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T'he Hamiltonlan Simulation



The Schrodinger Equation

- In Quantum Mechanics the evolution of a guantum system is given by the time dependent Schrodinger Equation (1926):

L d B
in - |w(0)) = H|w(?))

I

- The general solution of this equationis: |w(#)) = U(¥) |y (0)), Ut) = e~ w1

. His the Hamiltonian operator which gives the total energy and is Hermitian (H' = H). >> H|E,) = E, | E,)

1. Their eigenvalues are real, which guarantees that observable quantities such as energy have real measurement
outcomes.

2. Their eigenvectors corresponding to distinct eigenvalues are orthogonal.

3. The set of eigenvectors forms a complete basis for the Hilbert space.

_ Any wavefuntion can be expressed as: |y) = Z c. | Ep), H = Z E |E)E,]|.
k k

. Coming back at |y) = a|0) 4+ #| 1), thisis the result of applying the Z-Pauli on the qubit state:
Z=(1)|0){O0]|+ (=1)|1){(1]| >> The superposition is a natural consequence of the Z operator being Hermitian!



The Hamiltonian Simulation Problem

- The goal of Hamiltonian simulation is to reproduce the action of the time-evolution operator:
U(t) = e~ 7l

. Remembering that H is Hermitian: H | E,) = E | E,), the action of U(¢) will be
U |E,) = e~ wEd | E,) >>. The evolution of an eigenstate is a phase rotation proportional to E;

- Then the Hamiltonian Simulation problem becomes reproducing the phase rotations for all the

eigenstates of H at once.

. A quantum computer only implements a finite set of 1 and 2 qubit quantum gates >> U(f) needs to

be expressed as a product of simpler unitaries: U(t) = U,U,---U,,

. Since a quantum computer works in computational basis { | 0), | 1)}®” the operator U(t) needs
to be translated into computational basis.



Decomposing the unitary operators into gates

Any physical n-body hamiltonian can be decomposed into a sum of smaller terms: H = Z HJ

J

. If allthe terms H; commute ([H;, H,] = H;H; — H H; = 0) the exponential is the product of all the smaller terms:
e_%szjt — He_%Hit

J

. In any physical H this many terms are not commuting >> Trotter-Suzuki formula:
n

_ i i [
e th’HfIz He_fo'At , At = —
J
- Reproduces the time via discrete time intervals

. In that approximation, each exponential e~ A is g block of quantum gates acting on a few qubits >> More steps n

(more blocks) more accuracy >> More hardware requirements!



Translating Physical Hamiltonians to the Quantum Computer

- Physical Hamiltonians (in Chemistry and Physics) use fermionic or bosonic operotors (second

Pqd P 4 pqrs P q s
P-4 PQ”S

guantization). The molecular Hamiltonian looks like this: H = Z h a'a +— Z a'a’a.a

- One needs to represent this with qubits >> Translate into Pauli operators >> Mapping:

X, —iY)XZ.  a,=5X,+i¥,)X)Z.

J<p J<p

Jordan-Wigner >> direct translation a

- Bravyi-Kitaev >> Redistributes parity info more efficiently >> Shorter circuits.

_ The Hamiltonian becomes: H = Z h P, P, e {LX,Y, Z}®"

. Once the Hamiltonian is expressed in Pauli matrices, the corresponding unitary evolution U(f) = e~ wh!

can be decomposed into gates and executed as a quantum circuit.



Implementing the simulation



- We have seen that the whole Hamiltonian Simulation problem is based on:
1. Translating the Hamiltonian into the language of quantum computers

2. Implementing the time evolution operator U(f) = e~ #!

- There are two well established approaches to simulate the evolution operator:
» Quantum Phase Estimation (QPE)

. Variational Quantum Eigensolver (VQE)



Recap on Controlled Unitary Gates

- Let's come back at the Controlled Unitary Gates
« Definition: CU = |0)(0| @I+ |11 | @ U=P, QI+ P, Q U

. Applied to a two qubit system with a control | ¢) with the trigger value setin | 1) and a

target being an arbitrary qubit | ), the action of the Controlled unitary is:
CU (lc)® ly)) = (10)O0] [e) @ Iw) + (1 1){1]|c) @ Uly)

_ { 10) ® |y), if [c)=10),
[ 1) ® Ulwy),if [c)=11).

. This means that if the first gubit controls the application of the unitary by setting a trigger
value, hence called controlled unitary




SUPErposition and phase Kickpack

- A very neat property of CU gates arise when we set the control qubit | ¢) in a superposition by, for

example, applying a Hadamard gate over the control setin |c) = [0) >>

H\0>=%<\0>+\1>>=\+>

. If we apply the CU gate over this 2 qubit system:

CU(|+)® |y)) =%(CU(IO>®IW>)+CU(|1>®W/>))

=L(\o>®|z/f>+\1>®U|vf>)-

V2

- This means that the control and the target become entangled >> Now if we measure in the
control we know if the target got the unitary applied or not without measuring the target!!




SUPErposition and phase Kickpack

. This is particularly useful if |y) is an eigenstate of U such that: U | y) = e )

. Applying this to the controlin | + )

cu(I0)@im) =—=(108 1w+ 1) 81w).

V2

- Factoring out the target:

e27ti
.CU<‘+>®‘V/>)=(‘O>+\/§(p‘1>)®‘l//>.

- The eigenphase e>™% that was o property of |y) now appears as a relative phase between [0) and | 1)
in the control gubit. The phase information kicks back from target to control. >> We can measure
properties of the target without collapsing the target!




Controlled powers of a unitary

- Once we have the phase kicked back to the register we would like to measure the phase with a certain precision >>
- 0y 4+ e 1) | : :
Information in the register: >> |n this context the phase encodes the fraction of the circumference that

\V2
describes the phase difference >> That is a number between O and 1.

- The accuracy then will depend of how many digits we can recover.

. In order to increase the accuracy of ¢ we can apply powers of U >> Make a small number larger!

1 .
Expression: CUK ( [+)® \l//>) N 7( 10) @ |y) + 229 | 1) ® \l//)) .>> We multiply the phase by 2% >> We make the
' 2

number larger and if the phase is small >> It's like making zoom on the phase!
1 . . .
. If we use 2 control qubits: 5( |00) + 27| 01) + e | 10) + 7| 11)) R |y).

I & .
- . 27ijop | 5
. General case for n registers: ~r2 E e 1) R |y).
J=0
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Quantum Fouriler lranstorm

=
/2 Z e " /) @ |y).
=0

Once we have accumulated the phase rotations on the register

1 y
The Quantum Fourier Transform (QFT) performs this operation: QFT | j) = \/_ Z e2MIKIN | kY
. N k=0

&
So, in our 2 register qubits example: | D) = Py Z e > | 7) . Applying the inverse of the QFT will give:

j=0
QFT~!| ®) = | p,¢,) . >> The phase can be reconstructed as: ¢ = 0.¢ @, = 1 -+ ki

2 =

1 1 3
. Example: QFT~!|®) = | 11). Then the phaseis 0.11, = > T2 = 7 = 0.75

. Then we can recover the eigenvalue of the operator as: A = ¢*™¢ .
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What is the point o

“this?

- |f instead of using an exact eigenstate we use an arbitrary state expanded into the basis of
the operator: |y) = Z ¢, | E,) we will obtain the eigenstate Ej, with a probability of | ¢; |*

k

>> Solve the eigenvalue problem without diagonalizing a 2" X 2" matrix

e Limi
elge

>> One needs to repeat the algorithm ma

Nstate S

tation: If we

Nall

h

h

ave an approximate eigenstate (f.e. in Mo

ave a good overlap with

the real eige

Ny times

ecular simulations) the

NStar

e. >> State preparation is difficult

- More precision, more qubits >> Longer coherence times to apply all the controlled gates +
the inverse QFT >> Hardware limitations



The Variationa

“TINciple

- The VQE is grounded in the variational method in guantum mechanics >> Widely used in Quantum Chemistry

- Understanding the Variational method:

. et us consider @
H is hermitian: H

Hamiltonian H with eigenstates { | E}) } and the corresponding eigenvalues { E} }. Because

E,) = E,| E,). Now, in order to have the exact eigenvalues (energies) we need to solve the

Schrodinger equation, which has no explicit solution for n-body.

. Luckily, one can prepare a normalized state |y) and the expectation value will be (y | H | y) = Ew > kg

being E, the true ground state energy.

. One can then parametrize a wavefunction |w(6@)) and find the parameters minimize the energy, namely

minimizing: 0% =

. (W@ |H|y())
arg min

. E_. =E®0%.
o (yw(@)|w0))

. The optimized wavefuntion |w(0%*)) provides the closest approximation to the true ground state energy.



['he Variational Quantum Figensolver

. Following the same idea, one can use a parametrize ansatz for the wavefuntion by applying a parametrized

unitary U(@) over a initial state (usually | 0Y®Y). Therefore the ansatz wavefunction is: |w(6)) = U(0) | 0)®Y
where N is the number of qubits.

. The Hamiltonian gets mapped into Pauli strings: H = Z h P, P, e LX,Y, Z}®N

l

- Then the expectation value can be measured in the Quantum Computer (fast)

E@©) = (w(@) | H|w(@)) = ) h(w©®)|P;|y(®)).

- Since Pauli strings has eigenvalues +1 or -1. The expectation value is measured by repeating measurements of
the circuit >> Every energy evaluation requires multiple shots

. The energy E(@) is passed to a classical computer to optimize the parameters. 0, = 60, — n V E(0,)

. New iteration >> 0, — |yw(0,)) = E@,) — 0, = |w(@,)) — --- Until convergence



Variational

Quantum

~lgensolver

- Unlike QPE, VQE does not simulate time evolution but, instead calculates the energy given o
assical computer that takes ex

Hamiltonian >>

Nac

and a Quantum Com
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resources (it done exactly)
ubits.

- What is left to understand is how do we measure expectation values in a guantum

computer.

- |n quantum mechanics the expectation value of a Hermitian operator is given by:

ermitian: A |y;,) = a; | ;) multiplying by (y/|
gives: (W | A ly) = a{y, | w,) = a; >> Namely, the corresponding Eigenvalue.

E(A) = (y|A|y), since the operator is

« Since the Hamj

every string on

'tonian needs to be writter

vy one of the eigenvalues of

iNn Pauli strings (Pauli operators) we will obtain for

Hamiltonian eigenvalue is to measure many times.

the Pauli operators: +1 or -1 >> The trick to get the



Ow the expectation value 1s calculated

» Let us consider a simple 2 qubit Hamiltonian in Pauli strings: H = 0.7 Z, + 0.3 X,Z,

. We measure always in Z basis, so (Z;) can be measured directly but (X,Z;) cannot >> We can change basis from X to Z by using
7 = HXH" where H is the Hadamard gate. Since is Hermitiaon H = H' therefore Z = HXH.

. We prepare two circuits to measure the expectations (Z,) and (XyZ,;) >> The measurements of, fe., (X,Z,) will give a bitstring

(by, by) = {0,1},{0,1}) then, the corresponding eigenvalues are: Zj = L b=
— | L=
9 ] °
. Therefore, for every shot we get p® = z(gk) zl(k) e {+1,—-1}.
1 Nshots
~ The expectation value will be: (XyZ,) = 2 p® = P+1) — P(-1),
Nghots =1

. For example, if we take 1000 shots and measure |[00), | 11) 590 times (P+ = 0.590) and 410 times |01), | 10) (P- = 0.410) the
expectation value (XyZ;) is 0.590 - 0.410 = 0180 and supposing that we get (Z,) = 0.8 the expectation value of the energy is:

0.7%x0.8+0.3x0.180 =0.614



Applicapility and limitations

. |s widely used in Chemistry, Materials theory and Optimization (specifically the QAOA
subset) and it can be used to benchmark quantum computers.

« Limitations:

- The ansatz shall be at the saome time accurate (depth) and hardware efficient (shallow) due
to coherence times and noise.

f the Hamiltonian is long we need many measurements over many terms >> Slow and the
noise affects the accuracy of the expectation values.

- Optimization can be difficult due to noise and plateaus (V E =~ 0)

- Scalability is bad since Ansatzes and Hamiltonians increases in size very rapidly with the size
of the problem.



Newer ‘trends’

- Since VQE relies in an optimization process sensitive to noise and flat potentials one could try to solve it in a “single shot” >> Only 1 iteration.

. Let's take a Hartree-Fock state which is a very simple wavefunction used in Chemistry where orbitals with electrons have a 1 and empty a O.

|HF) = | 111000) = | ghy)

. Let's take a subset of wave functions (subspace) based on a one electron excitation | ¢;) = aja3 | o) = | 110100) so, my subspace has two

states { | @), | ;) } only >> The total Hilbert space has 20 = 64 states >> The exact solution requires 64 wavefunctions.

- We can construct easily the matrices:

H:<<¢OH¢O> <¢0H¢1>) S=< ! <¢o|¢1>)
T\l GilHIe)) T \ildy 1)

- Then one can measure all the expectation values in the quantum computer.

. Plug the matrices in the Generalized Eigenvalue Problem equation: He = E Sc¢ . where E = | E, E|] and ¢ are the coefficients of the

wavefunction composed by the two states considered |y;,) = Z cl.(k) | h.) = ci|dy) + c2| ) where k is the excitation considered >> If we

l
look at the coefficients as vectors then they are the Eigenvectors of the new wavefunction!

. This is solved by classical diagonalization

- We put all together: Quantum Subspace Diagonalization



Quantum supspace Diagona

1zation

. This is very resource efficient and way less noise sensitive than VQE >> At the cost of HPC.

- We obtain at the same time the ground state and as many excited states as we wish (depending on the

size of our subspace).

- We do not need an ansatz to obtain better accuracy >> This in qguantum chemistry is called Configuration
Interaction (Cl) and using the whole Hilbert space leads to Full Configuration Interaction (FCI).

. Still, it's more sensitive to gate errors (imperfections in the implementation) than VQ

measuring the off-diagonal terms (VQE only

(Do | H| py) >> The off-diagonals require ma

measure one expectation value which

- pbecause requires

is diagonal.

K<ing a superposition of both states F.¢c.:

—( |10) | g/)l) + | 1) ] gb])) since there are two wave functions simultaneously, an error in the gates can

V2

lead to a shift in the relative phase >> (remember QPE) >> overlaps can get dampened to O (¢, | gb]) ~ 0

and the result will not be meaningtul.



