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Quick outline

 Why quantum is quantum?
0 and 1 and everything in the between: Superposition
* Qubits make friends using tensor products: Entanglement

e What do | do with this? Gates and Interference



Why quantum is quantum?



Classical mechanics doesn’t work!

5000 K

Classical theory (5000 K)

» (Classical theory: Rayleigh-Jeans Law. _
Imagine a black body composed by
tiny springs that vibrate at any
frequency.

» All frequencies are allowed (all
energies). The average energy per

oscillator is (E) = kT )
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* Energy density goes to infinity near 0 0.5 1 1.5 2 2.5
UV: Ultraviolet catastrophe! Wavelength (um)



A bit like machine learning does:

 When Planck wanted to study physics, one of his
professors told him “in physics, almost everything is
already discovered; all that remains is to fill in a few
holes.”

 |If the Rayleigh—-Jeans law doesn’t match, maybe | can
tweak the formula to make it fit.
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* Now the oscillators vibrate in a quantized manner and
the energy is Quantized >>> Quantum Mechanics
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0 and 1 and everything In
between



0 and 1 and everything in between

Quantum and classical bits

@ [y) = a|0) +/]1) @

Where are a, f € C called complex amplitudes and |0), | 1) are
the orthonormal basis vectors



What are the complex amplitudes?

Or how shall we interpret guantum mechanics

 The meaning of the wave function
was not entirely clear after formulated

by Schrodinger.

* Niels Bohr and Werner Heisenberg
established the current interpretation
of quantum mechanics (Copenhagen
interpretation) says: A quantum
system doesn’t have definite
properties until it’s measured. The
wavefunction gives only
probabilities of possible outcomes,
and measurement causes it to
collapse into one of them.




What are the complex amplitudes?

Or how shall we interpret guantum mechanics

 Max Born (1926) nailed down the probabilistic
interpretation of the wave function (Born rule)
as one of the postulates of Quantum
Mechanics.

 The Born rule says that the square of the
wavefunction’s amplitude gives the probability
of finding a particle in a particular state.

. P(x) = |y(x)|?

* Apply this to the qubit state (normalized)
(wly) = (@*(0]p*(1])(al0) + B 1) = |al’+|]° =1

 This means that \a\z, \ﬁ\zare the

probabilities to collapse in |0), | 1)
respectively.




Geometric representation

@ [y) = al0) +f[1) .
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Since a, f € C those numbers have 2
components.

The accurate geometric representation
requires 4D!



Geometric representation

@ lw) = al0) +p|1) @

Az

0)

v, . 7,
y = cos—|0) + ¢”sin —| 1
W) ; [0) 5 [ 1)
Bloch Sphere:

Since ¢, 0 € R we can do a 3D representation of a qubit

» O represents the relative weight between (probability) |0) and | 1).

* ¢ represents the relative phase between [0) and | 1).



How do we measure?

Superposition

 The qubit is a linear combination of the basis states |0) and | 1) or a superposition of the
basis states.

. |a|*,|f|*are the probabilities to measure in |0), | 1) respectively.

» We need to measure in |0), | 1) basis.

» Done by projection operators P, = | 0)(0], P, =|1)(1]

» Then the probabilities are: P(0) = (w| Py|y) = L |?, P(1) =(y|P,|y) = 1B]°.

» Measuring gives only | 0), | 1), measuring many times gives the probabilities >> In a

Quantum computer one can recreate the superposition but never measuring it directly
because measuring destroy the quantum state!



Qubits make friends using tensor
products




Constructing a 2-Qubit system

lyy) = a;|0) + 6] 1)
lyr) =y [0) + S, ] 1)

| W1W2> =7



The tensor product

Definition



The tensor product

In computational basis

lyy) = a1 |0) + 6] 1)
lywy) =, |0) + f,] 1)
lyiyn) = a1, | 00) + a5, |01) + i, | 10) + 15, 11)

The new space has dimension 2 = 4. In general, a system of N qubits has dimension 2" by the
nature of tensor products.

This means that the amount of information that a quantum state can encode increases
exponentially with the number of qubits!

If you mean storing an arbitrary 128-qubit state vector classically: it needs 128 complex amplitudes.

With 16 bytes per complex double = 21?8 x 16 = 16 x 21%% = 24 x 2128 = 2132 pytes ~ 5.44
quadrillion yottabytes.



Separable and non-separable states

lyy) = a;|0) + 5] 1)
() = a,|0) + 5, 1)
lyiyn) = a0, | 00) + oy 5, | 01) + fiay, | 10) + G5, | 11)

If a 2-qubit state can be written as the tensor product of two states we say the state Is
separable.

On the contrary, if a 2-qubit state cannot be written as the tensor product of 2 states
then is non-separable or entangled!

lyiy,) # a0 |00) + a15,]01) + fia,| 10) + 5,5, 11)



The Bell state

1
Oty = 00) + | 11
| @) \/5(\ )+ 111))

The entanglement shows when we measure (remember
projection operators). So, measuring the first qubit gives:

Py OF) = —— [ 00), P, | &*) = ——| 11)
0 S — > 171 —
V2 V2

This means that we have 50% chance to measure |00) or | 11)
and as we can see the measuring the first qubit determines
the second qubit >> Realization of entanglement

But there is no communication possible because the outcome of
the measurement is still random with a 50% chance >> No-
communication theorem




What do | do with this?



Unitary operators

* The time evolution of an isolated quantum system is always described by a unitary operator
* Unitarity implies two things:
1. The probability is preserved

2. The transformation is reversible

« A matrix U is unitary if: UTU = UU" = I being I the identity matrix and U" the conjugate transpose

), complex conjugate: (—Oz 6) and the transpose: <(l) _()l> =Y

Example: Y = (O !
1 0

e The matrix Y is not only unitary but also Hermitian Y T = Y. Observables in Quantum Mechanics
are Hermitian.



Basic unitary operators

The Pauli Matrices

 As we saw, a single qubit can be represented as a vector inside a unit sphere
(Bloch sphere)

* A unitary operator over a qubit represents a rotation in the sphere.

* The basic generators of rotations are the Pauli matrices:

S G Uiy SRS )

 These are the most basic 1 qubit gates and generates any rotation.



Unitary operators create interference

 When a unitary transformation mixes amplitudes, some outcomes are amplified by constructive interference while
others are suppressed by destructive interference. This selective reinforcement of desired computational paths is
what gives quantum algorithms their power.

, . . Upp Upq
Let’s take an arbitrary unitary: U =
Uio Uq1

» And an arbitrary qubit: |y) = a|0) + 4| 1)

Upot + U1 P
Uy + Uy p

* This operation puts new amplitudes to the qubit state, meaning both different probabilities and different phases.
The phases cause Interference

.Uh/f>=( >=vfé\0> v | 1)

712 2 2 2
o« Py=|yyl™ = lugoa + up f|° = lugga |” + [ug1 /1™ + 2 luggax | | ug1 /| cos(Agp)
« Ag is the Phase difference:

e If A¢p = 0, cos(0) = 1 >> constructive interference

e If A¢p = m,cos(0) = — 1 >> destructive interference



1-Qubit gates

Gate 0) 1)

X (Pauli-X) 1) 0)

Y (Pauli-Y) i |1) —1 |0)

Z (Pauli-Z) 0) — (1)

H (Hadamard) —75(0) +11)) —5(10) — 1))
S (Phase) 0) i [1)

T (m/8 gate) 0) et™/4 1)
R.(0) cosg |0) —ising |[1) —ising|0) + cos§ [1)
R, (0) cosg [0) —sing |1) sin§ [0) + cos$ |1)

R.(0)

e—i9/2 ‘0>

67:9/2 |1>




2-Qubit Gates

Controlled gates

GGeneral form

1 0 0 O
I 0 01 0 O

CU) = =
() [O U] 00 upy 1y,
0 0 wuyy uy

They are controlled because they
act iIf a control qubit takes the

value | 1)



2-Qubit Gates

Swap gates

SWAP |a,b) = | b, a),

1ISWAP |a,b) =i|b,a),

SWAP =

1
0
0
0



2-qubit gates

Gate Action on Computational Basis
00) — |00), |01) — |01),
CNOT (Controlled-X)
10) — |11), [11) — |10)
00) — |00), |01) — |01),
CZ (Controlled-Z)
10) — |10), |11) — —|11)
1 1
SWAPD 00) — |00), |01) — |10),
10) — [01), [11) — |11)
. 00) — |00), |01) — ¢|10),
iISWAP ‘
10) — 7/|01), |11) — [11)
00) — |00), |01) — |01),
Controlled-H 10) — \}5( 10) + [11)),
11) — \}5( 10) — |11))
00) — |00), |01) — |01),
Controlled-Phase (CP(¢)) .
10) — [10), |11) — '@ |11)

Bell creation (H on qubit 0, then CNOT)

75(100) + [11))




Those are all the basic ingredients
to make circuits and algorithms.
Have fun!




