SW Stack for NISQ devices

Dr. Miroslav Dobsicek

Presentation overview

\/
0‘0

SW stack overview

o

» User-space quantum stack

o

¢+ Circuit level assembly

o

* Hardware level encoding

SW stack

let shorCorrector (qs:Qubits) =
let out = xflipSyndrome gqs.[6 .. 2]
if (out > @) then
X [gs.[out - 1]]

Circuit design

. Computer science domain
Output for idealized quantum computer
Compiler :

] - Co-design for NISQ devices

Pulse schedules -

. Experimentalist domain
Instrument Single-user environment, lab work

orchestration

SW stack is built around the quantum circuit model

| Mibakisboum ‘ How do we get a circuit?

2

D SW stack

O

~ Whatis below? How do we run it?

——————————————————————————————————————— Control engineering

Qubit technology

High level parts of a SW stack

How do we generate quantum circuits?

Generic methods

** Encode your problem into known quantum algorithms
** Embed a classical circuit into a quantum one through reversible logic

“* Automatically decompose large transformations into sequences of smaller ones

Attacking directly the problem

\/

“* Design your own quantum algorithm

1. Problem enconding into an existing quantum algorithm

Computational problem

This is currently the most
feasible way how to do

a computation on
a quantum computer.

VQE/QAOA HHL QFT Grover search

Quantum circuit * VQE- quantum chemistry problems
* QAOA - combinatorial opt. problems

HHL — systems of linear equations (ML)
QFT — detect group-like properties
Grover search — generic square root speed-up

2. Embedding of classical circuits via reversible logic

Classical logical gates mostly map to

guantum gates in 1:1 fashion.
NOT '°‘—|>°—Q a LX) NOTa

A quantum circuit generated in this way
will have the same overall complexity as

_ the classical circuit. Not better or worse.
A a | a But, it will be capable of working with
XOR B | Q CX superpositions of states!
b —] — aXORb

The cost are extra qubits guaranteeing
reversibility.

AND B—

>
|
1
o o
|
CCX
|
o o

Do you know that the QFT circuit

0 a AND b and the circuit for a classical FFT are
structurally the same?

2. Embedding of classical circuits via reversible logic

Part of the modular exponentiation circuit in Shor’s algorithm generated by an embedding of a classical circuit.

n .
) . . u(gf;rr[s‘e /74
7 L) 1 a*modN—

FanY
U/
®
FanY
3/
®
a Y

fa
N

3
9

o
A\
®
FanY
31/
®
®

-EB—.—G)—:—(L A D © L €
L $ P I S D-9-@ I LA ~‘
@ @ oA L am o

b ede—ee @ *0—0 @ 00

3/

FanY
¢/

P
P
g
g
g

fa n
3/
fa n
\J/
Y

Blog post: Why haven't quantum computers factored 21 yet?
https://algassert.com/post/2500

3. Automatic decomposition

Integers: factorization to prime numbers

12 = 22x3

Matrices: decomposition to singular values

2=l 20

1

V2

1

V2

()

You start with a mathematical description of the desired
unitary transformation and write it down in a matrix
form. Then apply unitary decomposition algorithm(s).
This process is usually based on Singular Value
Decomposition (SVD).

This approach is unlikely to lead to efficent circuits! The
number of generated gates is generally exponential in
the number of qubits.

1 1 1 1 1)
Mathematical transformation Matrix form 5 3 N—1
1 w w w w
Suchas f:z+— 2 or 1 |1 WP w wb 2(N-1)
’ Fy = N1 0 W9 3(N-1)
1 N- : : : :
FT: — W=k k). ' ' ' '
Q \/— £ ‘ (1 WN! WAN-1) 3(N-1) WwV-1(NV-1) |

4. Novel design

+ Not an easy task
** Much of our reasoning is still tied to circuits and complex Hilbert spaces
* We are “chasing vectors around” in an analogy to “chasing bits around”

** Very active fields in quantum algorithm theory are:
. Quantum error correction codes
. Quantum complexity classes

. MIP* = RE, Certifiable randomness,
Classically verifiable quantum advantage

. Finding new classical algorithms by “dequantization”

Gate-based quantum computing model

Problem encoding Embedding Automatic Novel
into known generic through reversible decomposition development
generate /

SW stack

algorithms logic

‘ﬂﬁ‘:"ﬂ—g—

it?
| Y T N | How do we run it?

v/

_______________________________________ Control engineering

Qubit technology

A number of circuit optimizations

Circuit compression — minimize the number of gates used (focus on coupling
gates in particular)

Unroll/decompose to the native gate set supported by the quantum HW

Optimal routing — map the logical circuit to the physical chip while respecting its
connectivity map. Insert SWAP gates where needed.

(Insert error mitigation gates).

These optimizations techniques are partwise orthogonal, quantum HW

dependent, and may be applied iteratively/recursively in order to
achieve the best results.

Circuit compression

\/

** The most common technique is to exploit logical circuit identities

Eg:

** One of the newer approaches is called ZX-calculus.
* |t relaxes the unitarity condition: operates in a less restrictive linear regime instead
* But, it’s not always possible to revert back to a unitary circuit

100 5 ¥

Unrolling/decomposition

There are many universal gate sets for quantum computing.

For superconducting qubits, common entangling gates are: CX, CZ, or iSWAP
accopanied with Rx(..) and Rz(..) single qubit rotations. We call it a native gate set.

SW stack typically contains a library of definitions of other commons gates in terms
of the native universal gate set. Thus, for example, the Hadamard gate H can be
‘unrolled’ in terms of Rx(..) and Rz(..) as:

Uncommon gates needs to be (brute-force) decomposed (eg. by SVD).

Optimal routing

¢ A superconducting quantum chip typically supports only interactions between
nearest-neigbour qubits. We talk about a connectivity map.

** More distant interactions are achieved via inserting (multiple) SWAP gates. We
want to minimize the number of burdersome SWAPs.

0 —P 1 SPASY

1 T T

2 - ’

3 —e T F ‘
; b1

5 ®

6 D D

This problem is quite similar to a CPU register allocation.

Intermezzo: Connectivity
map & memory

Intel Core i9-13900K with 8 P-cores and 16 E-cores

Caches (all levels, 68MB) = 4.1 x 10° transistors.
All integer ALUs (whole chip) = 1 x 108 transistors.
FP/vector units (if included) push compute logic

into ~ 109-107 range.
L3 cache L2 cache

Register 1
Register 2

Arithmetic
logic
unit

L1 cache

Register 16

World’s first random-access memory at |AS

32x32 CRT
S
.
.[r;__i-&ﬁ v - e ;:._ R
JEPRSE | JRAL QL v 2 s ot TS B
b4
-
»>a
~ & >
LT LA A

John von Neumann James Pomerene

Diagnostic photograph
from maintenance logs

Example: Qiskit’s built-in circuit optimizations

Original circuit

circ = QuantumCircuit(3)
circ.h(@)

circ.z(0)

circ.cx(@,2)

. . . ancilla_0 -
Transpiled circuit g

trc = transpile(circ, backend) q_2 ->

q_0 ->

ancilla_l ->

Manila’s coupling map

gl -> 4

o0—0-0— —0 Unrolling, compression

and routing has been applied.

Gate-based quantum computing model

Problem encoding Embedding Automatic Novel
into known generic through reversible decomposition development
generate

optimize

algorithms logic

*ﬁﬁ—:—'ﬂ—g—

. it?
What is below? How do we run it SW stack

. \

_______________________________________ Control engineering

Qubit technology

Quantum circuit execution

** The generated & optimized circuit needs to be converted from an internal high-

level representation (say a Python object) to a flattened textual or binary
representation suitable for network transfer and execution.

OPENQASM 2.0;

include "gelibl.inc";
qreg q[2];

creg c[2];

assemble

h q[@];
cx q[@],q[1];
cz q[1],q[@];
t q[1];

“* OpenQASM v2 from IBM has emerged as a practical standard due to its simplicity
and permissive licensing.

* OpenQASM v2 is also often used as inter-operability language between different
circuit toolkits.

Execution target: NISQ device

* Mapping from gates to pulses
Remote API * Routines for automatic calibration
* Internal database

Control SW stack

* Generate assembly instructions for

InStrumeht digital signal processing (DSP)
orchestration * Instrument synchronization

Microwave « Data acquisition loop

instruments
Cryogenic * Instruments are pre-programmed

* There is no real-time control loop yet

equipment
Quantum
chip

* Quantum chip is an electronic circuit
* We send a control mw-pulse and measure
the corresponding response

Tergite
The software stack for the WACQT Quantum Computer.

A 8 followers G.’ Sweden

‘ - Pinned

‘- % Cloud service for the quantum computer 5 teraite autosstibration munne
L %+ Automated chip bring-up

\‘; \

“* Integrated with Puhuri

H tergite-frontend Public

Open-source code available on GitHub
“* Apache 2.0

+» https:/fterqite.github.iof

0:0

Vhd
R

A

e
'
"

CHALMERS

NEXT LABS

https://tergite.github.io/
https://tergite.github.io/

WebGUI Client
Tergite £ Qiskit

REST API

Public frontend

(] ronzons

REST API

Backend control

!

Quantify

é Redis

REST API

Zurich Intermodulation
Instruments products

Machines

Qibo - v0.2.21

Q. Search

INTRODUCTION
Getting started

Code examples

MAIN DOCUMENTATION
APl reference

Developer guides

APPENDIX

Publications

DOCUMENTATION LINKS

Qibo docs @

Qibolab docs &

Components

The main components of Qibo are presented in Getting started

Efficient thanks to

Qibojit custom operators
Lightweight, fits
Numpy any CPU
5 Specialized in
Clifford clifford circuits
Simulation
l Interface
backends Qulacs
Qibo
TensorFlow i i
Implementation gg?or:ga%:ﬂl- wien
: Pytorch differentiation
. 4 I Quantum annealing J
Language API Quantum computing] Qibotn TensorNetwork
‘ simulator
Quantum information]
Q Cloud IEM
_. backends QRCTII

- Hardware
35& Qiboml & backend

i Qibochenm

Control drivers

Hﬁ Applications ——— Uyl Qibosoq Qibolab Convert gates to pulses
R C il
Characterization L
() Qibocal Validation
Verification

Munich
Quantum
Valley

Munich Quantum

Software Stack

->
—>» Execution Flow —> Information Flow .|' FoMaC Libraries E <
. <«

Quantum I

Program ‘(

=)
D) | e, || o | —
Results 1\ Z M
v < -

Pulse schedule example

DO
4.86 GHz

MO
q1 1 7.26 GHz

AO

no freq.

D1
4.97 GHz

uo
4.97 GHz

0.12 0.12
v v
1.57
0.0
S 1f
Yi=m X 010 v
JL
I
0.05 Acquire
v 0.04
v
1.57 -1.57
0.0 0.0
J Z L
X(n/2) CR(r/4) CR(-1/4)
A
oloa 069
1.57 0.14 -1.57
0.0 v 0.0
CR(n1/4) A _
014 CR(—m/4)
A
-0.69
0 109 219 328 4482 4591

Time (ns)

Example: Qblox instruments assembly

Q1ASM program:

0: wait_sync 4
1: upd_param 4
2: set_mrk 15 # set markers to 15
5 3: wait 4 # Latency correction of @ ns.
4: move 2000,R0 # iterator for loop with label start
S5 start:
6: reset_ph
7: upd_param 4
8: wait 65532 # auto generated wait (300000 ns)
9: wait 65532 # auto generated wait (300000 ns)
R 10: wait 65532 # auto generated wait (300000 ns)
e i 11: wait 65532 # auto generated wait (300000 ns)
Slesinitloxietl 12: wait 37872 # auto generated wait (300000 ns)
13: set_awg_gain 851,0 # setting gain for gaussian-d1-0
14: play 0,1,4 # play gaussian-d1-6 (100 ns)
15: wait 96 # auto generated wait (96 ns)
16: wait 4 # auto generated wait (4 ns)
17: set_awg_gain 851,0 # setting gain for gaussian-di1-104
18: play 0,1,4 # play gaussian-d1-104 (100 ns)
19: wait 3596 # auto generated wait (3596 ns)
20: loop RO, @start
21: set_mrk 0 # set markers to ©
22 upd_param 4

23: stop

-

L °d
Q

il

A layout of a 25 qubit processor developed

at Chalmers.
WACQT

m Ground m UBM ™ Control & Readout

W Substrate W Bump W Qubit & Coupler }

generate

optimize

execution

Control engineering

Qubit technology

HPC-QC use-cases

1) Using HPC power in pre-processing and post-processing of quantum jobs LD ol El
) Using p pre-p g and post-p golq J estimating the number P!

AeEI Q=B

Quantum Monte Carlo

1.0 =——

0.8

0.6

>
—

0.4

offload
0.2

result 1=3.18750)
0.0

04 06 08
X

fenp_LoxiB HTTP/1.1"

	Slide 1: SW Stack for NISQ devices
	Slide 2: Presentation overview
	Slide 3: SW stack
	Slide 4: SW stack is built around the quantum circuit model
	Slide 5: High level parts of a SW stack
	Slide 6: 1. Problem enconding into an existing quantum algorithm
	Slide 7: 2. Embedding of classical circuits via reversible logic
	Slide 8: 2. Embedding of classical circuits via reversible logic
	Slide 9: 3. Automatic decomposition
	Slide 10: 4. Novel design
	Slide 11: Gate-based quantum computing model
	Slide 12: A number of circuit optimizations
	Slide 13: Circuit compression
	Slide 14: Unrolling/decomposition
	Slide 15: Optimal routing
	Slide 16: Intermezzo: Connectivity map & memory
	Slide 17: World’s first random-access memory at IAS
	Slide 18: Example: Qiskit’s built-in circuit optimizations
	Slide 19: Gate-based quantum computing model
	Slide 20: Quantum circuit execution
	Slide 21: Execution target: NISQ device
	Slide 22: Tergite: software stack
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Pulse schedule example
	Slide 27: Example: Qblox instruments assembly
	Slide 28: QPU chip
	Slide 29: HPC-QC use-cases

