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From qubits to real world applications 

Hamiltonian Simulation and 
Estimation



Quick outline

• Part 1: The Hamiltonian Simulation 

• Part 2: Implementing the simulation 

• Quantum Phase Estimation 

• Variational Quantum Eigensolver



The Hamiltonian Simulation



The Schrödinger Equation

• In Quantum Mechanics the evolution of a quantum system is given by the time dependent Schrödinger Equation (1926): 

 

• The general solution of this equation is:  

•  is the Hamiltonian operator which gives the total energy and is Hermitian . >>  

1. Their eigenvalues are real, which guarantees that observable quantities such as energy have real measurement 
outcomes. 

2. Their eigenvectors corresponding to distinct eigenvalues are orthogonal. 

3. The set of eigenvectors forms a complete basis for the Hilbert space. 

• Any wavefuntion can be expressed as:  

• Coming back at , this is the result of applying the Z-Pauli on the qubit state: 
 >> The superposition is a natural consequence of the Z operator being Hermitian!

iℏ
d
dt

|ψ(t)⟩ = H |ψ(t)⟩

|ψ(t)⟩ = U(t) |ψ(0)⟩, U(t) = e− i
ℏ Ht .

H (H† = H) H |Ek⟩ = Ek |Ek⟩

|ψ⟩ = ∑
k

ck |Ek⟩, H = ∑
k

Ek |Ek⟩⟨Ek | .

|ψ⟩ = α |0⟩ + β |1⟩
Z = (+1) |0⟩⟨0 | + (−1) |1⟩⟨1 |



The Hamiltonian Simulation Problem
• The goal of Hamiltonian simulation is to reproduce the action of the time-evolution operator: 

 

• Remembering that  is Hermitian: , the action of  will be 

 >>. The evolution of an eigenstate is a phase rotation proportional to ! 

• Then the Hamiltonian Simulation problem becomes reproducing the phase rotations for all the 
eigenstates of  at once. 

• A quantum computer only implements a finite set of 1 and 2 qubit quantum gates >>  needs to 
be expressed as a product of simpler unitaries:  

• Since a quantum computer works in computational basis  the operator  needs 
to be translated into computational basis.

U(t) = e− i
ℏ Ht

H H |Ek⟩ = Ek |Ek⟩ U(t)
U(t) |Ek⟩ = e− i

ℏ Ekt |Ek⟩ Ek

H

U(t)
U(t) ≈ U1U2⋯Um

{ |0⟩, |1⟩}⊗n U(t)



Decomposing the unitary operators into gates

•
Any physical n-body hamiltonian can be decomposed into a sum of smaller terms:  

• If all the terms  commute  the exponential is the product of all the smaller terms: 

 

• In any physical  this many terms are not commuting >> Trotter-Suzuki formula: 

 

• Reproduces the time via discrete time intervals 

• In that approximation, each exponential  is a block of quantum gates acting on a few qubits >> More steps  
(more blocks) more accuracy >> More hardware requirements!

H = ∑
j

Hj

Hj ([Hj, Hk] = HjHk − HkHj = 0)
e− i

ℏ ∑j Hjt = ∏
j

e− i
ℏ Hjt

H

e− i
ℏ ∑j Hjt ≈ ∏

j

e− i
ℏ HjΔt

n

, Δt =
t
n

e− i
ℏ HjΔt n



Translating Physical Hamiltonians to the Quantum Computer

• Physical Hamiltonians (in Chemistry and Physics) use fermionic or bosonic operators (second 

quantization). The molecular Hamiltonian looks like this:  

• One needs to represent this with qubits >> Translate into Pauli operators >> Mapping: 

•
Jordan-Wigner >> direct translation  

• Bravyi-Kitaev >> Redistributes parity info more efficiently >> Shorter circuits. 

• The Hamiltonian becomes:  

• Once the Hamiltonian is expressed in Pauli matrices, the corresponding unitary evolution  
can be decomposed into gates and executed as a quantum circuit.

H = ∑
p,q

hpq a†
paq +

1
2 ∑

p,q,r,s

hpqrs a†
pa†

qaras

a†
p = 1

2 (Xp − iYp)⨂
j<p

Zj, ap = 1
2 (Xp + iYp)⨂

j<p

Zj .

H = ∑
i

hi Pi, Pi ∈ {I, X, Y, Z}⊗n

U(t) = e− i
ℏ Ht



Implementing the simulation 



Ways to go
• We have seen that the whole Hamiltonian Simulation problem is based on: 

1. Translating the Hamiltonian into the language of quantum computers 

2. Implementing the time evolution operator  

• There are two well established approaches to simulate the evolution operator: 

• Quantum Phase Estimation (QPE) 

• Variational Quantum Eigensolver (VQE)

U(t) = e− i
ℏ Ht



Recap on Controlled Unitary Gates
• Let’s come back at the Controlled Unitary Gates 

• Definition:  

• Applied to a two qubit system with a control  with the trigger value set in  and a 
target being an arbitrary qubit , the action of the Controlled unitary is:

 

• This means that if the first qubit controls the application of the unitary by setting a trigger 
value, hence called controlled unitary

CU = |0⟩⟨0 | ⊗ I + |1⟩⟨1 | ⊗ U = P0 ⊗ I + P1 ⊗ U

|c⟩ |1⟩
|ψ⟩

CU ( |c⟩ ⊗ |ψ⟩) = ( |0⟩⟨0 | |c⟩) ⊗ I |ψ⟩ + ( |1⟩⟨1 | |c⟩) ⊗ U |ψ⟩

= { |0⟩ ⊗ |ψ⟩, if  |c⟩ = |0⟩,
|1⟩ ⊗ U |ψ⟩, if  |c⟩ = |1⟩ .



Superposition and phase kickback
• A very neat property of CU gates arise when we set the control qubit  in a superposition by, for 

example, applying a Hadamard gate over the control set in  >>  

 

• If we apply the CU gate over this 2 qubit system: 

 

• This means that the control and the target become entangled >> Now if we measure in the 
control we know if the target got the unitary applied or not without measuring the target!!

|c⟩
|c⟩ = |0⟩

H |0⟩ =
1

2
( |0⟩ + |1⟩) = | + ⟩

CU ( | + ⟩ ⊗ |ψ⟩) =
1

2 (CU ( |0⟩ ⊗ |ψ⟩) + CU ( |1⟩ ⊗ |ψ⟩))
=

1

2 ( |0⟩ ⊗ |ψ⟩ + |1⟩ ⊗ U |ψ⟩) .



Superposition and phase kickback
• This is particularly useful if  is an eigenstate of  such that:  

• Applying this to the control in  

•
 

• Factoring out the target: 

•
 

• The eigenphase  that was a property of  now appears as a relative phase between  and  
in the control qubit. The phase information kicks back from target to control. >> We can measure 
properties of the target without collapsing the target!

|ψ⟩ U U |ψ⟩ = e2πiφ |ψ⟩

| + ⟩

CU ( | + ⟩ ⊗ |ψ⟩) =
1

2 ( |0⟩ ⊗ |ψ⟩ + e2πiφ |1⟩ ⊗ |ψ⟩) .

CU ( | + ⟩ ⊗ |ψ⟩) = ( |0⟩ + e2πiφ |1⟩

2 ) ⊗ |ψ⟩ .

e2πiφ |ψ⟩ |0⟩ |1⟩



Controlled powers of a unitary
• Once we have the phase kicked back to the register we would like to measure the phase with a certain precision >> 

Information in the register:  >> In this context the phase encodes the fraction of the circumference that 

describes the phase difference >> That is a number between 0 and 1. 

• The accuracy then will depend of how many digits we can recover. 

• In order to increase the accuracy of  we can apply powers of  >> Make a small number larger! 

•
Expression: >> We multiply the phase by  >> We make the 

number larger and if the phase is small >> It’s like making zoom on the phase! 

• If we use 2 control qubits:  

•
General case for n registers: 

|0⟩ + e2πiφ |1⟩

2

φ U

CU2k ( | + ⟩ ⊗ |ψ⟩) =
1

2 ( |0⟩ ⊗ |ψ⟩ + e2πi2kφ |1⟩ ⊗ |ψ⟩) . 2k

1
2 ( |00⟩ + e2πiφ |01⟩ + e4πiφ |10⟩ + e6πiφ |11⟩) ⊗ |ψ⟩ .

1
2n/2

2n−1

∑
j=0

e2πijφ | j⟩ ⊗ |ψ⟩ .



Quantum Fourier Transform

•
Once we have accumulated the phase rotations on the register  

•
The Quantum Fourier Transform (QFT) performs this operation:  

•
So, in our 2 register qubits example: Applying the inverse of the QFT will give: 

>> The phase can be reconstructed as:  

• Example:  Then the phase is   

• Then we can recover the eigenvalue of the operator as: 

1
2n/2

2n−1

∑
j=0

e2πijφ | j⟩ ⊗ |ψ⟩ .

QFT | j⟩ =
1

N

N−1

∑
k=0

e2πijk/N |k⟩ .

|Φ⟩ =
1
2

3

∑
j=0

e2πijφ | j⟩ .

QFT−1 |Φ⟩ = |φ1φ2⟩ . φ = 0.φ1φ2 =
φ1

2
+

φ2

4

QFT−1 |Φ⟩ = |11⟩ . 0.112 =
1
2

+
1
4

=
3
4

= 0.75

λ = e2πiφ .



Quantum Phase Estimation



What is the point of this?
• If instead of using an exact eigenstate we use an arbitrary state expanded into the basis of 

the operator:  we will obtain the eigenstate  with a probability of  

>> Solve the eigenvalue problem without diagonalizing a  matrix  

• Limitation: If we have an approximate eigenstate (f.e. in molecular simulations) the 
eigenstate shall have a good overlap with the real eigenstate. >> State preparation is difficult 
>> One needs to repeat the algorithm many times 

• More precision, more qubits >> Longer coherence times to apply all the controlled gates + 
the inverse QFT >> Hardware limitations

|ψ⟩ = ∑
k

ck |Ek⟩ Ek |ck |2

2n × 2n



The Variational Principle
• The VQE is grounded in the variational method in quantum mechanics >> Widely used in Quantum Chemistry  

• Understanding the Variational method: 

• Let us consider a Hamiltonian  with eigenstates  and the corresponding eigenvalues . Because 

 is hermitian: . Now, in order to have the exact eigenvalues (energies) we need to solve the 
Schrödinger equation, which has no explicit solution for n-body.  

• Luckily, one can prepare a normalized state  and the expectation value will be  

being  the true ground state energy. 

• One can then parametrize a wavefunction  and find the parameters minimize the energy, namely 

minimizing:   

• The optimized wavefuntion  provides the closest approximation to the true ground state energy. 

H { |Ek⟩} {Ek}
H H |Ek⟩ = Ek |Ek⟩

|ψ⟩ ⟨ψ |H |ψ⟩ = Eψ ≥ E0

E0

|ψ(θ)⟩
θ* = arg min

θ

⟨ψ(θ) |H |ψ(θ)⟩
⟨ψ(θ) |ψ(θ)⟩

, Emin = E(θ*) .

|ψ(θ*)⟩



The Variational Quantum Eigensolver
• Following the same idea, one can use a parametrize ansatz for the wavefuntion by applying a parametrized 

unitary  over a initial state (usually ). Therefore the ansatz wavefunction is:  
where N is the number of qubits. 

• The Hamiltonian gets mapped into Pauli strings:  

• Then the expectation value can be measured in the Quantum Computer (fast) 
 

• Since Pauli strings has eigenvalues +1 or -1. The expectation value is measured by repeating measurements of 
the circuit >> Every energy evaluation requires multiple shots  

• The energy  is passed to a classical computer to optimize the parameters.  

• New iteration >>  Until convergence 

U(θ) |0⟩⊗N |ψ(θ)⟩ = U(θ) |0⟩⊗N

H = ∑
i

hi Pi, Pi ∈ {I, X, Y, Z}⊗N

E(θ) = ⟨ψ(θ) |H |ψ(θ)⟩ = ∑
i

hi⟨ψ(θ) |Pi |ψ(θ)⟩ .

E(θ) θk+1 = θk − η ∇E(θk)

θ0 → |ψ(θ0)⟩ → E(θ0) → θ1 → |ψ(θ1)⟩ → ⋯



Variational Quantum Eigensolver
• Unlike QPE, VQE does not simulate time evolution but, instead calculates the energy given a 

Hamiltonian >> In a classical computer that takes exponential resources (if done exactly) 
and a Quantum Computer can encode the information in N qubits. 

• What is left to understand is how do we measure expectation values in a quantum 
computer. 

• In quantum mechanics the expectation value of a Hermitian operator is given by: 
, since the operator is Hermitian:  multiplying by 

gives:  >> Namely, the corresponding Eigenvalue. 

• Since the Hamiltonian needs to be written in Pauli strings (Pauli operators) we will obtain for 
every string only one of the eigenvalues of the Pauli operators: +1 or -1 >> The trick to get the 
Hamiltonian eigenvalue is to measure many times.

E(A) = ⟨ψ |A |ψ⟩ A |ψk⟩ = ak |ψk⟩ ⟨ψ |
⟨ψk |A |ψk⟩ = ak⟨ψk |ψk⟩ = ak



How the expectation value is calculated 
• Let us consider a simple 2 qubit Hamiltonian in Pauli strings:  

• We measure always in Z basis, so  can be measured directly but  cannot >> We can change basis from  to  by using 

 where  is the Hadamard gate.  Since is Hermitian , therefore .  

• We prepare two circuits to measure the expectations  and  >> The measurements of, f.e.,  will give a bitstring 

 then, the corresponding eigenvalues are:  

• Therefore, for every shot we get  

• The expectation value will be:  

• For example, if we take 1000 shots and measure  590 times (P+ = 0.590) and 410 times  (P- = 0.410) the 
expectation value  is 0.590 - 0.410 = 0.180 and supposing that we get   = 0.8 the expectation value of the energy is: 

H = 0.7 Z0 + 0.3 X0Z1

⟨Z0⟩ ⟨X0Z1⟩ X Z
Z = HXH† H H = H† Z = HXH

⟨Z0⟩ ⟨X0Z1⟩ ⟨X0Z1⟩

(b0, b1) = |{0,1}, {0,1}⟩ zj = {
+1, if bj = 0,
−1, if bj = 1.

p(k) = z (k)
0 z(k)

1 ∈ {+1, − 1} .

⟨X0Z1⟩ =
1

Nshots

Nshots

∑
k=1

p(k) = P(+1) − P(−1),

|00⟩, |11⟩ |01⟩, |10⟩
⟨X0Z1⟩ ⟨Z0⟩

0.7 × 0.8 + 0.3 × 0.180 = 0.614



Applicability and limitations
• Is widely used in Chemistry, Materials theory and Optimization (specifically the QAOA 

subset) and it can be used to benchmark quantum computers.  

• Limitations: 

• The ansatz shall be at the same time accurate (depth) and hardware efficient (shallow) due 
to coherence times and noise. 

• If the Hamiltonian is long we need many measurements over many terms >> Slow and the 
noise affects the accuracy of the expectation values. 

• Optimization can be difficult due to noise and plateaus ( ) 

• Scalability is bad since Ansatzes and Hamiltonians increases in size very rapidly with the size 
of the problem.

∇E ≈ 0



Newer “trends”
• Since VQE relies in an optimization process sensitive to noise and flat potentials one could try to solve it in a “single shot” >> Only 1 iteration. 

• Let’s take a Hartree-Fock state which is a very simple wavefunction used in Chemistry where orbitals with electrons have a 1 and empty a 0. 
 

• Let’s take a subset of wave functions (subspace) based on a one electron excitation  so, my subspace has two 

states  only >> The total Hilbert space has  states >> The exact solution requires 64 wavefunctions. 

• We can construct easily the matrices:  

•  

• Then one can measure all the expectation values in the quantum computer. 

• Plug the matrices in the Generalized Eigenvalue Problem equation: where  and  are the coefficients of the 

wavefunction composed by the two states considered  where  is the excitation considered >> If we 

look at the coefficients as vectors then they are the Eigenvectors of the new wavefunction! 

• This is solved by classical diagonalization 

• We put all together: Quantum Subspace Diagonalization

|HF⟩ = |111000⟩ = |ϕ0⟩

|ϕ1⟩ = a†
4 a3 |ϕ0⟩ = |110100⟩

{ |ϕ0⟩, |ϕ1⟩} 26 = 64

H = (⟨ϕ0 |H |ϕ0⟩ ⟨ϕ0 |H |ϕ1⟩
⟨ϕ1 |H |ϕ0⟩ ⟨ϕ1 |H |ϕ1⟩), S = ( 1 ⟨ϕ0 |ϕ1⟩

⟨ϕ1 |ϕ0⟩ 1 ) .

Hc = E Sc . E = [E0, E1] c
|ψk⟩ = ∑

i

c(k)
i |ϕi⟩ = c1 |ϕ0⟩ + c2 |ϕ1⟩ k



Quantum Subspace Diagonalization
• This is very resource efficient and way less noise sensitive than VQE >> At the cost of HPC. 

• We obtain at the same time the ground state and as many excited states as we wish (depending on the 
size of our subspace). 

• We do not need an ansatz to obtain better accuracy >> This in quantum chemistry is called Configuration 
Interaction (CI) and using the whole Hilbert space leads to Full Configuration Interaction (FCI).  

• Still, it’s more sensitive to gate errors (imperfections in the implementation) than VQE because requires 
measuring the off-diagonal terms (VQE only measure one expectation value which is diagonal. 

 >> The off-diagonals require making a superposition of both states F.e.: 

 since there are two wave functions simultaneously, an error in the gates can 

lead to a shift in the relative phase >> (remember QPE) >> overlaps can get dampened to 0  
and the result will not be meaningful.

⟨ϕ0 |H |ϕ0⟩
1

2
( |0⟩ |ϕi⟩ + |1⟩ |ϕj⟩)

⟨ϕi |ϕj⟩ ≈ 0


