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Motivation and Goals

Challenge: Materials simulations consume significant
HPC resources using classical methods
Opportunity: Quantum computing as a new accelerator
in the HPC paradigm to run quantum methods
Example application: Examine environmental friendly
alternative corrosion inhibitors for aerospace and
automotive industries
Goal: Demonstrate quantum-HPC integration for
important material science problem

The use case in a nutshell
Demonstration of quantum-accelerated

corrosion inhibitor screening using
hybrid HPC-quantum workflow
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Quantum Computing in Materials Science
Electronic structure calculations are perfect for quantum computers
Current limitation: Small molecules only (few qubits available)
Solution: Quantum embedding - treat critical regions with quantum accuracy

Figure: Typical quantum chemistry workflow [1]

Applying the above workflow beyond small molecules to larger molecules or periodic systems can
be difficult at the moment due to large number of qubits needed
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Materials Systems in Different Dimensions
Focus on materials science simulations like solid-state systems is picking up using quantum computing
algorithms, those systems are often modeled as periodic systems and simulation cell can have hundreds
of atoms and system can be 1D, 2D or 3D

Figure: from [2]: Examples of materials systems in 1D, 2D and 3D
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Computational materials science in a nutshell
Modeling and computing materials properties is solving the electronic structure problem for the
system of interest to predict a physical variable of interest
Electronic structure of molecules and solids is the starting point in a computational materials
science workflow
Models and embedding help simplify complex quantum calculations

Figure: From [3]
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Connection to HPC resources

Figure: From [4]

K. Elgammal (ENCCS) QC-HPC for atomistic simulations HPC in Europe webinars, Stockholm, Sweden 7 / 41



Connection to HPC resources

Figure: From [5]

Connection with current codes
This approach has the potential to combine the best of both worlds: the higher accuracy you can get
from quantum methods and the efficiency of classical methods in accelerated material science
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Connection to HPC resources

Typically those systems require many cores and nodes and fill-up big portion of HPC time, for
example through Density Functional Theory (DFT) calculations (by famous codes like VASP,
Quantum ESPRESSO, ABINIT, etc.)

Figure: HPC usage at NERSC [4]

DFT codes dominate HPC usage
VASP alone: 20% of resources
Materials science: Major HPC consumer
Hybrid quantum-classical workflows could
unlock new computational capabilities
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Quantum-Centric Supercomputing

Figure: Integration of classical HPC and quantum
resources [3]

QPUs as specialised accelerators
Hybrid workflows leverage strengths of both
paradigms
This example shows the VQE steps of the
calculation connected by arrows describing the
flow of operations that require
“long-time/near-time/real-time” interaction
between HPC and quantum computers

Material science codes that utilise HPC re-
sources could have the potential to combine
the best of both worlds, revealing the higher
accuracy of quantum methods and the effi-
ciency of classical methods in accelerated ma-
terial science
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Corrosion Inhibition: a practical usecase application on Quantum
Computing for Materials

Problem: Cars and Aeroplanes body corrosion costs
billions annually
Traditional solution: Use chromium-based corrosion
inhibitors (toxic)
Eco-friendly alternative: organic inhibitors (such as:
triazole derivatives)
Challenge: Predicting the effectiveness of those
alternatives requires expensive calculations
Solution: examining the adhesion power of those
alternative inhibitor molecules on top of metal alloys
surfaces that form the body of a car or aeroplane. The
calculations could employ a workflow that benefit from
accurate quantum calculations to correct for energies
computed by classical calculations

Figure: Inhibition mechanisms [6]
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Quantum Embedding: bridging quantum simulations to material
science workflows

Figure: General strategy for quantum simulations of materials using quantum embedding [7]

Use the classical resources to do the calculations as usual and focus the quantum part on
the important interactions that can benefit from the quantum algorithms and feed the
results back to the classical side
simulations utilises active space approximation to reduce the resources required to model
the system’s electronic structure on a quantum workflow
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Quantum Embedding Method for the Simulation of Systems on
Quantum Computers I

ESCF-in-DFT[γ
A
emb; γ

A, γB] = ESCF[γ
A
emb] + EDFT[γ

A + γB]− EDFT[γ
A] + tr[(γA

emb − γA)νemb[γ
A, ] + αtr[γA

embPB] (1)

This relies on the projection-
based wave function-in-DFT
(WF-in-DFT) embedding
method, where the total KS
density matrix, γ, of the
molecular system obtained
from KS-DFT is partitioned
into an active and environ-
ment subsystem, γA and γB
ESCF is the energy of the embedded subsys-
tem A at SCF level

PB = SγBS is a projector for orbital or-

thogonality α is a scaling parameter, νemb
includes all two-electron interactions

Figure: Quantum embedding in action [8]
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Quantum Embedding Method for the Simulation of Systems on
Quantum Computers II

ADAPT-VQE: Adaptive Derivative-
Assembled Pseudo-Trotter VQE
(ADAPT-VQE) is a solver technique
that builds an ansatz iteratively from
a predefined operator pool, which
can efficiently converge to predict the
ground state energy [9]
Then different pool of ansatz offered
by UCCSD can be chosen then initial
Hartree-Fock state can be formed then
build the Hamiltonian

Ansatz Element Pool

Ansatz Element Pool

Decision
Rule

D
Choose best element

An(θ) = Aα(θ) = eθTα

Append to ansatz

Un(θ) = An(θn)· · ·A1(θ1)

Optimise parameters

θ −→ θ′

Apply ansatz

ρn(θ
′) = Un(θ

′)ρ0 U
†
n(θ

′)

Initialise state, ansatz and pool

n = 0, ρ0 = ρHF, U0 = I,P = {Aα}
Start

Trial state

ρn(θ
′)

Measure expectation

En(θ
′) = Tr[Hρn(θ

′)]

Converged?End

Max energy reduction in subset S

argmin
α:Aα∈S

(
min
θn

Tr
[
HAα(θn)ρn−1A

†
α(θn)

]) Max gradient

argmax
α:Aα∈P

|Tr {[H,Tα] ρn−1}|

A

A

AAA
A A

AA
A

A

Yes

No n → n+ 1

Or

Figure: ADAPT-VQE procedure [10]
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How to perform the quantum-centric supercomputing approach to
simulation corrosion inhibition

Build the DFT simulation workflow
Identify the part of important interactions to study with the quantum algorithm (e.g.
surface-adsorbate interactions where we choose orbitals around the Fermi level)
Build Hybrid quantum-classical computational framework where calculations from DFT
(implemented in CP2K) can talk to quantum algorithm calculation (adaptVQE implemented in
Qiskit)

Paper: open here Code: GitHub repository [11] Materials Cloud Archive 2024.211 (2024) raw
data to reproduce the workflow
Demo video on YouTube: video demo
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Computational Workflow Overview
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(Jordan-Wigner (JW), 
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Quantum simulation
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legend

tools

workflow step

use embedding 
scheme methods*
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System Setup and Inhibitor Selection

Figure: Model simplification approach: we simplify our
system to make the calculations easy to compute and
focus on the two parts which are the DFT and the
adaptVQE calculations

Al(111) surface (4×4 supercell)
Two inhibitors studied:

1,2,4-Triazole
1,2,4-Triazole-3-thiol

Binding energy as effectiveness metric
Active space: 2 electrons in 5 orbitals
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Case Study: Workflow with Example System

Al substrate (4x4)

1,2,4-Triazole-3-thiol
3.21 Å
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From: [12]
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CP2K-Qiskit Integration

Socket-based
communication
FCIDUMP
format for
integrals
Self-consistent
embedding loop
ADAPT-VQE
algorithm for
quantum part

most important
article here!
This figure is
from [13]
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Computational Parameters

Component Details

Classical (DFT)
Software CP2K with PBE functional
Basis Set DZVP-MOLOPT-GTH
Dispersion Grimme D3 correction
ML Potential orb-d3-v2 for geometry optimisation
Quantum
Algorithm ADAPT-VQE
Active Space 2e, 5o (10 spin-orbitals)
Mapping Parity with 2-qubit reduction
Optimiser SPSA (1000 iterations)
HPC Resources
CPU AMD EPYC 9R14 Processor
Cores 96 cores
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Quantum Algorithm Selection and Optimisation

Algorithm Convergence Accuracy Runtime

Vanilla VQE Poor Low High
UCCSD Ansatz Good Medium Medium
ADAPT-VQE Excellent High Medium
Stateful ADAPT-VQE Excellent High Low

ADAPT-VQE advantages:
Gradient-based operator selection
Dynamically constructed ansatz
Reduced circuit depth

Warm-starting technique:
State preparation from previous calculations
Faster convergence for similar systems
5-6× speedup demonstrated
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Corrosion inhibition case study: System Setup and Classical
Computational Details

Establish a baseline benchmark by using the DFT code CP2K to solve the problem classically then compare
with the hybrid calculation using both CP2K and Qiskit

System: Al(111) surface with
triazole inhibitor and vacuum gap of
25 Å in the z-direction. The
supercell is 4×4 size to avoid
interactions between repeated cells
PBE functional with D3 dispersion
correction
Binding energy calculation:

Ebinding = Esupercell−(Esubstrate+Einhibitor) Figure: From [12]
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Complete Computational Parameters Summary

Method/Component Details
Classical Calculations
Geometry Optimization ASE with orb-d3-v2 model
Dispersion Corrections Grimme’s D3 (integrated into neural network potential)
Surface Model Al(111) 4×4 supercell
DFT Calculations
Functional PBE with GGA implementation
Basis Set DZVP-MOLOPT-GTH (double-zeta valence polarized)
Method GPW, plane-wave cutoff: 500 Ry, relative cutoff: 60 Ry
van der Waals DFT-D3 with PBE reference functional
Vacuum Gap 25 Å (z-direction)
SCF Convergence 1.0E-6 Ha, Broyden mixing (α = 0.1, β = 1.5)
Active Space Parameters
Configuration 2e, 5o (2 active electrons in 5 orbitals)
Selection Method ActiveSpaceTransformer (Qiskit implementation), canonical orbital energy ordering selection
Quantum Calculations
Primary Algorithm ADAPT-VQE from Qiskit, StatefulAdaptVQE from qiskit-nature-cp2k
Qubit Mapping Parity with two-qubit reduction
Convergence Criteria Energy threshold: 1e-6 Hartree, gradient norm: 1e-4
Classical Optimizer SPSA (learning rate: 0.005, perturbation size: 0.05, max iterations: 1000)
Quantum Hardware & Simulation
Simulators Qiskit local and Aer
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Corrosion inhibitors choice (Classical)

Inhibitor MW Temp pH Eff.
(g/mol) (K) Range (%)

1,2,4-Triazole 69.07 298 8-10 90
1,2,4-T-3-thiol 101.13 298 4-10 70-90
Benzotriazole 119.12 298 7-10 90-98
2-MBI 150.2 298 4-10 90
THC 227.24 303 7 91-95
T-methionine 502.70 298 7 95-99

Shortlisted few inhibitor molecules
Chosen two variations of Triazole inhibitors
Geometry-optimized structures consistent
with experimental observations
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Binding Energy Comparison

Method Inhibitor Binding Energy (eV) Distance (Å)
Classical DFT 1,2,4-Triazole -0.386 3.54
ADAPT-VQE 1,2,4-Triazole -0.386 3.54
Classical DFT 1,2,4-T-3-thiol -1.279 3.21
ADAPT-VQE 1,2,4-T-3-thiol -1.279 3.21

Key Findings

Agreement between classical and quantum methods
Thiol derivative shows 3.3× stronger binding
Results align with experimental observations where enhanced surface interaction of thiol
derivative supports findings on sulfur’s role in surface passivation
Validates quantum approach for materials screening
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Comments on VQE flavours

ADAPT-VQE shows good agreement with
classical DFT:

allowing more orbitals would enhance the
results
the agreement with DFT shows good promise
for the quantum workflow

Challenges with vanilla VQE:
Convergence issues
Less accurate results

Active space limitations:
Currently 2e, 5o
Future: expand to 10e, 20o

Figure: Hybrid quantum-classical workflow
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Performance analysis with simple example

Time distribution:
CP2K: 62%
Quantum (Qiskit): 38%

Benchmarking results:
Standard VQE: 3654s
ADAPT-VQE: 1552s
Stateful ADAPT-VQE: 272s

Key achievement: 5-6× speedup with
optimised implementation

Algorithm Runtime (s)

VQE 3654
Stateful VQE 3134
ADAPT-VQE 1552
Stateful ADAPT-VQE 272

Table: Performance comparison on LiH benchmark

Computational Efficiency
Quantum embedding reduces

quantum resource requirements
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Computational Scaling and Resource Requirements

Current system size:
Al(111) 4×4 supercell
64 Al atoms total

2 electrons, 5 orbitals (quantum)
Scaling challenges:

Exponential growth with system size
Limited quantum coherence time
Classical-quantum communication overhead

Future targets:
10e, 20o active spaces
Larger surface models
Multiple inhibitor molecules

Figure: Quantum embedding scales efficiently

Qubits = 2 × norbitals (2)

Classical cost ∝ N3 (3)

Quantum cost ∝ 2nactive (4)
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Broader Applications in Materials Science

Immediate applications:
Carbon capture (MOFs)
Hydrogen storage materials
Battery electrode interfaces
Photovoltaic materials

Automotive industry:
Lightweight alloy protection
Electric vehicle components
Smart coating development

Aerospace applications:
High-temperature resistance
Space environment protection
Advanced composite interfaces

Figure: Quantum-centric supercomputing paradigm

Market Impact
Global corrosion costs:
$2.5 trillion annually
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Comparison with Traditional Approaches (predictions)

Method Accuracy Cost Time to Solution

Experimental screening High Very High Months
Pure DFT Medium High Days
Hybrid functionals High Very High Weeks
Quantum-HPC hybrid High Medium Hours

Traditional experimental approach:
Synthesise and test hundreds of compounds
Expensive laboratory equipment
Long development cycles

Pure computational approach:
Limited accuracy for complex systems
Scaling challenges for realistic models

Quantum-HPC approach:
Best of both worlds: accuracy + efficiency
Rapid screening capabilities
Reduced experimental validation needs
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Current Limitations and Technical Challenges

Quantum hardware limitations:
Limited qubit counts (100-1000)
Short coherence times
High error rates

Software integration:
Communication latency
Data format conversion
Synchronisation challenges

Active space selection:
Manual orbital selection
System-dependent optimisation
Balance accuracy vs. resources

Validation challenges:
Limited experimental benchmarks
Complex multi-physics interactions
Scale-up verification needed

Performance considerations:
Queue times on quantum hardware
Cost optimisation
Workflow orchestration

Key Challenge
Balancing quantum advantage

with practical constraints
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Summary and Impact

Achievement: First quantum-HPC workflow for corrosion inhibition
Validation: Quantum results match classical DFT
Efficiency: ADAPT-VQE shows significant speedup
Practical impact: Enables screening of green inhibitors

Paper: open here Code: GitHub repository [11] Materials Cloud
Archive 2024.211 (2024) raw data to reproduce the workflow
Demo video on YouTube: video demo
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Future Directions

Immediate goals:
Expand active space (currently 2e,5o → 10e,20o)
Test the workflow using SQD on real quantum hardware (IQM)
Benchmark against FCI for accuracy validation

Long-term vision:
Apply to other materials challenges:

Carbon capture (metal-organic frameworks)
Hydrogen storage (catalysis)
Battery materials

Integrate with HPC scheduling systems
Develop automated active space selection

Quantum-centric supercomputing is ready for materials science applications. Let’s collaborate to
accelerate material discovery!
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Sample-based Quantum Diagonalization (SQD)

Classical post-processing of quantum samples to find
eigenvalues/eigenvectors

Advantages:

Noise robust, reduced qubit requirements
Large Hamiltonians (millions of terms)
Quantum + classical hybrid computing

Method:

Sample quantum circuits
Refine configurations classically
Diagonalize in sampled subspace

Ref: arXiv:2405.05068

Figure: SQD workflow
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Want to Learn More About SQD and Quantum Computing?
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Quantum Autumn School 2025 - Information

Nov 3-7, 2025 | Stockholm, Sweden

Introduction and how to build a Quantum
algorithm
SQD & variational quantum algorithms
Quantum error correction (QEC)
EuroHPC-JU quantum HW (VLQ)
Industry: IQM, IonQ, NVIDIA

FREE Registration!
https://enccs.se/events/qas-2025/

Agenda & Materials:
https://enccs.github.io/qas2025/

Follow us on LinkedIn:
https://www.linkedin.com/company/enccs
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Quantum Autumn School 2025 - Detailed Program

Register now: https://enccs.se/events/qas-2025/
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Useful literature and resources

Learning resources
For some recent VQE implementations: [14]
A good review article on the topic of quantum-centric supercomputing: [3]
For more insights, see the tutorial video lecture [15]
NVidia blog post on ADAPT-VQE [9]

Qiskit Nature and CP2K resources
Qiskit-nature-CP2K integration https://github.com/Qiskit/qiskit-nature-cp2k
Qiskit-nature https://github.com/qiskit-community/qiskit-nature

Quantum Embedding tools
A Python package for Bootstrap Embedding (BE) method for quantum embedding: [16], the
related publication is [17]
For more on quantum embedding: [18]
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Thank you! Questions?
Contact: karim.elgammal@ri.se

LinkedIn: linkedin.com/in/karimelgammal
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