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Motivation and Goals

@ Challenge: Materials simulations consume significant
HPC resources using classical methods

@ Opportunity: Quantum computing as a new accelerator
in the HPC paradigm to run quantum methods

o Example application: Examine environmental friendly
alternative corrosion inhibitors for aerospace and
automotive industries

@ Goal: Demonstrate quantum-HPC integration for
important material science problem
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The use case in a nutshell

Demonstration of quantum-accelerated
corrosion inhibitor screening using
hybrid HPC-quantum workflow
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Quantum Computing in Materials Science

@ Electronic structure calculations are perfect for quantum computers
@ Current limitation: Small molecules only (few qubits available)
@ Solution: Quantum embedding - treat critical regions with quantum accuracy
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Figure: Typical quantum chemistry workflow [1]

Applying the above workflow beyond small molecules to larger molecules or periodic systems can
be difficult at the moment due to large number of qubits needed
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Materials Systems in Different Dimensions

Focus on materials science simulations like solid-state systems is picking up using quantum computing
algorithms, those systems are often modeled as periodic systems and simulation cell can have hundreds
of atoms and system can be 1D, 2D or 3D
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Figure: from [2]: Examples of materials systems in 1D, 2D and 3D
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Computational materials science in a nutshell

@ Modeling and computing materials properties is solving the electronic structure problem for the
system of interest to predict a physical variable of interest
@ Electronic structure of molecules and solids is the starting point in a computational materials

science workflow
@ Models and embedding help simplify complex quantum calculations
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Figure: From [3]
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Connection to HPC resources

From: Analyzing Resource Utilization in an HPC System: A Case Study of NERSC's
Perlmutter
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Figure: From [4]
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Connection to HPC resources

HECTOR usage statistics

Phase 3 statistics (Nov 2011 - Apr 2013)

Ab initio codes (VASP, CP2K, CASTEP, ONETEP, NWChem,
Quantum Espresso, GAMESS-US, SIESTA, GAMESS-UK,
MOLPRO)
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Figure: From [5]

Connection with current codes
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Connection to HPC resources

Typically those systems require many cores and nodes and fill-up big portion of HPC time, for
example through Density Functional Theory (DFT) calculations (by famous codes like VASP,

Quantum ESPRESSO, ABINIT, etc.)

From: Analyzing Resource Utilization in an HPC System: A Case Study of NERSC'’s
Perlmutter
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Figure: HPC usage at NERSC [4]

QC-HPC for atomistic simulations

@ DFT codes dominate HPC usage
@ VASP alone: 20% of resources
@ Materials science: Major HPC consumer

@ Hybrid quantum-classical workflows could
unlock new computational capabilities
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Quantum-Centric Supercomputing

@ QPUs as specialised accelerators

Long-time/0ffline Near-time Real-time
(r y located) (co or (co-located) .
T remotely located) @ Hybrid workflows leverage strengths of both
- active-space design paradigms
= mapping to qubits
Lt @ This example shows the VQE steps of the
calculation connected by arrows describing the
computation of energy H H
o o flow of operations that require
“long-time/near-time/real-time” interaction
U between HPC and quantum computers
- errer mitigation
- post-selection
I e Material science codes that utilise HPC re-
- total spin, particle number H H
S sources could have the potential to combine
Post-processing .2 the best of both worlds, revealing the higher
ot accuracy of quantum methods and the effi-
ciency of classical methods in accelerated ma-
Figure: Integration of classical HPC and quantum terial science

resources [3]
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Corrosion Inhibition: a practical usecase application on Quantum
Computing for Materials

@ Problem: Cars and Aeroplanes body corrosion costs

s Organic
billions annually Inhibitor
@ Traditional solution: Use chromium-based corrosion flolecyles
. . -
inhibitors (toxic) w /
o Eco-friendly alternative: organic inhibitors (such as: % ™

triazole derivatives) @ N /v\@
@ Challenge: Predicting the effectiveness of those oot . .

alternatives requires expensive calculations

@ Solution: examining the adhesion power of those
alternative inhibitor molecules on top of metal alloys
surfaces that form the body of a car or aeroplane. The
calculations could employ a workflow that benefit from Figure: Inhibition mechanisms [6]
accurate quantum calculations to correct for energies
computed by classical calculations
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Quantum Embedding: bridging quantum simulations to material
science workflows

Quantum
. algorithms

Quantum embedding theory (PEA, VQE)
Atomistic Active space (DFT) Electronic Electronic properties
structural ° structure of active of complex materials
model of (] ® regions described with strongly
materials Coulomb interaction by an effective correlated active

Hamiltonian regions

Dielectric ‘ |
screening from |
environment

Figure: General strategy for quantum simulations of materials using quantum embedding [7]

@ Use the classical resources to do the calculations as usual and focus the quantum part on
the important interactions that can benefit from the quantum algorithms and feed the
results back to the classical side

@ simulations utilises active space approximation to reduce the resources required to model
the system's electronic structure on a quantum workflow

_— —  c.
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Quantum Embedding Method for the Simulation of Systems on

Quantum Computers |

Escrin-oF T [Vanbi 7 75) = Esce[Yan] + Eorr[v* + 7] = Eorr[v?] + (e — 7 )vemn 7, ] + atr[7,, 7]

This relies on the projection-
based wave function-in-DF T
(WF-in-DFT)  embedding
method, where the total KS
density matrix, -y, of the
molecular system obtained
from KS-DFT is partitioned
into an active and environ-
ment subsystem, y4 and g

EgcF is the energy of the embedded subsys-
tem A at SCF level

PB — 5yBs s a projector for orbital or-
thogonality v is a scaling parameter, vgq,p,

includes all two-electron interactions
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DFT calculation on the
whole system

Partitioning into active (A)
and environment (B) subsystems
and running HF-in-DFT energy
calculation using Eq. (1)
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Figure: Quantum embedding in action [8]
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ADAPT-VQE: Adaptive Derivative-
Assembled Pseudo-Trotter VQE
(ADAPT-VQE) is a solver technique
that builds an ansatz iteratively from
a predefined operator pool, which
can efficiently converge to predict the
ground state energy [9]

Then different pool of ansatz offered
by UCCSD can be chosen then initial
Hartree-Fock state can be formed then
build the Hamiltonian
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Quantum Embedding Method for the Simulation of Systems on
Quantum Computers Il

Initialise state, ansatz and pool
nOupe e P Uy = LP = (1) | D

Measure expectation
1(6") = Un(8")po U (6 pn(0') En(0") = Tr[Hpn(6")]

Optimise parameters

Converged?

n—n+1

Ansatz Element Pool

Max gradient

Append to ansatz
Un(8) = An(0n) - Ar (02

O1

argmax [Tr {[H. 7] po1 )|
@AnEP

Figure: ADAPT-VQE procedure [10]
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How to perform the quantum-centric supercomputing approach to
simulation corrosion inhibition

@ Build the DFT simulation workflow
@ Identify the part of important interactions to study with the quantum algorithm (e.g.
surface-adsorbate interactions where we choose orbitals around the Fermi level)

@ Build Hybrid quantum-classical computational framework where calculations from DFT
(implemented in CP2K) can talk to quantum algorithm calculation (adaptVQE implemented in
Qiskit)

Paper: open here Code: GitHub repository [11] Materials Cloud Archive 2024.211 (2024) raw
data to reproduce the workflow
Demo video on YouTube: video demo
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Computational Workflow Overview
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System Setup and Inhibitor Selection

inhibitor molecule inhibitor molecule

@vironmen(

vacuum

environment
JUSWUOIIAUD

Ep— ¢
r simplify \) Aluminum
| Syt 2’

Aluminum alloy substrate

Figure: Model simplification approach: we simplify our
system to make the calculations easy to compute and
focus on the two parts which are the DFT and the
adaptVQE calculations

@ Al(111) surface (4x4 supercell)
@ Two inhibitors studied:

e 1,2,4-Triazole
o 1,2,4-Triazole-3-thiol

@ Binding energy as effectiveness metric

@ Active space: 2 electrons in 5 orbitals
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Case Study: Workflow with Example System
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https://arxiv.org/abs/2412.00951

CP2K-Qiskit Integration

@ Socket-based
communication

e FCIDUMP
format for
integrals

@ Self-consistent
embedding loop

o ADAPT-VQE
algorithm for
quantum part

most important
article here!

This figure is
from [13]
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FIG. 2. Workflow diagram depicting the interaction of CP2K
and Qiskit Nature. The user configures the two classical pro-
cesses and the socket for the IPC. Each process then follows
the ional steps ( lar boxes) outlined inside
of their respective frames. The data that gets computed
and transferred is indicated by the rounded boxes. Num-
bers in parentheses refer to the respective equations in this
manuscript. The self-consistent embedding requires a loop
which is highlighted by the gray box. This loop is terminated
based on the decision (diamond shape) taken by the CP2K
process.
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Computational Parameters

Component Details

Classical (DFT)

Software CP2K with PBE functional
Basis Set DZVP-MOLOPT-GTH
Dispersion Grimme D3 correction

ML Potential  orb-d3-v2 for geometry optimisation

Quantum

Algorithm ADAPT-VQE

Active Space  2e, 50 (10 spin-orbitals)
Mapping Parity with 2-qubit reduction
Optimiser SPSA (1000 iterations)
HPC Resources

CPU AMD EPYC 9R14 Processor
Cores 96 cores
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Quantum Algorithm Selection and Optimisation

Algorithm Convergence  Accuracy Runtime
Vanilla VQE Poor Low High
UCCSD Ansatz Good Medium Medium
ADAPT-VQE Excellent High Medium
Stateful ADAPT-VQE Excellent High Low

e ADAPT-VQE advantages:

o Gradient-based operator selection
o Dynamically constructed ansatz
o Reduced circuit depth
@ Warm-starting technique:
o State preparation from previous calculations
o Faster convergence for similar systems
e 5-6x speedup demonstrated
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Corrosion inhibition case study: System Setup and Classical
Computational Details

Establish a baseline benchmark by using the DFT code CP2K to solve the problem classically then compare
with the hybrid calculation using both CP2K and Qiskit

System: Al(111) surface with
. . .l - 1,2,4-Triazole Ry

triazole inhibitor and vacuum gap of { 25004
25 A in the z-direction. The oo 0000969
supercell is 4x4 size to avoid o000 09220309
: . 02,00
interactions between repeated cells g @ © O O oggogoggo
PBE functional with D3 dispersion © 000 0% %%°
correction 1_. o 00
Binding energy calculation: e 000
Ebinding = Esupercell_(Esubstrate+Einhibitor) Figure: From [12]
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Complete Computational Parameters Summary

Method/Component Details

Classical Calculations

Geometry Optimization ASE with orb-d3-v2 model

Dispersion Corrections Grimme's D3 (integrated into neural network potential)

Surface Model Al(111) 4x4 supercell

DFT Calculations

Functional PBE with GGA implementation

Basis Set DZVP-MOLOPT-GTH (double-zeta valence polarized)

Method GPW, plane-wave cutoff: 500 Ry, relative cutoff: 60 Ry

van der Waals DFT-D3 with PBE reference functional

Vacuum Gap 25 A (z-direction)

SCF Convergence 1.0E-6 Ha, Broyden mixing (o = 0.1, 8 = 1.5)

Active Space Parameters

Configuration 2e, 50 (2 active electrons in 5 orbitals)

Selection Method ActiveSpaceTransformer (Qiskit implementation), canonical orbital energy ordering selection
Quantum Calculations

Primary Algorithm ADAPT-VQE from Qiskit, StatefulAdaptVQE from qiskit-nature-cp2k
Qubit Mapping Parity with two-qubit reduction

Convergence Criteria Energy threshold: le-6 Hartree, gradient norm: le-4

Classical Optimizer SPSA (learning rate: 0.005, perturbation size: 0.05, max iterations: 1000)

Quantum Hardware & Simulation
Simulators Qiskit local and Aer
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Corrosion inhibitors choice (Classical)

Inhibitor MW Temp pH Eff.
(g/mol)  (K) Range (%)
1,2,4-Triazole 69.07 298 8-10 90 ”
1,2,4-T-3-thiol 101.13 298 4-10 70-90
Benzotriazole 119.12 298 7-10 90-98
2-MBI 150.2 298 4-10 90
THC 227.24 303 7 91-95
T-methionine 502.70 298 7 95-99

@ Shortlisted few inhibitor molecules

@ Chosen two variations of Triazole inhibitors 5 (o000 S . & Gt
@ Geometry-optimized structures consistent

with experimental observations
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Binding Energy Comparison

Method Inhibitor Binding Energy (eV) Distance (A)
Classical DFT  1,2,4-Triazole -0.386 3.54
ADAPT-VQE 1,2,4-Triazole -0.386 3.54
Classical DFT  1,2,4-T-3-thiol -1.279 3.21
ADAPT-VQE 1,2,4-T-3-thiol -1.279 3.21

Key Findings

@ Agreement between classical and quantum methods
@ Thiol derivative shows 3.3x stronger binding
@ Results align with experimental observations where enhanced surface interaction of thiol

derivative supports findings on sulfur's role in surface passivation

@ Validates quantum approach for materials screening

\
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Comments on VQE flavours

o ADAPT-VQE shows good agreement with
classical DFT:
o allowing more orbitals would enhance the
results
o the agreement with DFT shows good promise
for the quantum workflow

@ Challenges with vanilla VQE:

o Convergence issues
e Less accurate results

classical part

@ Active space limitations:

o Currently 2e, 50
o Future: expand to 10e, 200

€ Qiskit
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Performance analysis with simple example

o Time distribution:

o CP2K: 62% Algorithm Runtime (s)
o Quantum (Qiskit): 38% VQE 3654
. , Stateful VQE 3134
@ Benchmarking results: ADAPT-VQE 1552
o Standard VQE: 3654s Stateful ADAPT-VQE 272
o ADAPT-VQE: 1552s
o Stateful ADAPT-VQE: 272s Table: Performance comparison on LiH benchmark

o Key achievement: 5-6x speedup with
optimised implementation

Computational Efficiency
Quantum embedding reduces
quantum resource requirements
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Computational Scaling and Resource Requirements

@ Current system size:

Quantum

n Igorithms
Quantum embedding theory a

o Al(111) 4x4 supercell (PEA, vae)

Atomisti i Electronic Electronic properties
o 64 Al atoms total Aomee e e e

. model of ° o regions described with strongly
@ 2 electrons, 5 orbitals (quantum) matorisis oy an offective comelatod active
o Hamiltonian regions

@ Scaling challenges:

Classical
»| algorithms
(FCl)

Figure: Quantum embedding scales efficiently

o Exponential growth with system size

o Limited quantum coherence time

o Classical-quantum communication overhead
@ Future targets:

o 10e, 200 active spaces

o Larger surface models

o Multiple inhibitor molecules Qubits = 2 X Norpitals (2)
Classical cost oc N® 3)
Quantum cost o 2"active (4)
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Broader Applications in Materials Science

o Immediate applications:

e Carbon capture (MOFs)

o Hydrogen storage materials
o Battery electrode interfaces
e Photovoltaic materials

@ Automotive industry:

o Lightweight alloy protection
o Electric vehicle components
o Smart coating development

@ Aerospace applications:

o High-temperature resistance
e Space environment protection
o Advanced composite interfaces

K. Elgammal (ENCCS)

Long-time/0ffline
(remotely located)

Near-time
(co-located or

preprocessing, eg.
- active-space design
= mapping to gubits
= ansatz design

remotely located)

Initial parameter

Real-time
(co-located)

computation of energy
{and energy gradient}

N

Parameter update, with e.g.
- @rror mitigation
- post-selection

—

Final measurements, e.g.
- total spin, particle number

Post-processing, e.g.
- electrostatic properties
- correlation functions

L

- density matrices

~

QC-HPC for atomistic simulations

HPC in Europe webinars, Stockholm, Sweden

28/41




Comparison with Traditional Approaches (predictions)

Method Accuracy Cost Time to Solution
Experimental screening High Very High Months
Pure DFT Medium High Days
Hybrid functionals High Very High Weeks
Quantum-HPC hybrid High Medium Hours

o Traditional experimental approach:
e Synthesise and test hundreds of compounds
o Expensive laboratory equipment
o Long development cycles
@ Pure computational approach:
o Limited accuracy for complex systems
o Scaling challenges for realistic models
@ Quantum-HPC approach:
o Best of both worlds: accuracy + efficiency
o Rapid screening capabilities
o Reduced experimental validation needs
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Current Limitations and Technical Challenges

@ Quantum hardware limitations: e Validation challenges:
o Limited qubit counts (100-1000) o Limited experimental benchmarks
o Short coherence times o Complex multi-physics interactions
o High error rates o Scale-up verification needed

@ Software integration: @ Performance considerations:
o Communication latency o Queue times on quantum hardware
o Data format conversion o Cost optimisation
@ Synchronisation challenges o Workflow orchestration

@ Active space selection:
e Manual orbital selection
o System-dependent optimisation
o Balance accuracy vs. resources

Key Challenge
Balancing quantum advantage
with practical constraints
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Summary and Impact

@ Achievement: First quantum-HPC workflow for corrosion inhibition
@ Validation: Quantum results match classical DFT
o Efficiency: ADAPT-VQE shows significant speedup

@ Practical impact: Enables screening of green inhibitors

Paper: open here Code: GitHub repository [11] Materials Cloud

Archive 2024.211 (2024) raw data to reproduce the workflow “legee
Demo video on YouTube: video demo Dooooooooooo
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Future Directions

o Immediate goals:
o Expand active space (currently 2e,50 — 10e,200)
o Test the workflow using SQD on real quantum hardware (IQM)
e Benchmark against FCI for accuracy validation

@ Long-term vision:
o Apply to other materials challenges:
o Carbon capture (metal-organic frameworks)
o Hydrogen storage (catalysis)
o Battery materials
o Integrate with HPC scheduling systems
o Develop automated active space selection

Quantum-centric supercomputing is ready for materials science applications. Let's collaborate to
accelerate material discovery!
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Sample-based Quantum Diagonalization (SQD)

Classical post-processing of quantum samples to find

eigenvalues/eigenvectors

@ Advantages:

o Noise robust, reduced qubit requirements
o Large Hamiltonians (millions of terms)
e Quantum + classical hybrid computing

@ Method:

o Sample quantum circuits
o Refine configurations classically
o Diagonalize in sampled subspace

Ref: arXiv:2405.05068
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Want to Learn More About SQD and Quantum Computing?

QUANTUM AUTUMN
SCHOOL 2025
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Quantum Autumn School 2025 - Information

Nov 3-7, 2025 | Stockholm, Sweden

FREE Registration!
https://enccs.se/events/qas-2025/

@ Introduction and how to build a Quantum

algorithm
@ SQD & variational quantum algorithms .
Q q & Agenda & Materials:
@ Quantum error correction (QEC) https://enccs.github.io/qas2025/
Follow us on LinkedIn:
@ EuroHPC-JU quantum HW (VLQ) https://www.linkedin.com/company/enccs
@ Industry: IQM, lonQ, NVIDIA
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Quantum Autumn School 2025 - Detailed Program

Nordic Quantum Autumn School 2025 (draft timetable)

location: RISE KTH [l organisers: ENCCS,
at "Innoversum” NCC Denmark, NCC
room Lithuania
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Useful literature and resources

Learning resources
@ For some recent VQE implementations: [14]
@ A good review article on the topic of quantum-centric supercomputing: [3]

@ For more insights, see the tutorial video lecture [15]
e NVidia blog post on ADAPT-VQE [9]

A\

Qiskit Nature and CP2K resources
o Qiskit-nature-CP2K integration https://github.com/Qiskit/qiskit-nature-cp2k

@ Qiskit-nature https://github.com/qiskit-community/qiskit-nature

Quantum Embedding tools

@ A Python package for Bootstrap Embedding (BE) method for quantum embedding: [16], the
related publication is [17]

@ For more on quantum embedding: [18]

v

— = = = Ty
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Thank you! Questions?

Contact: karim.elgammal@ri.se
LinkedIn: linkedin.com/in/karimelgammal
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