
SW Stack for NISQ devices
Dr. Miroslav Dobsicek

Presentation overview

❖ SW stack overview

❖ User-space quantum stack

❖ Circuit level assembly

❖ Hardware level encoding

3

SW stack

Circuit design

Compiler

Pulse schedules

Instrument
orchestration

Computer science domain
Output for idealized quantum computer

Experimentalist domain
Single-user environment, lab work

Co-design for NISQ devices

SW stack is built around the quantum circuit model

How do we get a circuit?

How do we run it?

SW stack

Control engineering

Qubit technology

What is above?

What is below?

High level parts of a SW stack

Generic methods

❖ Encode your problem into known quantum algorithms

❖ Embed a classical circuit into a quantum one through reversible logic

❖ Automatically decompose large transformations into sequences of smaller ones

❖ Design your own quantum algorithm

How do we generate quantum circuits?

Attacking directly the problem

6

1. Problem enconding into an existing quantum algorithm

Computational problem

VQE/QAOA HHL QFT Grover search

Quantum circuit • VQE – quantum chemistry problems
• QAOA – combinatorial opt. problems
• HHL – systems of linear equations (ML)
• QFT – detect group-like properties
• Grover search – generic square root speed-up

encoding

generation

This is currently the most
feasible way how to do
a computation on
a quantum computer.

7

2. Embedding of classical circuits via reversible logic

NOT Xa NOT a

XOR
a

b

a

a XOR b
CX

AND b
a

0

b
a

a AND b

C
C

X

Classical logical gates mostly map to
quantum gates in 1:1 fashion.

A quantum circuit generated in this way
will have the same overall complexity as
the classical circuit. Not better or worse.
But, it will be capable of working with
superpositions of states!

The cost are extra qubits guaranteeing
reversibility.

Do you know that the QFT circuit
and the circuit for a classical FFT are
structurally the same?

8

2. Embedding of classical circuits via reversible logic

Part of the modular exponentiation circuit in Shor’s algorithm generated by an embedding of a classical circuit.

Blog post: Why haven't quantum computers factored 21 yet?

https://algassert.com/post/2500

3. Automatic decomposition

You start with a mathematical description of the desired
unitary transformation and write it down in a matrix
form. Then apply unitary decomposition algorithm(s).
This process is usually based on Singular Value
Decomposition (SVD).

This approach is unlikely to lead to efficent circuits! The
number of generated gates is generally exponential in
the number of qubits.

12 = 22 × 3

Integers: factorization to prime numbers

Matrices: decomposition to singular values

Mathematical transformation Matrix form

Such as , or

4. Novel design

❖ Not an easy task

❖ Much of our reasoning is still tied to circuits and complex Hilbert spaces

❖ We are “chasing vectors around” in an analogy to “chasing bits around”

❖ Very active fields in quantum algorithm theory are:

• Quantum error correction codes

• Quantum complexity classes

• MIP* = RE, Certifiable randomness,
Classically verifiable quantum advantage

• Finding new classical algorithms by ”dequantization”

Gate-based quantum computing model

How do we run it?

SW stack

Control engineering

Qubit technology

generate

Problem encoding
into known generic

algorithms

Embedding
through reversible

logic

Automatic
decomposition

Novel
development

NordIQuEst What is below?

A number of circuit optimizations

❖ Circuit compression – minimize the number of gates used (focus on coupling
gates in particular)

❖ Unroll/decompose to the native gate set supported by the quantum HW

❖ Optimal routing – map the logical circuit to the physical chip while respecting its
connectivity map. Insert SWAP gates where needed.

❖ (Insert error mitigation gates).

These optimizations techniques are partwise orthogonal, quantum HW
dependent, and may be applied iteratively/recursively in order to
achieve the best results.

Circuit compression
❖ The most common technique is to exploit logical circuit identities

❖ One of the newer approaches is called ZX-calculus.
• It relaxes the unitarity condition: operates in a less restrictive linear regime instead
• But, it’s not always possible to revert back to a unitary circuit

=H X H Z

Eg:

Unrolling/decomposition
❖ There are many universal gate sets for quantum computing.

❖ For superconducting qubits, common entangling gates are: CX, CZ, or iSWAP
accopanied with Rx(..) and Rz(..) single qubit rotations. We call it a native gate set.

❖ SW stack typically contains a library of definitions of other commons gates in terms
of the native universal gate set. Thus, for example, the Hadamard gate H can be
‘unrolled’ in terms of Rx(..) and Rz(..) as:

❖ Uncommon gates needs to be (brute-force) decomposed (eg. by SVD).

= Rz(pi/2) Rx(pi/2) Rz(pi/2)H

Optimal routing

❖ A superconducting quantum chip typically supports only interactions between
nearest-neigbour qubits. We talk about a connectivity map.

❖ More distant interactions are achieved via inserting (multiple) SWAP gates. We
 want to minimize the number of burdersome SWAPs.

This problem is quite similar to a CPU register allocation.

0

1

2

3

4

5

6
4

1

3 2

0 6

5

L1 cache

L2 cacheL3 cache

Intermezzo: Connectivity
map & memory

• Caches (all levels, 68MB) ≈ 4.1 × 10⁹ transistors.
• All integer ALUs (whole chip) ≈ 1 × 10⁶ transistors.
• FP/vector units (if included) push compute logic

into ~ 10⁶–10⁷ range.

Intel Core i9-13900K with 8 P-cores and 16 E-cores

Arithmetic
logic
unit

Register 1
Register 2

Register 16

…

James PomereneJohn von Neumann

Diagnostic photograph
from maintenance logs

32x32 CRT

World’s first random-access memory at IAS

Chalmers University of Technology 18

Example: Qiskit’s built-in circuit optimizations

Unrolling, compression
and routing has been applied.

Original circuit

Transpiled circuit

Manila’s coupling map

Gate-based quantum computing model

SW stack

Control engineering

Qubit technology

generate

optimize

SW stackHow do we run it?

Problem encoding
into known generic

algorithms

Automatic
decomposition

Novel
development

Embedding
through reversible

logic

What is below?

Quantum circuit execution
❖ The generated & optimized circuit needs to be converted from an internal high-

level representation (say a Python object) to a flattened textual or binary
representation suitable for network transfer and execution.

❖ OpenQASM v2 from IBM has emerged as a practical standard due to its simplicity
and permissive licensing.

❖ OpenQASM v2 is also often used as inter-operability language between different
circuit toolkits.

assemble

Chalmers University of Technology 21

Execution target: NISQ device

Quantum
chip

Cryogenic
equipment

Microwave
instruments

Instrument
orchestration

Control SW stack

Remote API
• Mapping from gates to pulses
• Routines for automatic calibration
• Internal database

• Generate assembly instructions for
digital signal processing (DSP)

• Instrument synchronization
• Data acquisition loop

• Instruments are pre-programmed
• There is no real-time control loop yet

• Quantum chip is an electronic circuit
• We send a control mw-pulse and measure

the corresponding response

Tergite:
software stack

❖ Cloud service for the quantum computer

❖ Automated chip bring-up

❖ Integrated with Puhuri

❖ Open-source code available on GitHub

❖ Apache 2.0

❖ https://tergite.github.io/

Dashboard

Qiskit SDK

API

Backend

Backend Instruments

Instruments

https://tergite.github.io/
https://tergite.github.io/

Public frontend

Backend control

Qblox

QPU

WebGUI Client

REST API

REST API

Quantify

Redis

mongoDB

Zürich
 Instruments

REST API

Quantum
Machines

Intermodulation
products

Keysight

Tergite

Pulse schedule example

Example: Qblox instruments assembly
Q1ASM program:

0: wait_sync 4
1: upd_param 4
2: set_mrk 15 # set markers to 15
3: wait 4 # Latency correction of 0 ns.
4: move 2000,R0 # iterator for loop with label start
5: start:
6: reset_ph
7: upd_param 4
8: wait 65532 # auto generated wait (300000 ns)
9: wait 65532 # auto generated wait (300000 ns)
10: wait 65532 # auto generated wait (300000 ns)
11: wait 65532 # auto generated wait (300000 ns)
12: wait 37872 # auto generated wait (300000 ns)
13: set_awg_gain 851,0 # setting gain for gaussian-d1-0
14: play 0,1,4 # play gaussian-d1-0 (100 ns)
15: wait 96 # auto generated wait (96 ns)
16: wait 4 # auto generated wait (4 ns)
17: set_awg_gain 851,0 # setting gain for gaussian-d1-104
18: play 0,1,4 # play gaussian-d1-104 (100 ns)
19: wait 3596 # auto generated wait (3596 ns)
20: loop R0,@start
21: set_mrk 0 # set markers to 0
22: upd_param 4
23: stop

Credits: Qblox, 2021

A layout of a 25 qubit processor developed
at Chalmers.

QPU chip

SW stack

Control engineering

Qubit technology

generate

optimize

execution

WACQT

HPC-QC use-cases

	Slide 1: SW Stack for NISQ devices
	Slide 2: Presentation overview
	Slide 3: SW stack
	Slide 4: SW stack is built around the quantum circuit model
	Slide 5: High level parts of a SW stack
	Slide 6: 1. Problem enconding into an existing quantum algorithm
	Slide 7: 2. Embedding of classical circuits via reversible logic
	Slide 8: 2. Embedding of classical circuits via reversible logic
	Slide 9: 3. Automatic decomposition
	Slide 10: 4. Novel design
	Slide 11: Gate-based quantum computing model
	Slide 12: A number of circuit optimizations
	Slide 13: Circuit compression
	Slide 14: Unrolling/decomposition
	Slide 15: Optimal routing
	Slide 16: Intermezzo: Connectivity map & memory
	Slide 17: World’s first random-access memory at IAS
	Slide 18: Example: Qiskit’s built-in circuit optimizations
	Slide 19: Gate-based quantum computing model
	Slide 20: Quantum circuit execution
	Slide 21: Execution target: NISQ device
	Slide 22: Tergite: software stack
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Pulse schedule example
	Slide 27: Example: Qblox instruments assembly
	Slide 28: QPU chip
	Slide 29: HPC-QC use-cases

