds to our standard force field (MM).
The second is the ML1 potential for the quantum region combined with the MM potential for
the remaining molecular structure. For the third, we replace ML1 by the refined ML2 leading
to MM+ML2.

Training a system-specific ML potential from scratch requires a training set with a large
number of representative structures. It is common to use both energy and force information
(analytical derivatives), and this is done within an active learning loop in order to obtain ML1.
Starting with 2000 QM/MM data points, as is done in similar ML potentials, we use 90% of
the random structures for training and the rest for validation and train the potential until the
root mean square error is converged. We then use this potential for non-equilibrium switching
(NEQ), a step in our FEP computation during which new structures with high uncertainties
are encountered. At this point, the active learning kicks in and new QM/MM reference data for
these structures is generated and the training is repeated as described until convergence.

For the second embedding leading to ML2, the active learning is a challenge, as the forces are
not directly available in our embedding approaches (see below) and training solely on energies
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2 The computational pipeline FreeQuantum
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Figure 2: The thermodynamic cycle for calculating the binding free energy with AFE simulations employing MM
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The electrostatic interaction E
int

elec
is given as

E
int

elec
=

〈
!Q

∣∣∣∣∣
∑

A→E

qA

|rrr →RRRA|

∣∣∣∣∣!Q

〉

+
∑

I→Q

∑

A→E

ZIqA

|RRRI →RRRA|
.

(5)

Here, !Q denotes the wave function of the QM region.
qA is a point charge with MM index A at position RRRA

representing the electrostatic potential of the MM en-
vironment. ZI is the nuclear charge of QM atom I at
position RRRI in the QM region.

E
int

MM
includes all non-electrostatic interactions be-

tween QM and MM region which are calculated by the
MM force field.

3.4. Machine Learning Potentials

We choose second-generation HDNNP [28, 29, 41]
where the energy of a system with Nelem chemical ele-
ments and N

m
atom

atoms n of element m is constructed
as a sum of atomic energy contributions E

m
atom,n. Feed-

forward neural networks are employed to represent these
atomic energy contributions and, in this work, the neural
network consists of two hidden layers with a linear output
[42]. The neural network input is a vector Gm

n of dimen-
sion nG, which describes the local atomic environment of
atom n.

Element-Embracing Atom-Centered Symmetry Functions

Originally, the structural descriptor of HDNNPs is a
vector of ACSFs [63]. ACSFs are many-body representa-
tions of the interatomic distances and angles within a cut-
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Figure 2: Workflow of the FreeQuantum pipeline: After a structure preparation step for the host protein and
bound guest molecule by equilibration (grey), structural sampling with classical force fields starts in an initial
alchemical Free Energy Perturbation (FEP) step (red, top). The structures are then forwarded to the hybrid
QM/MM modeling step, which defines the quantum region that covers the parts of the protein-ligand system
to be subjected to a quantum-mechanical description (orange). For the resulting QM/MM structures with
associated energies and forces, a first machine learning (ML) potential (ML1) is trained with an active learning
loop to interlace the QM subsystem data with the MM force field data (turquoise, top). The loop involves
non-equilibrium (NEQ) switching calculations, the final result of which is output as the MM+ML1 FEP(red,
middle). In a further step, the QM/MM hybrid model is refined by introducing a second type of embedding, where
quantum-in-quantum subregions (quantum cores) are defined (blue), for which then highly accurate quantum-
mechanical calculations are carried out, either by traditional quantum chemical calculations or by future quantum
computation (violet). The resulting QM/QM/MM data are fed into a refining process of the earlier ML model
(ML1) by transfer learning (turquoise, bottom). Sampling from this refined model (ML2) yields the third tier of
free energy results (red, bottom). With the active learning and the FEP calculations, we automated all parts of
the pipeline which otherwise would require frequent manual intervention and substantial human time.

aforementioned open-shell transition-metal-containing anticancer drug to its protein target with
a series of traditional correlated electronic structure methods. Based on our earlier work devel-
oping qubit-e!cient quantum algorithms for groundstate energy estimation [22, 23, 24], as well
as the algorithms based on the qubitization framework [25, 26, 27], we can exploit this example
to arrive at general conclusions for the constraints on future quantum computers to achieve a
quantum advantage in the general field of atomistic modeling for free energy calculations in
biochemistry.

The remainder is organized as follows. In Section 2 we describe the scientific aspects of
the computational pipeline as well as the results from a pipeline run for the anticancer drug-
host complex obtained with traditional computational methods. In Section 3, we discuss the
prospect of future quantum computing methods. Emerging from an analysis of the quantum
resources required for impacting the free energy calculation for the ruthenium-based system, we
o”er general insights for quantum advantage in computational molecular biology. A conclusion is
o”ered in Section 4. Additional technical information is provided in the Supporting Information.
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requires significantly more training data as noted in the training of ML1 [21]. We address this
challenge using transfer learning, which allows us to refine ML1 directly with sparse high preci-
sion data, a strategy that has previously shown good results [32, 20]. To select the structures,
we calculate the median energy of the QM/MM energies, and then calculate QM/QM/MM en-
ergies for all structures whose QM/MM energies are within 400 kJ/mol of the median. This is
to eliminate artifacts from unphysical structures. In total, we used 4570 reference conformers
for the protein-ligand complex and 5441 reference conformers for the solvated ligand in order to
refine the ML1 potential energy surface in the transfer learning step to ML2.

Quantum embedding

In the following we will explain the construction and choices made in the quantum-mechanically
refined PESs. To begin with, the free energy sampling is conducted via molecular dynamics
simulations on the PES corresponding to a standard force field with the equilibrated structure
as a starting point. The energies and forces are expected to be inaccurate in certain areas of
the PES due to quantum-mechanical e!ects. It is therefore desirable to switch to a quantum-
mechanical description of the protein-ligand system. Since the system is too large, this is
out of reach, even in principle, with traditional, high-accuracy classical computation. Such
systems could, in principle, be represented on a quantum computer, but they are expected to
remain out of reach in practice for at least the coming decades. A full quantum-mechanical
representation of the system, however, is also not needed, as the relevant quantum-mechanical
e!ects in biochemical systems are localized. Furthermore, the errors in some localized regions
are likely to be the same throughout all of the calculations, therefore leading to error cancellation
since we are looking at free energy di!erence. In the case of protein-ligand binding, the most
relevant region is the interface of protein and ligand, in our case including the ligand as it is
small.

Quantum embedding methods allow us to define and incorporate a quantum region within
a larger classical environment. The total energy is then the sum of the energy of the outer
part (EMM) and the ground state energy of an electronic structure Hamiltonian of the quantum
region in an e!ective MM potential from the outer part

Hquantum region = Helectronic, quantum region + Vinteraction, MM. (2.2)

As the required quantum region would still involve thousands of orbitals, an exact quantum-
mechanical treatment remains out of the question for traditional methods and also for the
foreseeable future on quantum computers. An approximate treatment with DFT is possible
but leaves us with large and uncontrolled errors which are not systematically improvable. As
those DFT errors are expected to be further localized, we resort to an additional quantum-in-
quantum (QM/QM) embedding. Here, we identify one or more smaller ’quantum cores’ inside
the quantum region which we treat with accurate wavefunction methods embedded in the larger
quantum region which we treat with DFT. The Hamiltonian for the core consists of the electronic
part plus an additional external potential coming from the quantum-in-quantum embedding:

Hquantum core = Helectronic, quantum core + Vinteraction, DFT.

Thus we obtain a quantum-in-quantum-in-classical embedding (QM/QM/MM).
Whereas it is desirable to let the quantum region cover the entire protein-ligand interface

which includes the small ligand, we here focused the quantum region on the ligand only in our
ruthenium-compound pipeline run. We note that this still incorporates some of the quantum-
mechanical interaction e!ects between host and ligand due to the external potential on the
ligand (see (2.2)). We have also chosen the quantum region and the quantum cores manually,
but note that an automated algorithm for the quantum region selection is implemented and can
be used in the future [33, 34].
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Traditional Quantum Engine

3 Theoretical foundations: Quantum electronic and vi-

brational structure

Molecular motion is governed by the laws of quantum mechanics. Defining these laws and the

equations they lead to represents the first step toward understanding the potential of quan-

tum computing for molecular simulations. Quantum mechanics describes a molecule through

the molecular wave function  (r,R, t), which is a complex-valued function that depends on

the positions of all its elementary particles, i.e. the electrons (r) and the nuclei (R), and

on time t. The Born rule states that the squared norm of the wave function, | (r,R, t)|2,

defines the probability density of finding the molecule in a given configuration (r,R) at a

given time t. The second key quantity is the molecular Hamiltonian Ĥ(r,R, t), which de-

termines the time evolution of the wave function through the time-dependent Schrödinger

equation,

Ĥ(t) (r,R, t) = i~@t (r,R, t) . (1)

As shown in Figure 2, the Hamiltonian describing a molecule contains contributions associ-

ated with the kinetic energy of the atomic nuclei and of the electrons of a molecular system

under study, as well as the interaction between these particles. The interactions are very

well described by pairwise electrostatic Coulomb potential energies, although they neglect,

for instance, magnetic interactions. Since these interactions do not depend on time, we can

rigorously eliminate the t dependence of the Hamiltonian, i.e., Ĥ(t) ! Ĥ. Now, any solution

to Eq. (1) can be expressed in terms of specific wave functions, often referred to as station-

ary states, whose probability amplitudes do not change with time. These wave functions,

 n(r,R), are the solutions to the time-independent Schrödinger equation,

Ĥ n(r,R) = En n(r,R) . (2)
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coordinates is slow enough to ensure that the electrons are described by the same eigenstate

(e.g. the ground state)  R
ele
(r) for all R values. This approximation can be seen as a result

of the adiabatic theorem of quantum mechanics.51 The eigenvalue Eele(R) associated with

the eigenfunction describing the electrons defines the e↵ective interaction potential between

the electrons and the nuclei. The nuclear wave function  nuc(R) describing this motion is,

therefore, obtained by solving the Schrödinger equation for a Hamiltonian containing Eele(R)

as interaction term (see Figure. (2)). The overall molecular wave function is then given by

 nuc(R)⇥ R
ele
(r).

Whether one needs to solve either the time-independent or the time-dependent Schrödinger

equation, either only for the electrons or also for the nuclei, depends on the biochemical pro-

cess at hand. In all cases, the wave function is the solution of a di↵erential equation in

which all variables are coupled by the potential energy operator. This coupling correlates

the motion of the quantum particles and renders the solution of the di↵erential equation a

daunting computational task for large molecules.

Why is the solution of many-body quantum problems such a major computational hurdle?

In order to represent it on hardware, either classical or quantum, the many-electron wave

function must be discretized. This discretization is realized by expressing the wave function

in terms of a finite set of one-electron functions {'k(r, �)}
Norb
k=1

, the so-called molecular or-

bitals. Specifically, the wave function is expressed as a linear combination of antisymmetrized

products of molecular orbitals as sketched in Figure 3. An antisymmetrized product is of-

ten referred to as Slater determinant or as electronic configuration. Methods that solve the

Schrödinger equation within the resulting wave function ansatz without any restriction of

the space of configurations are, in chemistry, referred to as full configuration interaction

(full-CI), because the wave function is expressed as a linear superposition of all electronic

configurations. In physics, this is known as exact diagonalization. The molecular orbitals

are themselves discretized as a linear combination of a finite set of orbitals – usually referred

to as atomic orbitals to distinguish them from the molecular ones. The atomic orbitals are
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Full Computational Run

• The FreeQuantum pipeline is based on first principles
• Benchmarking: The MCL1-19G model complex (protein MCL1 and small molecule 19G)

demonstrates that our pipeline yields reliable results

• It can be applied in cases where standard MM models are not available

• For this, the GRP78-NKP1339 complex 
(protein GRP78 and small molecule 
NKP1339) serves as an example

Method

MM

ML/MM[QM/MM]

ML/MM[QM/QM/MM]

MCL-1/19G GRP78/NKP-1339

−37.5 ± 0.4 a

−35.3 ± 1.8 a

−37.2 ± 1.0 b

−37.3 ± 0.1 dExperiment

−19.1 ± 0.5 a

−17.0 ± 2.6 a

 -9.6 ± 2.2 c

—

a) b)

c) d)

a) M. Bensberg et al., arXiv:2503.03955 [physics.chem-ph]
b) M. Bensberg et al., arXiv:2503.03928 [physics.chem-ph]
c)This work.
d)A. Friberg et al., J. Med. Chem. 2012, 56, 15--30. 

(a)

Method MCL-1/19G GRP78/NKP-1339

MM →37.5± 0.4 [20] →19.1± 1.5 [20]
PBE/MM →35.3± 1.8 [20] →17.0± 2.6 [20]
UMP2/PBE/MM — →9.6± 2.2 this work
LCCSD(T)/PBE/MM →37.2± 1.0 [21] —
UCCSD(T)/PBE/MM — →10.8± 2.4 this work
NEVPT2/PBE/MM — →11.3± 2.9 this work
Experiment →37.3± 0.1 [43] —

(b)

Figure 3: (a) Host-guest complex of the chaperone BiP (Binding immunoglobulin Protein) (the protein host)
with the ruthenium transition-metal complex (the small-molecule guest, highlighted in the blue circle in ball-
stick representation with carbon atoms in grey, chlorine atoms green, nitrogen atoms blue, hydrogen atoms white,
and Ru in orange; Lewis structure given in the lower left corner). The QM region is in the QM/MM model is
the complete Ru drug molecule, whereas the quantum core for the QM-in-QM embedding is highlighted in the
blue hexagon of the Lewis structure. (b) Overview of the binding free energies (in kJ/mol) obtained at di!erent
stages of the FreeQuantum pipeline and with di!erent quantum chemical methods to treat the quantum core (see
Methods, also for an explanation of all acronyms). Next to the results for the ruthenium drug-protein complex
we provide our previous results for another protein-ligand system, the myeloid cell leukemia 1 (MCL-1) protein,
dysregulation of which is associated with various cancers, inhibited by the small organic closed-shell molecule
19G for which classical force fields (MM) work very well and an experimental reference is available. The error
bars are determined as in Ref. [21, eq.(14)].

FreeQuantum pipeline.
The full run predicts binding with a binding free energy of !G

MM
binding = →19.1± 1.5 kJ/mol

for a pure MM description and !G
MM+ML1
binding = →17.0 ± 2.6 kJ/mol for the first embedding

approach. The QM description in this first embedding hybrid model was based on DFT
with all shortcomings of approximate exchange–correlation density functionals. Therefore,
it is an excellent case for the three-layer QM/QM/MM description, for which we obtained
!G

MM+ML2
binding = →11.3 ± 2.9 kJ/mol for our most advanced wavefunction methods for the core

(NEVPT2 on top of CAS configuration interaction, CAS-CI). Fig. 3b presents those results
together with the data from a QM/MM embedding based on DFT [20] (right column). Fig. 7
in the Supporting Information presents the distribution of energies of the embedded cores for
first and second embedding as well as their di”erence, illustrating that the embedding strategy
fundamentally changes the energy landscape.

In Fig. 3b we also provide in the middle column corresponding data for a di”erent system
involving an organic closed-shell ligand denoted MCL-1/19G [20, 21]. We have used this system,
for which reliable classical force field and experimental results are available, in earlier work as
a benchmark to demonstrate that our nested embedding approach based on accurate coupled
cluster data reproduces this reference. For the ruthenium drug we here find a coupled cluster
result that deviates by about 6 to 8 kJ/mol from the DFT and MM results, respectively. At
the same time, the NEVPT2 result agrees with the coupled cluster data (-10.8 kJ/mol for unre-
stricted coupled cluster and -11.3 kJ/mol for NEVPT2), indicating that both electron correlation
methods achieve the same high accuracy for this system. Hence, with our best first-principles
approaches, we obtain a free energy of binding for the ruthenium drug of about -11 kJ/mol,
which we may consider as a prediction to be challenged by experimental work in the future.

Although our strategy allows us to take into account and demonstrate the impact of high
accuracy quantum chemical calculation in a biologically relevant case, it also highlights its
limitations due to the curse of dimensionality. First, any wavefunction-based traditional method
lacks guarantees on the energies which may therefore compromise the accuracy of the final free
energy. Second, it will be severely limited in its applicable size. As we will emphasize, quantum
computation has the potential to overcome both problems and thus lead to biological quantum
advantage. We will provide estimates of the size, quality and speed of future quantum computers
to realize this potential.

9



15

The potential of quantum computing

• Energy computation of quantum cores carried out by quantum computers
• Advantages: accurary guarantees, more precise for larger and more correlated systems

energetic complexity

weak quantum
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Figure 1: Biomolecular quantum simulation quadrangle: The complexity of the electronic structure problem is
indicated on the horizontal axis. The importance and complexity of the sampling problem is indicated on the
vertical axis. Considering the four paradigmatic situations where the energetic and entropic complexities are low
or high gives rise to four quadrants. In each, we indicate a characteristic example.

iron-sulfur cluster as active site whose mechanism depends on the configurational flexibility of
the surrounding protein sca!old (see, e.g., [17, 18, 19])). We note that for many systems in the
top-left corner of the quadrangle standard force fields can in principle perform well, especially
if the system only has top-row elements from the periodic table. However, in the presence of
transition metals, accuracy is often poor.

In this work, we present a framework and implementation of an end-to-end pipeline for
the calculation of free energies that makes e”cient use of expensive high-accuracy quantum-
mechanical calculations. We demonstrate the accuracy, reliability and plasticity of our algo-
rithmic workflow with the example of a ruthenium-based anticancer compound binding to a
target protein (GRP78/NKP-1339), where the quantum data is obtained by traditional quan-
tum chemical wave function-based methods. Our pipeline has the flexibility to allow for the
direct replacement of this traditional computing engine with a quantum computing. We provide
requirements for when this replacement will impact the free energy calculation. This is an im-
portant step towards charting and realizing the conditions for quantum advantage in computing
free energies for large and complex biological systems.

In previous work [20, 21], we have already demonstrated that (i) we can e”ciently represent
a hybrid low-cost-quantum–classical model of a protein–guest complex by a machine learning
potential from which a free energy of binding can be obtained and that (ii) this machine learning
model can be improved by transfer learning with local high-accuracy quantum energies obtained
in a second embedding, where smaller quantum cores embedded in the large, low-cost quantum
region of the hybrid model.

In this work, we now build the FreeQuantum pipeline by incorporating these building blocks
into a general framework that (i) can deal with complex atomistic situations such as transition
metal complexes, open-shell electronic structures and multi-configurational electronic substruc-
tures in the quantum cores, that (ii) can switch from traditional electronic structure methods
for the quantum cores to quantum algorithms, and that (iii) can be driven fully automatically
according to various outer constraints such as the amount of computational resources, classical
and quantum, available (e.g., measured in terms of the number and quality of qubits available).
In this way, the pipeline can tailor the atomistic modeling of the multilayer embedding pro-
cedure to the hardware available for the most accurate quantum calculations on the quantum
cores. For a graphical representation of our FreeQuantum pipeline, see Fig. 2.

We demonstrate the FreeQuantum pipeline by calculating the free energy of binding of the

3

Biomolecular simulation quadrangle:

Entropic versus energetic complexity

• With the FreeQuantum pipeline we built a 
computational framework that allows to 
slot-in the quantum computer

• Ready for quantum advantage, when
quantum hardware is
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Quantum Phase Estimation

Figure: Trotter reminder

Figure: FeMoCo benchmark

• The main cost of phase estimation derives 
from the cost of Hamiltonian simulation

• Chemistry: an unstructured Hamiltonian with 
many terms which leads to deep circuits

• We use single-ancilla quantum phase 
estimation (QPE)

• Partially randomized product formulas (Trotter) 
need no ancillas and reduce circuit depth



17

Quantum Resources

• Partially randomized product
formulas need no ancillas and
reduce circuit depth

• Runtime (Trotter constant) estimate 
using novel software on large GPU 
cluster

• It is possible to prepare initial states with 
high ground state overlap

(a) (b)

(c) (d)

Figure 4: (a) Maximal number of gates per circuit with target accuracy 0.001 Hartree for active spaces of the
Ruthenium ligand for partially randomized Trotter (in dependence of overlap) and qubitization. ω = arcsin 1→ω

ω ,

where ε is the overlap. (b) Total number of gates per circut with target accuracy 0.0016 Hartree for active
spaces of the Ruthenium ligand for partially randomized Trotter (in dependence of overlap) and qubitization.
(c) Number of qubits needed in dependence of the above algorithms and overlaps. The product-formula based
methods can avoid all ancilla qubits, at an increased cost of synthesizing single-qubit rotations. (d) Overlap with
ground state for di!erent types of guiding states for the Ruthenium system with increasing number of orbitals in
the active space. As proxy for the ground state we used a converged DMRG state. In orange the Sum-of-Slater
(SOS) overlap with 4 → N Slater determinants where N is the number of orbitals of the active space. In blue
the overlap of a matrix-product state (MPS) obtained by truncating the DMRG state to the indicated bond
dimension ϑ, and in green the overlap with the Hartree-Fock state (HF). This indicates that good overlap states
that can be prepared on a quantum computer exist for our system of interest. (a-d) For details regarding the
graphs, see Supporting Information.

be reached if the average gate time is below 10→7 s. Outperforming DMRG will require larger
active spaces; here we consider 60 spatial orbitals. While product formulas have benefits in
terms of the number of logical qubits and the possibility of breaking up into smaller circuits,
at this system size the total runtime becomes the dominating factor and qubitization-based
methods are more relevant. With around 1000 logical qubits, gate errors below 10→10 and an
average gate time of 10→7 s, the qubitization resource estimates reach the 20min target. Further
optimization of qubitization-based methods is likely to reduce this cost by one to two orders of
magnitude [48, 49]. In order to fully take into account dynamical correlation, we could either
increase the number of orbitals further, thereby avoiding NEVPT2 altogether, or, use quantum
algorithms to compute such perturbative corrections [50].
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Quantum computers can accurately compute ground state energies using phase estimation, but this requires a
guiding state that has significant overlap with the true ground state. For large molecules and extended materials, it
becomes difficult to find guiding states with good ground state overlap for growing molecule sizes. Additionally,
the required number of qubits and quantum gates may become prohibitively large. One approach for dealing with
these challenges is to use a quantum embedding method, which allows a reduction to one or multiple smaller
quantum cores embedded in a larger quantum region. In such situations, it is unclear how the embedding method
affects the hardness of constructing good guiding states. In this work, we therefore investigate the preparation
of guiding states in the context of quantum embedding methods. We extend previous work on quantum impurity
problems, a framework in which we can rigorously analyze the embedding of a subset of orbitals. While there
exist results for optimal active orbital space selection in terms of energy minimization, we rigorously demonstrate
how the same principles can be used to define selected orbital spaces for state preparation in terms of the overlap
with the ground state. Moreover, we perform numerical studies of molecular systems relevant to biochemistry,
one field in which quantum embedding methods are required due to the large size of biomacromolecules such
as proteins and nucleic acids. We investigate two different embedding strategies which can exhibit qualitatively
different orbital entanglement. In all cases, we demonstrate that the easy-to-obtain mean-field state will have a
sufficiently high overlap with the target state to perform quantum phase estimation.
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I. INTRODUCTION

Some of the most promising applications for quantum
computers arguably lie in their utility for molecular and
materials science. These fields face important computational
challenges, in both academic and industrial settings. Promi-
nent examples can be found in catalysis, battery and drug
design [1–4], and biochemistry [5,6]. True quantum advantage
will likely only emerge in the fault-tolerant regime, where
quantum phase estimation (QPE) algorithms will allow for
energy calculations of a quantum system (i.e., a molecule or
material) with controlled and guaranteed accuracy.

One of the central problems of quantum chemistry is the
computation of ground-state electronic energies. We con-
sider a system with a fixed number n of electrons and
a discretization of the electronic structure problem in the
Born-Oppenheimer approximation into N spin-orbitals, giv-
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ing a Hamiltonian of the form

H =
N∑

pq=1

hpqa†
paq + 1
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r asaq,

where ap for p = 1, . . . , N are the fermionic annihilation
operators for the N spin-orbitals, and gpqrs = (pq|rs) are the
two-body integrals; see, for example, Ref. [7] for details. A
system with N spin-orbitals and n electrons has a Hilbert
space of dimension

(N
n

)
which is exponential in N if n scales

linearly with N . High accuracy classical methods struggle
with the size of this Hilbert space. The key advantage of
quantum computing is that the quantum computer can natively
represent states in the Hilbert space using only N qubits.
When considering the scaling with system size, one should
keep in mind that at fixed electron number n, but an increasing
number of orbitals N (the continuum limit), the Hilbert space
dimension increases only as poly(N ) (polynomially in N),
albeit with an in practice prohibitive exponent n.

There are two major challenges in quantum computing for
chemistry and many-body physics:

(i) The first challenge is the orthogonality catastrophe.
Quantum phase estimation requires an initial guiding state
which has sufficient overlap with the ground state. However,
for systems with large N and scaling electron number, small
local errors in the guiding state lead to an exponential decay
in the overlap with the global ground state. As a result, good
guiding states become hard to find; see Appendix A.
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Developed a complete, modular, and autonomous computational pipeline 
for free energy calculations.

Compatible with traditional quantum chemistry and future fault-tolerant 
quantum computers.

Adapts to computational resources; modules can be exchanged or 
upgraded.

Ruthenium drug–protein complex (open-shell spin doublet) demonstrated 
feasibility with HPC.

Impact: Multilayer embedding + ML reduces quantum region size → makes 
quantum computing for free energy feasible.

Opens path toward quantum advantage in biology; FreeQuantum is open 
source and free.
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Figure 2: Workflow of the FreeQuantum pipeline: After a structure preparation step for the host protein and
bound guest molecule by equilibration (grey), structural sampling with classical force fields starts in an initial
alchemical Free Energy Perturbation (FEP) step (red, top). The structures are then forwarded to the hybrid
QM/MM modeling step, which defines the quantum region that covers the parts of the protein-ligand system
to be subjected to a quantum-mechanical description (orange). For the resulting QM/MM structures with
associated energies and forces, a first machine learning (ML) potential (ML1) is trained with an active learning
loop to interlace the QM subsystem data with the MM force field data (turquoise, top). The loop involves
non-equilibrium (NEQ) switching calculations, the final result of which is output as the MM+ML1 FEP(red,
middle). In a further step, the QM/MM hybrid model is refined by introducing a second type of embedding, where
quantum-in-quantum subregions (quantum cores) are defined (blue), for which then highly accurate quantum-
mechanical calculations are carried out, either by traditional quantum chemical calculations or by future quantum
computation (violet). The resulting QM/QM/MM data are fed into a refining process of the earlier ML model
(ML1) by transfer learning (turquoise, bottom). Sampling from this refined model (ML2) yields the third tier of
free energy results (red, bottom). With the active learning and the FEP calculations, we automated all parts of
the pipeline which otherwise would require frequent manual intervention and substantial human time.

aforementioned open-shell transition-metal-containing anticancer drug to its protein target with
a series of traditional correlated electronic structure methods. Based on our earlier work devel-
oping qubit-e!cient quantum algorithms for groundstate energy estimation [22, 23, 24], as well
as the algorithms based on the qubitization framework [25, 26, 27], we can exploit this example
to arrive at general conclusions for the constraints on future quantum computers to achieve a
quantum advantage in the general field of atomistic modeling for free energy calculations in
biochemistry.

The remainder is organized as follows. In Section 2 we describe the scientific aspects of
the computational pipeline as well as the results from a pipeline run for the anticancer drug-
host complex obtained with traditional computational methods. In Section 3, we discuss the
prospect of future quantum computing methods. Emerging from an analysis of the quantum
resources required for impacting the free energy calculation for the ruthenium-based system, we
o”er general insights for quantum advantage in computational molecular biology. A conclusion is
o”ered in Section 4. Additional technical information is provided in the Supporting Information.
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Figure 4: (a) Maximal number of gates per circuit with target accuracy 0.001 Hartree for active spaces of the
Ruthenium ligand for partially randomized Trotter (in dependence of overlap) and qubitization. ω = arcsin 1→ω

ω ,

where ε is the overlap. (b) Total number of gates per circut with target accuracy 0.0016 Hartree for active
spaces of the Ruthenium ligand for partially randomized Trotter (in dependence of overlap) and qubitization.
(c) Number of qubits needed in dependence of the above algorithms and overlaps. The product-formula based
methods can avoid all ancilla qubits, at an increased cost of synthesizing single-qubit rotations. (d) Overlap with
ground state for di!erent types of guiding states for the Ruthenium system with increasing number of orbitals in
the active space. As proxy for the ground state we used a converged DMRG state. In orange the Sum-of-Slater
(SOS) overlap with 4 → N Slater determinants where N is the number of orbitals of the active space. In blue
the overlap of a matrix-product state (MPS) obtained by truncating the DMRG state to the indicated bond
dimension ϑ, and in green the overlap with the Hartree-Fock state (HF). This indicates that good overlap states
that can be prepared on a quantum computer exist for our system of interest. (a-d) For details regarding the
graphs, see Supporting Information.

be reached if the average gate time is below 10→7 s. Outperforming DMRG will require larger
active spaces; here we consider 60 spatial orbitals. While product formulas have benefits in
terms of the number of logical qubits and the possibility of breaking up into smaller circuits,
at this system size the total runtime becomes the dominating factor and qubitization-based
methods are more relevant. With around 1000 logical qubits, gate errors below 10→10 and an
average gate time of 10→7 s, the qubitization resource estimates reach the 20min target. Further
optimization of qubitization-based methods is likely to reduce this cost by one to two orders of
magnitude [48, 49]. In order to fully take into account dynamical correlation, we could either
increase the number of orbitals further, thereby avoiding NEVPT2 altogether, or, use quantum
algorithms to compute such perturbative corrections [50].
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