Hamiltonian Simulation and Estimation

From qubits to real world applications

Quickoutline

- Part 1: The Hamiltonian Simulation
- Part 2: Implementing the simulation
 - Quantum Phase Estimation
 - Variational Quantum Eigensolver

The Hamiltonian Simulation

The Schrödinger Equation

- In Quantum Mechanics the evolution of a quantum system is given by the time dependent Schrödinger Equation (1926): $i\hbar \frac{d}{dt} |\psi(t)\rangle = H |\psi(t)\rangle$
- The general solution of this equation is: $|\psi(t)\rangle = U(t)\,|\psi(0)\rangle, \qquad U(t) = e^{-\frac{i}{\hbar}Ht}$.
- H is the Hamiltonian operator which gives the total energy and is Hermitian $(H^{\dagger}=H)$. >> $H|E_k\rangle=E_k|E_k\rangle$
 - 1. Their eigenvalues are real, which guarantees that observable quantities such as energy have real measurement outcomes.
 - 2. Their eigenvectors corresponding to distinct eigenvalues are orthogonal.
 - 3. The set of eigenvectors forms a complete basis for the Hilbert space.
- . Any wavefuntion can be expressed as: $|\psi\rangle=\sum_k c_k\,|E_k\rangle, \qquad H=\sum_k E_k\,|E_k\rangle\langle E_k|$.
- Coming back at $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$, this is the result of applying the **Z-Pauli** on the qubit state: $Z = (+1) |0\rangle\langle 0| + (-1) |1\rangle\langle 1| >>$ The superposition is a natural consequence of the **Z** operator being Hermitian!

The Hamiltonian Simulation Problem

- The goal of Hamiltonian simulation is to reproduce the action of the time-evolution operator: $U(t)=e^{-\frac{i}{\hbar}Ht}$
- Remembering that H is Hermitian: $H|E_k\rangle=E_k|E_k\rangle$, the action of U(t) will be $U(t)|E_k\rangle=e^{-\frac{i}{\hbar}E_kt}|E_k\rangle$ >>. The evolution of an eigenstate is a phase rotation proportional to $E_k!$
- Then the $\operatorname{Hamiltonian}\operatorname{Simulation}\operatorname{problem}$ becomes reproducing the phase rotations for all the eigenstates of H at once.
- A quantum computer only implements a finite set of 1 and 2 qubit quantum gates >> U(t) needs to be expressed as a product of simpler unitaries: $U(t) \approx U_1 U_2 \cdots U_m$
- Since a quantum computer works in computational basis $\{|0\rangle, |1\rangle\}^{\otimes n}$ the operator U(t) needs to be translated into computational basis.

Decomposing the unitary operators into gates

- Any physical n-body hamiltonian can be decomposed into a sum of smaller terms: $H = \sum_j H_j$
- If all the terms H_j commute $([H_j,H_k]=H_jH_k-H_kH_j=0)$ the exponential is the product of all the smaller terms: $e^{-\frac{i}{\hbar}\sum_j H_j t} = \prod_i e^{-\frac{i}{\hbar}H_j t}$
- In any physical H this many terms are not commuting >> **Trotter-Suzuki** formula:

$$e^{-rac{i}{\hbar}\sum_{j}H_{j}t}pprox\left(\prod_{j}e^{-rac{i}{\hbar}H_{j}\Delta t}
ight)^{n},\qquad \Delta t=rac{t}{n}$$

- Reproduces the time via discrete time intervals
- In that approximation, each exponential $e^{-\frac{i}{\hbar}H_j\Delta t}$ is a block of quantum gates acting on a few qubits >> More steps n (more blocks) more accuracy >> More hardware requirements!

Translating Physical Hamiltonians to the Quantum Computer

- Physical Hamiltonians (in Chemistry and Physics) use fermionic or bosonic operators (second quantization). The molecular Hamiltonian looks like this: $H = \sum_{p,q} h_{pq} a_p^{\dagger} a_q + \frac{1}{2} \sum_{p,q,r,s} h_{pqrs} a_p^{\dagger} a_q^{\dagger} a_r a_s$
- One needs to represent this with qubits >> Translate into Pauli operators >> Mapping:

. Jordan-Wigner >> direct translation
$$a_p^\dagger = \frac{1}{2}(X_p - iY_p)\bigotimes Z_j,$$
 $a_p = \frac{1}{2}(X_p + iY_p)\bigotimes Z_j.$

• Bravyi-Kitaev >> Redistributes parity info more efficiently >> Shorter circuits.

. The Hamiltonian becomes:
$$H = \sum_i h_i P_i, \qquad P_i \in \{I, X, Y, Z\}^{\otimes n}$$

• Once the Hamiltonian is expressed in Pauli matrices, the corresponding unitary evolution $U(t)=e^{-\frac{t}{\hbar}Ht}$ can be decomposed into gates and executed as a quantum circuit.

Implementing the simulation

Ways to go

- We have seen that the whole Hamiltonian Simulation problem is based on:
 - 1. Translating the Hamiltonian into the language of quantum computers
 - 2. Implementing the time evolution operator $U(t)=e^{-\frac{i}{\hbar}Ht}$
- There are two well established approaches to simulate the evolution operator:
 - Quantum Phase Estimation (QPE)
 - Variational Quantum Eigensolver (VQE)

Recap on Controlled Unitary Gates

- Let's come back at the Controlled Unitary Gates
- Definition: CU = $|0\rangle\langle 0|\otimes I+|1\rangle\langle 1|\otimes U=P_0\otimes I+P_1\otimes U$
- Applied to a two qubit system with a control $|c\rangle$ with the trigger value set in $|1\rangle$ and a target being an arbitrary qubit $|\psi\rangle$, the action of the Controlled unitary is: $\mathrm{CU}\left(|c\rangle\otimes|\psi\rangle\right) = (|0\rangle\langle 0||c\rangle)\otimes I|\psi\rangle + (|1\rangle\langle 1||c\rangle)\otimes U|\psi\rangle$

$$= \begin{cases} |0\rangle \otimes |\psi\rangle, & \text{if } |c\rangle = |0\rangle, \\ |1\rangle \otimes U|\psi\rangle, & \text{if } |c\rangle = |1\rangle. \end{cases}$$

• This means that if the first qubit controls the application of the unitary by setting a trigger value, hence called **controlled unitary**

Superposition and phase kickback

• A very neat property of CU gates arise when we set the control qubit $|c\rangle$ in a superposition by, for example, applying a Hadamard gate over the control set in $|c\rangle = |0\rangle$ >>

$$H|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) = |+\rangle$$

• If we apply the CU gate over this 2 qubit system:

$$CU(|+\rangle \otimes |\psi\rangle) = \frac{1}{\sqrt{2}} \Big(CU(|0\rangle \otimes |\psi\rangle) + CU(|1\rangle \otimes |\psi\rangle) \Big)$$
$$= \frac{1}{\sqrt{2}} \Big(|0\rangle \otimes |\psi\rangle + |1\rangle \otimes U|\psi\rangle \Big).$$

• This means that the **control and the target become entangled >>** Now if we measure in the control we know if the target got the unitary applied or not without measuring the target!!

Superposition and phase kickback

- This is particularly useful if $|\psi\rangle$ is an **eigenstate of** U such that: $U|\psi\rangle=e^{2\pi i \varphi}|\psi\rangle$
- Applying this to the control in | + >

. CU
$$(|+\rangle \otimes |\psi\rangle) = \frac{1}{\sqrt{2}} (|0\rangle \otimes |\psi\rangle + e^{2\pi i \varphi} |1\rangle \otimes |\psi\rangle).$$

• Factoring out the target:

. CU
$$(|+\rangle \otimes |\psi\rangle) = \left(\frac{|0\rangle + e^{2\pi i \varphi} |1\rangle}{\sqrt{2}}\right) \otimes |\psi\rangle$$
.

• The eigenphase $e^{2\pi i \varphi}$ that was a property of $|\psi\rangle$ now appears as a relative phase between $|0\rangle$ and $|1\rangle$ in the control qubit. The phase information kicks back from target to control. >> We can measure properties of the target without collapsing the target!

Controlled powers of a unitary

• Once we have the phase kicked back to the register we would like to measure the phase with a certain precision >> Information in the register: $\frac{|0\rangle + e^{2\pi i \varphi}|1\rangle}{\sqrt{2}}$ >> In this context the phase encodes the **fraction of the circumference that**

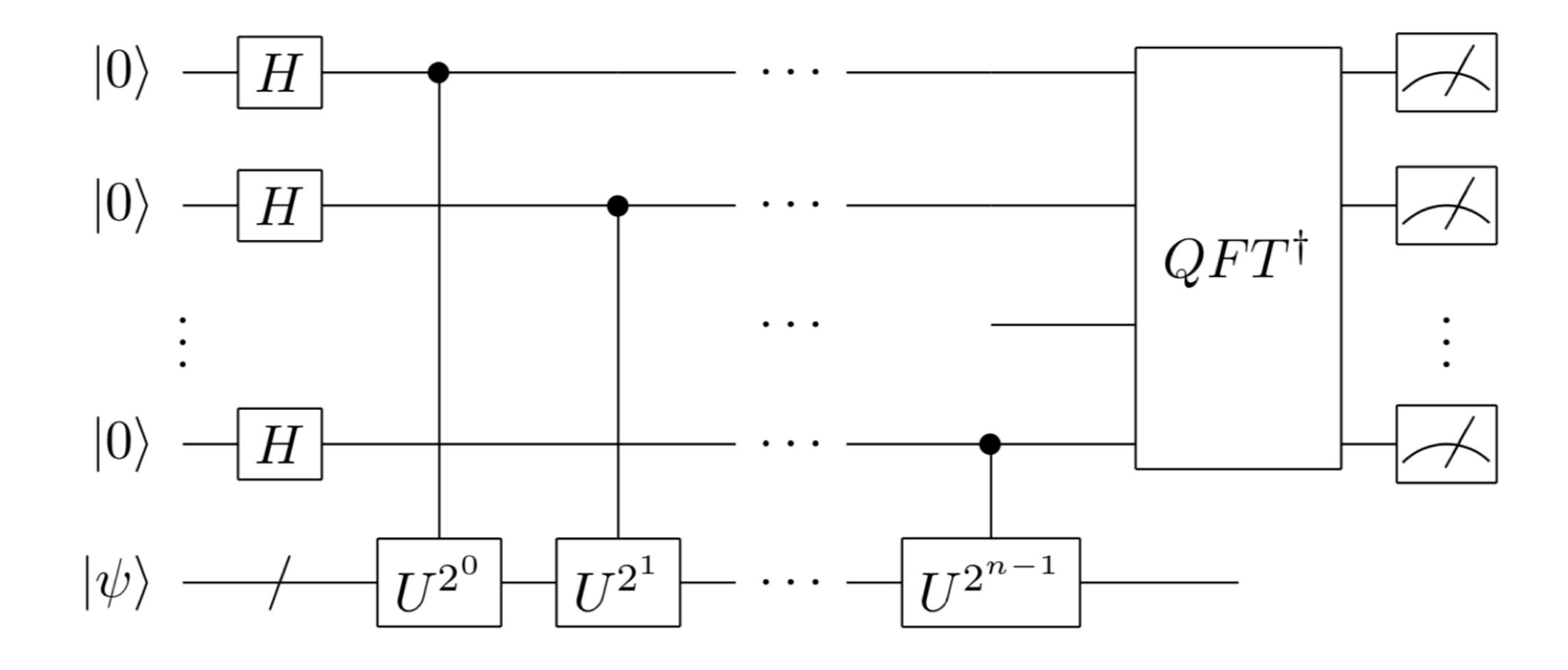
describes the phase difference >> That is a number between 0 and 1.

- The accuracy then will depend of how many digits we can recover.
- In order to increase the accuracy of ϕ we can apply powers of U>> Make a small number larger!
- . Expression: $CU^{2k}\left(\mid + \rangle \otimes \mid \psi \rangle\right) = \frac{1}{\sqrt{2}}\left(\mid 0 \rangle \otimes \mid \psi \rangle + e^{2\pi i 2^k \varphi} \mid 1 \rangle \otimes \mid \psi \rangle\right)$. >> We multiply the phase by 2^k >> We make the number larger and if the phase is small >> It's like making zoom on the phase!
- . If we use 2 control qubits: $\frac{1}{2} \left(\hspace{.1cm} |\hspace{.06cm} 00\rangle + e^{2\pi i \varphi} \hspace{.1cm} |\hspace{.06cm} 01\rangle + e^{4\pi i \varphi} \hspace{.1cm} |\hspace{.06cm} 10\rangle + e^{6\pi i \varphi} \hspace{.1cm} |\hspace{.06cm} 11\rangle \right) \otimes \hspace{.1cm} |\hspace{.06cm} \psi\rangle \hspace{.1cm}.$
- General case for n registers: $\frac{1}{2^{n/2}}\sum_{j=0}^{2^n-1}e^{2\pi ij\varphi}\ket{j}\otimes\ket{\psi}$.

Quantum Fourier Transform

- Once we have accumulated the phase rotations on the register $\frac{1}{2^{n/2}}\sum_{j=0}^{2^{n-1}}e^{2\pi ij\varphi}\ket{j}\otimes\ket{\psi}$.
- The Quantum Fourier Transform (QFT) performs this operation: QFT $|j\rangle = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{2\pi i j k/N} |k\rangle$.
- So, in our 2 register qubits example: $|\Phi\rangle=\frac{1}{2}\sum_{j=0}^3 e^{2\pi i j \varphi}|j\rangle$. Applying the **inverse of the QFT** will give: $\mathrm{QFT}^{-1}|\Phi\rangle=|\varphi_1\varphi_2\rangle .>> \mathrm{The~phase~can~be~reconstructed~as:} \\ \varphi=0. \\ \varphi_1\varphi_2=\frac{\varphi_1}{2}+\frac{\varphi_2}{4}$
- . Example: $\text{QFT}^{-1} | \Phi \rangle = | 11 \rangle$. Then the phase is $0.11_2 = \frac{1}{2} + \frac{1}{4} = \frac{3}{4} = 0.75$
- Then we can recover the eigenvalue of the operator as: $\lambda = e^{2\pi i \varphi}$.

Quantum Phase Estimation



What is the point of this?

- If instead of using an exact eigenstate we use an arbitrary state expanded into the basis of the operator: $|\psi\rangle=\sum_k c_k\,|E_k\rangle$ we will obtain the eigenstate E_k with a probability of $|c_k|^2$
 - >> Solve the eigenvalue problem without diagonalizing a $2^n \times 2^n$ matrix
- Limitation: If we have an approximate eigenstate (f.e. in molecular simulations) the
 eigenstate shall have a good overlap with the real eigenstate. >> State preparation is difficult
 >> One needs to repeat the algorithm many times
- More precision, more qubits >> Longer coherence times to apply all the controlled gates +
 the inverse QFT >> Hardware limitations

The Variational Principle

- The VQE is grounded in the variational method in quantum mechanics >> Widely used in Quantum Chemistry
- Understanding the Variational method:
- Let us consider a Hamiltonian H with eigenstates $\{|E_k\rangle\}$ and the corresponding eigenvalues $\{E_k\}$. Because H is hermitian: $H|E_k\rangle = E_k|E_k\rangle$. Now, in order to have the exact eigenvalues (energies) we need to solve the Schrödinger equation, which has no explicit solution for n-body.
- Luckily, one can prepare a normalized state $|\psi\rangle$ and the expectation value will be $\langle\psi|H|\psi\rangle=E_{\psi}\geq E_{0}$ being E_{0} the true ground state energy.
- One can then parametrize a wavefunction $|\psi(\theta)\rangle$ and find the parameters minimize the energy, namely minimizing: $\theta^* = \arg\min_{\theta} \frac{\langle \psi(\theta) | H | \psi(\theta) \rangle}{\langle \psi(\theta) | \psi(\theta) \rangle}$, $E_{\min} = E(\theta^*)$.
- The optimized wavefuntion $|\psi(\theta^*)\rangle$ provides the closest approximation to the true ground state energy.

The Variational Quantum Eigensolver

- Following the same idea, one can use a parametrize **ansatz** for the wavefunction by applying a parametrized unitary $U(\theta)$ over a initial state (usually $|0\rangle^{\otimes N}$). Therefore the ansatz wavefunction is: $|\psi(\theta)\rangle = U(\theta)|0\rangle^{\otimes N}$ where N is the number of qubits.
- . The Hamiltonian gets mapped into Pauli strings: $H = \sum_i h_i P_i, \qquad P_i \in \{I, X, Y, Z\}^{\otimes N}$
- Then the expectation value can be measured in the Quantum Computer (fast) $E(\theta) = \langle \psi(\theta) \, | \, H \, | \, \psi(\theta) \rangle = \sum_i h_i \langle \psi(\theta) \, | \, P_i \, | \, \psi(\theta) \rangle \, .$
- Since Pauli strings has eigenvalues +1 or -1. The expectation value is measured by repeating measurements of the circuit >> **Every energy evaluation requires multiple shots**
- The energy $E(\theta)$ is passed to a classical computer to optimize the parameters. $\theta_{k+1} = \theta_k \eta \; \nabla E(\theta_k)$
- New iteration >> $\theta_0 \to |\psi(\theta_0)\rangle \to E(\theta_0) \to \theta_1 \to |\psi(\theta_1)\rangle \to \cdots$ Until convergence

Variational Quantum Eigensolver

- Unlike QPE, VQE does not simulate time evolution but, instead calculates the energy given a
 Hamiltonian >> In a classical computer that takes exponential resources (if done exactly)
 and a Quantum Computer can encode the information in N qubits.
- What is left to understand is how do we measure expectation values in a quantum computer.
- In quantum mechanics the expectation value of a Hermitian operator is given by: $E(A) = \langle \psi | A | \psi \rangle, \text{ since the operator is Hermitian: } A | \psi_k \rangle = a_k | \psi_k \rangle \text{ multiplying by } \langle \psi | \text{ gives: } \langle \psi_k | A | \psi_k \rangle = a_k \langle \psi_k | \psi_k \rangle = a_k \rangle \text{ Namely, the corresponding Eigenvalue.}$
- Since the Hamiltonian needs to be written in Pauli strings (Pauli operators) we will obtain for every string only one of the eigenvalues of the Pauli operators: +1 or -1 >> The trick to get the Hamiltonian eigenvalue is to measure many times.

How the expectation value is calculated

- Let us consider a simple 2 qubit Hamiltonian in Pauli strings: $H=0.7\,Z_0+0.3\,X_0Z_1$
- We measure always in Z basis, so $\langle Z_0 \rangle$ can be measured directly but $\langle X_0 Z_1 \rangle$ cannot >> We can change basis from X to Z by using $Z = HXH^\dagger$ where H is the Hadamard gate. Since is Hermitian $H = H^\dagger$, therefore Z = HXH.
- We prepare two circuits to measure the expectations $\langle Z_0 \rangle$ and $\langle X_0 Z_1 \rangle$ >> The measurements of, f.e., $\langle X_0 Z_1 \rangle$ will give a bitstring $(b_0,b_1)=|\{0,1\},\{0,1\}\rangle$ then, the corresponding eigenvalues are: $z_j=\begin{cases} +1, & \text{if } b_j=0, \\ -1, & \text{if } b_j=1. \end{cases}$
- Therefore, for every shot we get $p^{(k)} = z_0^{(k)} z_1^{(k)} \in \{+1, -1\}$.
- . The expectation value will be: $\langle X_0Z_1\rangle=\frac{1}{N_{\rm shots}}\sum_{k=1}^{N_{\rm shots}}p^{(k)}=P(+1)-P(-1),$
- For example, if we take 1000 shots and measure $|00\rangle$, $|11\rangle$ 590 times (P+ = 0.590) and 410 times $|01\rangle$, $|10\rangle$ (P- = 0.410) the expectation value $\langle X_0 Z_1 \rangle$ is 0.590 0.410 = 0.180 and supposing that we get $\langle Z_0 \rangle$ = 0.8 the expectation value of the energy is: $0.7 \times 0.8 + 0.3 \times 0.180 = 0.614$

Applicability and limitations

- Is widely used in **Chemistry, Materials theory and Optimization** (specifically the QAOA subset) and it can be used to **benchmark quantum computers.**
- Limitations:
 - The ansatz shall be at the same time accurate (depth) and hardware efficient (shallow) due to coherence times and noise.
 - If the Hamiltonian is long we need many measurements over many terms >> Slow and the noise affects the accuracy of the expectation values.
 - Optimization can be difficult due to noise and plateaus ($\nabla Epprox 0$)
 - Scalability is bad since Ansatzes and Hamiltonians increases in size very rapidly with the size of the problem.

Newer "trends"

- Since VQE relies in an optimization process sensitive to noise and flat potentials one could try to solve it in a "single shot" >> Only 1 iteration.
- Let's take a Hartree-Fock state which is a very simple wavefunction used in Chemistry where orbitals with electrons have a 1 and empty a 0. $|HF\rangle = |111000\rangle = |\phi_0\rangle$
- Let's take a subset of wave functions (subspace) based on a one electron excitation $|\phi_1\rangle = a_4^\dagger a_3 |\phi_0\rangle = |110100\rangle$ so, my subspace has two states $\{|\phi_0\rangle, |\phi_1\rangle\}$ only >> The total Hilbert space has $2^6 = 64$ states >> The exact solution requires 64 wavefunctions.
- We can construct easily the matrices:

$$H = \begin{pmatrix} \langle \phi_0 | H | \phi_0 \rangle & \langle \phi_0 | H | \phi_1 \rangle \\ \langle \phi_1 | H | \phi_0 \rangle & \langle \phi_1 | H | \phi_1 \rangle \end{pmatrix}, \quad S = \begin{pmatrix} 1 & \langle \phi_0 | \phi_1 \rangle \\ \langle \phi_1 | \phi_0 \rangle & 1 \end{pmatrix}.$$

- Then one can measure all the expectation values in the quantum computer.
- Plug the matrices in the Generalized Eigenvalue Problem equation: $H\mathbf{c} = E S\mathbf{c}$ where $E = [E_0, E_1]$ and c are the coefficients of the wavefunction composed by the two states considered $|\psi_k\rangle = \sum_i c_i^{(k)} |\phi_i\rangle = c_1 |\phi_0\rangle + c_2 |\phi_1\rangle$ where k is the excitation considered >> If we look at the coefficients as vectors then they are the Eigenvectors of the new wavefunction!
- This is solved by classical diagonalization
- We put all together: Quantum Subspace Diagonalization

Quantum Subspace Diagonalization

- This is very resource efficient and way less noise sensitive than VQE >> At the cost of HPC.
- We obtain at the same time the ground state and as many excited states as we wish (depending on the size of our subspace).
- We do not need an ansatz to obtain better accuracy >> This in quantum chemistry is called Configuration Interaction (CI) and using the whole Hilbert space leads to Full Configuration Interaction (FCI).
- Still, it's more sensitive to gate errors (imperfections in the implementation) than VQE because requires measuring the off-diagonal terms (VQE only measure one expectation value which is diagonal.
 - $\langle \phi_0 | H | \phi_0 \rangle$ >> The off-diagonals require making a superposition of both states F.e.:
 - $\frac{1}{\sqrt{2}} \left(|0\rangle|\phi_i\rangle + |1\rangle|\phi_j\rangle \right)$ since there are two wave functions simultaneously, an error in the gates can

lead to a shift in the relative phase >> (remember QPE) >> overlaps can get dampened to 0 $\langle \phi_i | \phi_j \rangle \approx 0$ and the result will not be meaningful.