QUANTUM-ACCELERATED SUPERCOMPUTING FOR MATERIALS SCIENCE: HOW TO?

AENCCS

Quantum-Accelerated Supercomputing for Materials Science

Atomistic use case of HPC-QC algorithms integration Quantum Computing with HPC for

Karim Elgammal*

*EuroCC National Competence Centre Sweden RISE Research Institutes of Sweden, Stockholm, Sweden karim.elgammal@ri.se

> HPC in Europe webinars, Stockholm, Sweden

Motivation and Goals

- Challenge: Materials simulations consume significant HPC resources using classical methods
- Opportunity: Quantum computing as a new accelerator in the HPC paradigm to run quantum methods
- Example application: Examine environmental friendly alternative corrosion inhibitors for aerospace and automotive industries
- Goal: Demonstrate quantum-HPC integration for important material science problem

The use case in a nutshell

Demonstration of quantum-accelerated corrosion inhibitor screening using hybrid HPC-quantum workflow

Quantum Computing in Materials Science

- Electronic structure calculations are perfect for quantum computers
- Current limitation: Small molecules only (few qubits available)
- Solution: Quantum embedding treat critical regions with quantum accuracy

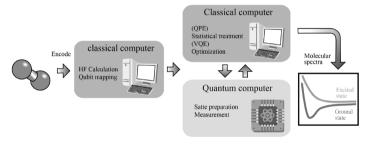


Figure: Typical quantum chemistry workflow [1]

Applying the above workflow beyond small molecules to larger molecules or periodic systems can be difficult at the moment due to large number of qubits needed

Materials Systems in Different Dimensions

Focus on materials science simulations like solid-state systems is picking up using quantum computing algorithms, those systems are often modeled as periodic systems and simulation cell can have hundreds of atoms and system can be 1D, 2D or 3D

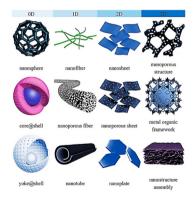


Figure: from [2]: Examples of materials systems in 1D, 2D and 3D

Computational materials science in a nutshell

- Modeling and computing materials properties is solving the electronic structure problem for the system of interest to predict a physical variable of interest
- Electronic structure of molecules and solids is the starting point in a computational materials science workflow
- Models and embedding help simplify complex quantum calculations

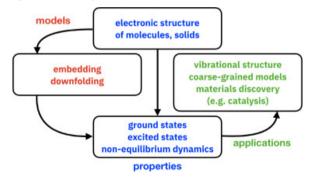
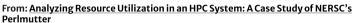
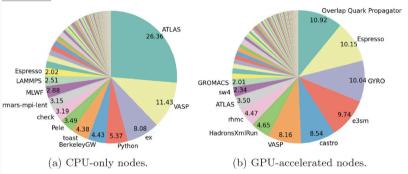




Figure: From [3]

Connection to HPC resources

Decomposition of node-hours by applications. Infrequent applications are not labeled.

Figure: From [4]

Connection to HPC resources

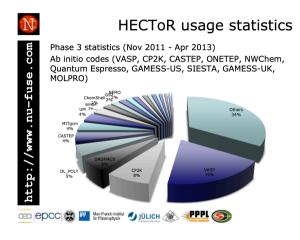
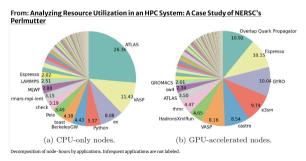



Figure: From [5]

Connection to HPC resources

Typically those systems require many cores and nodes and fill-up big portion of HPC time, for example through Density Functional Theory (DFT) calculations (by famous codes like VASP, Quantum ESPRESSO, ABINIT, etc.)

- DFT codes dominate HPC usage
- VASP alone: 20% of resources
- Materials science: Major HPC consumer
- Hybrid quantum-classical workflows could unlock new computational capabilities

Figure: HPC usage at NERSC [4]

Quantum-Centric Supercomputing

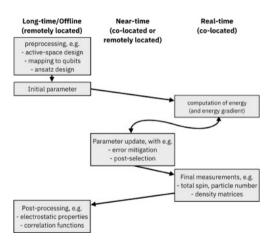


Figure: Integration of classical HPC and quantum resources [3]

- QPUs as specialised accelerators
- Hybrid workflows leverage strengths of both paradigms
- This example shows the VQE steps of the calculation connected by arrows describing the flow of operations that require "long-time/near-time/real-time" interaction between HPC and quantum computers

Material science codes that utilise HPC resources could have the potential to combine the best of both worlds, revealing the higher accuracy of quantum methods and the efficiency of classical methods in accelerated material science

Corrosion Inhibition: a practical usecase application on Quantum Computing for Materials

- Problem: Cars and Aeroplanes body corrosion costs billions annually
- **Traditional solution**: Use chromium-based corrosion inhibitors (toxic)
- Eco-friendly alternative: organic inhibitors (such as: triazole derivatives)
- **Challenge**: Predicting the effectiveness of those alternatives requires expensive calculations
- **Solution**: examining the adhesion power of those alternative inhibitor molecules on top of metal alloys surfaces that form the body of a car or aeroplane. The calculations could employ a workflow that benefit from accurate quantum calculations to correct for energies computed by classical calculations

Figure: Inhibition mechanisms [6]

Quantum Embedding: bridging quantum simulations to material science workflows

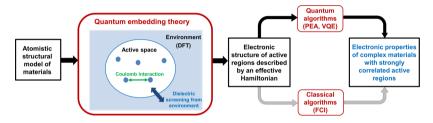


Figure: General strategy for quantum simulations of materials using quantum embedding [7]

- Use the classical resources to do the calculations as usual and focus the quantum part on the important interactions that can benefit from the quantum algorithms and feed the results back to the classical side
- simulations utilises active space approximation to reduce the resources required to model the system's electronic structure on a quantum workflow

Quantum Embedding Method for the Simulation of Systems on Quantum Computers I

$$E_{\text{SCF-in-DFT}}[\gamma_{\text{emb}}^{A}; \gamma^{A}, \gamma^{B}] = E_{\text{SCF}}[\gamma_{\text{emb}}^{A}] + E_{\text{DFT}}[\gamma^{A} + \gamma^{B}] - E_{\text{DFT}}[\gamma^{A}] + \text{tr}[(\gamma_{\text{emb}}^{A} - \gamma^{A})\nu_{\text{emb}}[\gamma^{A},] + \alpha \text{tr}[\gamma_{\text{emb}}^{A} \mathbf{P}^{B}]$$
(1)

This relies on the projection-based wave function-in-DFT (WF-in-DFT) embedding method, where the total KS density matrix, γ , of the molecular system obtained from KS-DFT is partitioned into an active and environment subsystem, γ_A and γ_B $E_{\rm SCF}$ is the energy of the embedded subsystem A at SCF level

 ${\bf P}^B=S\gamma^BS$ is a projector for orbital orthogonality α is a scaling parameter, $\nu_{
m emb}$ includes all two-electron interactions

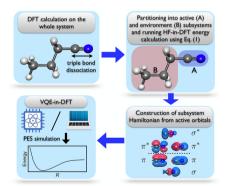
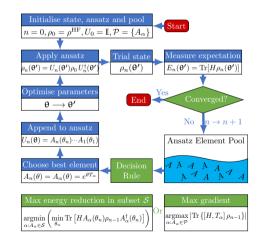



Figure: Quantum embedding in action [8]

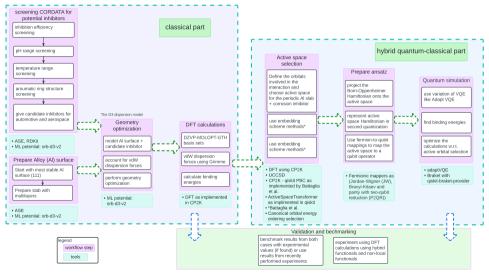
Quantum Embedding Method for the Simulation of Systems on Quantum Computers II

QC-HPC for atomistic simulations

ADAPT-VQE: Adaptive Derivative-Assembled Pseudo-Trotter VQE (ADAPT-VQE) is a solver technique that builds an ansatz iteratively from a predefined operator pool, which can efficiently converge to predict the ground state energy [9] Then different pool of ansatz offered by UCCSD can be chosen then initial Hartree-Fock state can be formed then

build the Hamiltonian

How to perform the quantum-centric supercomputing approach to simulation corrosion inhibition


- Build the DFT simulation workflow
- Identify the part of important interactions to study with the quantum algorithm (e.g. surface-adsorbate interactions where we choose orbitals around the Fermi level)
- Build Hybrid quantum-classical computational framework where calculations from DFT (implemented in CP2K) can talk to quantum algorithm calculation (adaptVQE implemented in Qiskit)

Paper: open here Code: GitHub repository [11] Materials Cloud Archive 2024.211 (2024) raw

data to reproduce the workflow

Demo video on YouTube: video demo

Computational Workflow Overview

System Setup and Inhibitor Selection

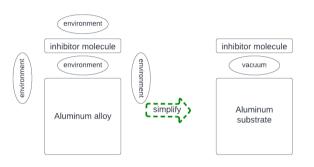
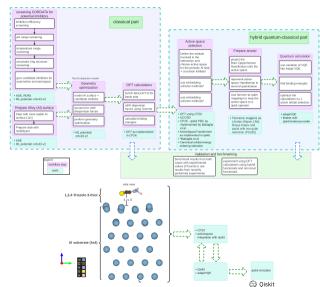



Figure: Model simplification approach: we simplify our system to make the calculations easy to compute and focus on the two parts which are the DFT and the adaptVQE calculations

- Al(111) surface (4×4 supercell)
- Two inhibitors studied:
 - 1,2,4-Triazole
 - 1,2,4-Triazole-3-thiol
- Binding energy as effectiveness metric
- Active space: 2 electrons in 5 orbitals

Case Study: Workflow with Example System

CP2K-Qiskit Integration

- Socket-based communication
- FCIDUMP format for integrals
- Self-consistent embedding loop
- ADAPT-VQE algorithm for quantum part

most important article here!

This figure is from [13]

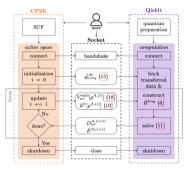


FIG. 2. Workflow diagram depicting the interaction of CP2K and Qiskit Nature. The user configures the two classical processes and the socket for the IPC. Each process the follows the computational steps (rectangular boxes) outlined inside of their respective frames. The data that gets computed and transferred is indicated by the rounded boxes. Numbers in parentheses refer to the respective equations in this manuscript. The self-consistent embedding requires a loop which is highlighted by the gray box. This loop is terminated based on the decision (diamond shape) taken by the CP2K process.

Computational Parameters

Component	Details		
Classical (DF7	Classical (DFT)		
Software	CP2K with PBE functional		
Basis Set	DZVP-MOLOPT-GTH		
Dispersion	Grimme D3 correction		
ML Potential	orb-d3-v2 for geometry optimisation		
Quantum			
Algorithm	ADAPT-VQE		
Active Space	2e, 5o (10 spin-orbitals)		
Mapping	Parity with 2-qubit reduction		
Optimiser	SPSA (1000 iterations)		
HPC Resource	HPC Resources		
CPU	AMD EPYC 9R14 Processor		
Cores	96 cores		

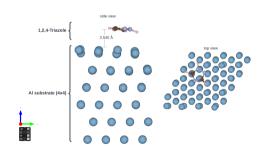
Quantum Algorithm Selection and Optimisation

Algorithm	Convergence	Accuracy	Runtime
Vanilla VQE	Poor	Low	High
UCCSD Ansatz	Good	Medium	Medium
ADAPT-VQE	Excellent	High	Medium
Stateful ADAPT-VQE	Excellent	High	Low

ADAPT-VQE advantages:

- Gradient-based operator selection
- Dynamically constructed ansatz
- Reduced circuit depth

Warm-starting technique:

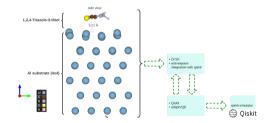

- State preparation from previous calculations
- Faster convergence for similar systems
- \bullet 5-6 \times speedup demonstrated

Corrosion inhibition case study: System Setup and Classical Computational Details

Establish a baseline benchmark by using the DFT code CP2K to solve the problem classically then compare with the hybrid calculation using both CP2K and Qiskit

- System: Al(111) surface with triazole inhibitor and vacuum gap of 25 Å in the z-direction. The supercell is 4×4 size to avoid interactions between repeated cells
- PBE functional with D3 dispersion correction
- Binding energy calculation:

$$E_{\text{binding}} = E_{\text{supercell}} - (E_{\text{substrate}} + E_{\text{inhibitor}})$$


Complete Computational Parameters Summary

Method/Component Details Classical Calculations ASE with orb-d3-v2 model Geometry Optimization ASE with orb-d3-v2 model Dispersion Corrections Grimme's D3 (integrated into neural network potential) Surface Model Al(111) 4x4 supercell DFT Calculations Functional PBE with GGA implementation Basis Set DZVP-MOLOPT-GTH (double-zeta valence polarized) Method GPW, plane-wave cutoff: 500 Ry, relative cutoff: 60 Ry van der Waals DFT-D3 with PBE reference functional Vacuum Gap 25 Å (z-direction) SCF Convergence 1.0E-6 Ha, Broyden mixing ($\alpha = 0.1$, $\beta = 1.5$) Active Space Parameters Configuration Quit Active Space Transformer (Qiskit implementation), canonical orbital energy ordering selection Quantum Calculations Primary Algorithm Quit Mapping ADAPT-VQE from Qiskit, StatefulAdaptVQE from qiskit-nature-cp2k Quibi Mapping Parity with two-qubit reduction Energy threshold: 1e-6 Hartree, gradient norm: 1e-4 Classical Optimizer SPSA (learning rate: 0.005, perturbation size: 0.05,		
Geometry Optimization ASE with orb-d3-v2 model Dispersion Corrections Grimme's D3 (integrated into neural network potential) Surface Model Al(111) 4x4 supercell PET Calculations Functional Basis Set DZVP-MOLOPT-GTH (double-zeta valence polarized) Method GPW, plane-wave cutoff: 500 Ry, relative cutoff: 60 Ry van der Waals DFT-D3 with PBE reference functional Vacuum Gap 25 Å (z-direction) SCF Convergence 1.0E-6 Ha, Broyden mixing ($\alpha = 0.1$, $\beta = 1.5$) Active Space Parameters Configuration 2e, 5o (2 active electrons in 5 orbitals) Selection Method 2ctive SpaceTransformer (Qiskit implementation), canonical orbital energy ordering selection Quantum Calculations Primary Algorithm ADAPT-VQE from Qiskit, StatefulAdaptVQE from qiskit-nature-cp2k Qubit Mapping Parity with two-qubit reduction Convergence Criteria Energy threshold: 1e-6 Hartree, gradient norm: 1e-4 Classical Optimizer SPSA (learning rate: 0.005, perturbation size: 0.005, max iterations: 1000)		Details
Dispersion Corrections Grimme's D3 (integrated into neural network potential) Surface Model Al(111) 4×4 supercell FT Calculations Functional PBE with GGA implementation Basis Set DZYP-MOLOPT-GTH (double-zeta valence polarized) Method GPW, plane-wave cutoff: 500 Ry, relative cutoff: 60 Ry van der Waals DFT-D3 with PBE reference functional Vacuum Gap 25 A (z-direction) SCF Convergence 1.0E-6 Ha, Broyden mixing ($\alpha = 0.1$, $\beta = 1.5$) Active Space Parameters Configuration 2e, 50 (2 active electrons in 5 orbitals) Selection Method ActiveSpaceTransformer (Qiskit implementation), canonical orbital energy ordering selection Quantum Calculations Primary Algorithm ADAPT-VQE from Qiskit, StatefulAdaptVQE from qiskit-nature-cp2k Qubit Mapping Parity with two-qubit reduction Convegence Criteria Energy threshold: 1e-6 Hartree, gradient norm: 1e-4 Classical Optimizer SPSA (learning rate: 0.005, perturbation size: 0.005, max iterations: 1000)	Classical Calculations	
Surface Model Al(111) 4×4 supercell DFT Calculations Functional PBE with GGA implementation Basis Set DZVP-MOLOPT-GTH (double-zeta valence polarized) Method GPW, plane-wave cutoff: 500 Ry, relative cutoff: 60 Ry van der Waals DFT-D3 with PBE reference functional Vacuum Gap 25 Å (z -direction) SCF Convergence 1.0E-6 Ha, Broyden mixing ($\alpha = 0.1$, $\beta = 1.5$) Active Space Parameters Configuration 2e, 50 (2 active electrons in 5 orbitals) Selection Method ActiveSpaceTransformer (Qiskit implementation), canonical orbital energy ordering selection Quantum Calculations Primary Algorithm ADAPT-VQE from Qiskit, StatefulAdaptVQE from qiskit-nature-cp2k Qubit Mapping Parity with two-qubit reduction Convergence Criteria Energy threshold: 1e-6 Hartree, gradient norm: 1e-4 Classical Optimizer SPSA (learning rate: 0.005, perturbation size: 0.05, max iterations: 1000)	Geometry Optimization	ASE with orb-d3-v2 model
DFT Calculations Functional PBE with GGA implementation Basis Set DZVP-MOLOPT-GTH (double-zeta valence polarized) Method GPW, plane-wave cutoff: 500 Ry, relative cutoff: 60 Ry van der Waals DFT-D3 with PBE reference functional Vacuum Gap 25 Å (z-direction) 5CF Convergence 1.0E-6 Ha, Broyden mixing ($\alpha = 0.1$, $\beta = 1.5$) Active Space Parameters 2e, 50 (2 active electrons in 5 orbitals) Selection Method 2ctive SpaceTransformer (Qiskit implementation), canonical orbital energy ordering selection Quantum Calculations ADAPT-VQE from Qiskit, StatefulAdaptVQE from qiskit-nature-cp2k Pubit Mapping Parity with two-qubit reduction Convegence Criteria Energy threshold: 1e-6 Hartree, gradient norm: 1e-4 Classical Optimizer SPSA (learning rate: 0.005, perturbation size: 0.05, max iterations: 1000)	Dispersion Corrections	Grimme's D3 (integrated into neural network potential)
Functional PBE with GGA implementation DZVP-MOLOPT-GTH (double-zeta valence polarized) Basis Set DZVP-MOLOPT-GTH (double-zeta valence polarized) Wethod GPW, plane-wave cutoff: 500 Ry, relative cutoff: 60 Ry van der Waals DFT-D3 with PBE reference functional Vacuum Gap 25 Å (z-direction) SCF Convergence 1.0E-6 Ha, Broyden mixing ($\alpha = 0.1$, $\beta = 1.5$) Active Space Parameters Configuration 2e, 50 (2 active electrons in 5 orbitals) Selection Method ActiveSpace Transformer (Qiskit implementation), canonical orbital energy ordering selection Quantum Calculations Primary Algorithm ADAPT-VQE from Qiskit, StatefulAdaptVQE from qiskit-nature-cp2k Qubit Mapping Parity with two-qubit reduction Convergence Criteria Energy threshold: 1e-6 Hartree, gradient norm: 1e-4 Classical Optimizer SPSA (learning rate: 0.005, perturbation size: 0.05, max iterations: 1000)	Surface Model	Al(111) 4×4 supercell
Basis Set DZVP-MOLOPT-GTH (double-zeta valence polarized) Method GPW, plane-wave cutoff: 500 Ry, relative cutoff: 60 Ry van der Waals DFT-D3 with PBE reference functional Vacuum Gap 25 Å (z-direction) SCF Convergence 1.0E-6 Ha, Broyden mixing ($\alpha = 0.1$, $\beta = 1.5$) Active Space Parameters Configuration 2e, 50 (2 active electrons in 5 orbitals) Selection Method ActiveSpaceTransformer (Qiskit implementation), canonical orbital energy ordering selection Quantum Calculations Primary Algorithm ADAPT-VQE from Qiskit, StatefulAdaptVQE from qiskit-nature-cp2k Qubit Mapping Parity with two-qubit reduction Convergence Criteria Energy threshold: 1e-6 Hartree, gradient norm: 1e-4 Classical Optimizer SPSA (learning rate: 0.005, perturbation size: 0.005, max iterations: 1000)	DFT Calculations	
Method GPW, plane-wave cutoff: 500 Ry, relative cutoff: 60 Ry van der Waals DFT-D3 with PBE reference functional 25 A (z-direction) 25 C Convergence 1.0E-6 Ha, Broyden mixing ($\alpha = 0.1$, $\beta = 1.5$) Active Space Parameters Configuration 2e, 50 (2 active electrons in 5 orbitals) ActiveSpaceTransformer (Qiskit implementation), canonical orbital energy ordering selection Quantum Calculations Primary Algorithm ADAPT-VQE from Qiskit, StatefulAdaptVQE from qiskit-nature-cp2k Qubit Mapping Parity with two-qubit reduction Convergence Criteria Energy threshold: 1e-6 Hartree, gradient norm: 1e-4 Classical Optimizer SPSA (learning rate: 0.005, perturbation size: 0.05, max iterations: 1000)	Functional	PBE with GGA implementation
Method GPW, plane-wave cutoff: 500 Ry, relative cutoff: 60 Ry van der Waals DFT-D3 with PBE reference functional Vacuum Gap 25 A (z-direction) 5CF Convergence 1.0E-6 Ha, Broyden mixing ($\alpha = 0.1$, $\beta = 1.5$) Active Space Parameters 2e, 50 (2 active electrons in 5 orbitals) Selection Method ActiveSpaceTransformer (Qiskit implementation), canonical orbital energy ordering selection Quantum Calculations Primary Algorithm Pubit Mapping ADAPT-VQE from Qiskit, StatefulAdaptVQE from qiskit-nature-cp2k Qubit Mapping Parity with two-qubit reduction Convegence Criteria Energy threshold: 1e-6 Hartree, gradient norm: 1e-4 Classical Optimizer SPSA (learning rate: 0.005, perturbation size: 0.005, max iterations: 1000) Quantum Hardware & Simulation	Basis Set	DZVP-MOLOPT-GTH (double-zeta valence polarized)
van der Waals Vacuum Gap Vacuum Vacuum Gap Vacuum Vacuum Gap Vacuum	Method	
Vacuum Gap 25 Å (z-direction) 25 C Convergence 1.0E-6 Ha, Broyden mixing ($\alpha = 0.1$, $\beta = 1.5$) Active Space Parameters Configuration 2e, 5o (2 active electrons in 5 orbitals) 5election Method 3ctiveSpaceTransformer (Qiskit implementation), canonical orbital energy ordering selection 4ctiveSpaceTransformer (Qiskit, StatefulAdaptVQE from qiskit-nature-cp2k qubit Mapping Parity with two-qubit reduction 5ctive Giskit, StatefulAdaptVQE from qiskit-nature-cp2k qubit Mapping Parity with two-qubit reduction 5ctive Giskit, StatefulAdaptVQE from qiskit-nature-cp2k qubit Mapping Parity with two-qubit reduction 5ctive Giskit, StatefulAdaptVQE from qiskit-nature-cp2k qubit Mapping Parity with two-qubit reduction 5ctive Giskit, StatefulAdaptVQE from qiskit-nature-cp2k qubit Mapping Parity with two-qubit reduction 5ctive Giskit, StatefulAdaptVQE from qiskit-nature-cp2k qubit Mapping Parity with two-qubit reduction 5ctive Giskit, StatefulAdaptVQE from qiskit-nature-cp2k qubit Mapping Parity with two-qubit reduction 5ctive Giskit, StatefulAdaptVQE from qiskit-nature-cp2k qubit Mapping Parity with two-qubit reduction 5ctive Giskit, StatefulAdaptVQE from qiskit-nature-cp2k qubit Mapping Parity with two-qubit reduction 5ctive Giskit, StatefulAdaptVQE from qiskit-nature-cp2k qubit Mapping Parity with two-qubit reduction 5ctive Giskit, StatefulAdaptVQE from qiskit-nature-cp2k qubit Mapping Parity with two-qubit reduction 5ctive Giskit, StatefulAdaptVQE from qiskit-nature-cp2k qubit Mapping Parity with two-qubit reduction 5ctive Giskit, StatefulAdaptVQE from qiskit-nature-cp2k qubit Mapping Parity with two-qubit reduction 5ctive Giskit, StatefulAdaptVQE from qiskit-nature-cp2k qubit Mapping Parity Mapping Parity Mapping Parity Mapping Parity Mapping Parity Map	van der Waals	
SCF Convergence 1.0E-6 Ha, Broyden mixing ($\alpha=0.1, \beta=1.5$) Active Space Parameters Configuration 2e, 5o (2 active electrons in 5 orbitals) Active Space Transformer (Qiskit implementation), canonical orbital energy ordering selection Quantum Calculations Primary Algorithm ADAPT-VQE from Qiskit, StatefulAdaptVQE from qiskit-nature-cp2k Qubit Mapping Parity with two-qubit reduction Convergence Criteria Energy threshold: 1e-6 Hartree, gradient norm: 1e-4 Classical Optimizer SPSA (learning rate: 0.005, perturbation size: 0.05, max iterations: 1000)		
Active Space Parameters Configuration 2e, 5o (2 active electrons in 5 orbitals) Selection Method ActiveSpaceTransformer (Qiskit implementation), canonical orbital energy ordering selection Quantum Calculations Primary Algorithm ADAPT-VQE from Qiskit, StatefulAdaptVQE from qiskit-nature-cp2k Qubit Mapping Parity with two-qubit reduction Convergence Criteria Energy threshold: 1e-6 Hartree, gradient norm: 1e-4 Classical Optimizer SPSA (learning rate: 0.005, perturbation size: 0.05, max iterations: 1000)		
Configuration 2e, 50 (2 active electrons in 5 orbitals) Selection Method ActiveSpaceTransformer (Qiskit implementation), canonical orbital energy ordering selection Quantum Calculations Primary Algorithm ADAPT-VQE from Qiskit, StatefulAdaptVQE from qiskit-nature-cp2k Qubit Mapping Parity with two-qubit reduction Convergence Criteria Energy threshold: 1e-6 Hartree, gradient norm: 1e-4 Classical Optimizer SPSA (learning rate: 0.005, perturbation size: 0.05, max iterations: 1000)	-	1.02-0 Ha, Broyden Hilking ($\alpha = 0.1$, $\beta = 1.5$)
Selection Method ActiveSpaceTransformer (Qiskit implementation), canonical orbital energy ordering selection Quantum Calculations Primary Algorithm ADAPT-VQE from Qiskit, StatefulAdaptVQE from qiskit-nature-cp2k Qubit Mapping Parity with two-qubit reduction Convergence Criteria Energy threshold: 1e-6 Hartree, gradient norm: 1e-4 Classical Optimizer SPSA (learning rate: 0.005, perturbation size: 0.05, max iterations: 1000) Quantum Hardware & Simulation		
Quantum Calculations ADAPT-VQE from Qiskit, StatefulAdaptVQE from qiskit-nature-cp2k Primary Algorithm ADAPT-VQE from Qiskit, StatefulAdaptVQE from qiskit-nature-cp2k Qubit Mapping Parity with two-qubit reduction Convergence Criteria Energy threshold: 1e-6 Hartree, gradient norm: 1e-4 Classical Optimizer SPSA (learning rate: 0.005, perturbation size: 0.05, max iterations: 1000) Quantum Hardware & Simulation		
Primary Algorithm Qubit Mapping ADAPT-VQE from Qiskit, StatefulAdaptVQE from qiskit-nature-cp2k Qubit Mapping Parity with two-qubit reduction Convergence Criteria Classical Optimizer SPSA (learning rate: 0.005, perturbation size: 0.05, max iterations: 1000) Quantum Hardware & Simulation	Selection Method	ActiveSpaceTransformer (Qiskit implementation), canonical orbital energy ordering selection
Qubit Mapping Parity with two-qubit reduction Convergence Criteria Energy threshold: 1e-6 Hartree, gradient norm: 1e-4 Classical Optimizer SPSA (learning rate: 0.005, perturbation size: 0.05, max iterations: 1000) Quantum Hardware & Simulation	Quantum Calculations	
Convergence Criteria Energy threshold: 1e-6 Hartree, gradient norm: 1e-4 Classical Optimizer SPSA (learning rate: 0.005, perturbation size: 0.05, max iterations: 1000) Quantum Hardware & Simulation	Primary Algorithm	ADAPT-VQE from Qiskit, StatefulAdaptVQE from qiskit-nature-cp2k
Classical Optimizer SPSA (learning rate: 0.005, perturbation size: 0.05, max iterations: 1000) Quantum Hardware & Simulation	Qubit Mapping	Parity with two-qubit reduction
Classical Optimizer SPSA (learning rate: 0.005, perturbation size: 0.05, max iterations: 1000) Quantum Hardware & Simulation	Convergence Criteria	Energy threshold: 1e-6 Hartree, gradient norm: 1e-4
Quantum Hardware & Simulation		
	•	
	Simulators	Qiskit local and Aer

Corrosion inhibitors choice (Classical)

Inhibitor	MW (g/mol)	Temp (K)	pH Range	Eff. (%)
1,2,4-Triazole	69.07	298	8-10	90
1,2,4-T-3-thiol	101.13	298	4-10	70-90
Benzotriazole	119.12	298	7-10	90-98
2-MBI	150.2	298	4-10	90
THC	227.24	303	7	91-95
T-methionine	502.70	298	7	95-99

- Shortlisted few inhibitor molecules
- Chosen two variations of Triazole inhibitors
- Geometry-optimized structures consistent with experimental observations

Binding Energy Comparison

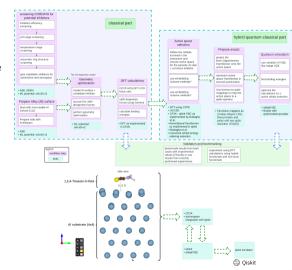
Method	Inhibitor	Binding Energy (eV)	Distance (Å)
Classical DFT	1,2,4-Triazole	-0.386	3.54
ADAPT-VQE	1,2,4-Triazole	-0.386	3.54
Classical DFT	1,2,4-T-3-thiol	-1.279	3.21
ADAPT-VQE	1,2,4-T-3-thiol	-1.279	3.21

Key Findings

- Agreement between classical and quantum methods
- Thiol derivative shows 3.3× stronger binding
- Results align with experimental observations where enhanced surface interaction of thiol derivative supports findings on sulfur's role in surface passivation
- Validates quantum approach for materials screening

Comments on VQE flavours

ADAPT-VQE shows good agreement with classical DFT:


- allowing more orbitals would enhance the results
- the agreement with DFT shows good promise for the quantum workflow

Challenges with vanilla VQE:

- Convergence issues
- Less accurate results

• Active space limitations:

- Currently 2e, 5o
- Future: expand to 10e, 20o

Performance analysis with simple example

• Time distribution:

• CP2K: 62%

• Quantum (Qiskit): 38%

Benchmarking results:

Standard VQE: 3654sADAPT-VQE: 1552s

• Stateful ADAPT-VQE: 272s

• **Key achievement**: 5-6× speedup with optimised implementation

Algorithm	Runtime (s)
VQE	3654
Stateful VQE	3134
ADAPT-VQE	1552
Stateful ADAPT-VQE	272

Table: Performance comparison on LiH benchmark

Computational Efficiency

Quantum embedding reduces quantum resource requirements

Computational Scaling and Resource Requirements

Current system size:

- Al(111) 4×4 supercell
- 64 Al atoms total
- 2 electrons, 5 orbitals (quantum)

Scaling challenges:

- Exponential growth with system size
- Limited quantum coherence time
- Classical-quantum communication overhead

• Future targets:

- 10e, 20o active spaces
- Larger surface models
- Multiple inhibitor molecules

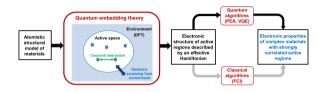


Figure: Quantum embedding scales efficiently

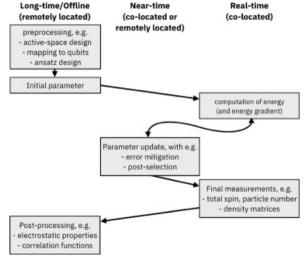
Qubits =
$$2 \times n_{\text{orbitals}}$$
 (2)

Classical cost
$$\propto N^3$$
 (3)

Quantum $\cos t \propto 2^{n_{\text{active}}}$ (4)

Broader Applications in Materials Science

• Immediate applications:


- Carbon capture (MOFs)
- Hydrogen storage materials
- Battery electrode interfaces
- Photovoltaic materials

Automotive industry:

- Lightweight alloy protection
- Electric vehicle components
- Smart coating development

• Aerospace applications:

- High-temperature resistance
- Space environment protection
- Advanced composite interfaces

Comparison with Traditional Approaches (predictions)

Method	Accuracy	Cost	Time to Solution
Experimental screening	High	Very High	Months
Pure DFT	Medium	High	Days
Hybrid functionals	High	Very High	Weeks
Quantum-HPC hybrid	High	Medium	Hours

Traditional experimental approach:

- Synthesise and test hundreds of compounds
- Expensive laboratory equipment
- Long development cycles

• Pure computational approach:

- Limited accuracy for complex systems
- Scaling challenges for realistic models

• Quantum-HPC approach:

- Best of both worlds: accuracy + efficiency
- Rapid screening capabilities
- Reduced experimental validation needs

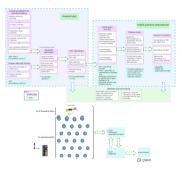
Current Limitations and Technical Challenges

- Quantum hardware limitations:
 - Limited qubit counts (100-1000)
 - Short coherence times
 - High error rates
- Software integration:
 - Communication latency
 - Data format conversion
 - Synchronisation challenges
- Active space selection:
 - Manual orbital selection
 - System-dependent optimisation
 - Balance accuracy vs. resources

- Validation challenges:
 - Limited experimental benchmarks
 - Complex multi-physics interactions
 - Scale-up verification needed
- Performance considerations:
 - Queue times on quantum hardware
 - Cost optimisation
 - Workflow orchestration

Key Challenge

Balancing quantum advantage with practical constraints


Summary and Impact

- Achievement: First quantum-HPC workflow for corrosion inhibition
- Validation: Quantum results match classical DFT
- Efficiency: ADAPT-VQE shows significant speedup
- Practical impact: Enables screening of green inhibitors

Paper: open here Code: GitHub repository [11] Materials Cloud

Archive 2024.211 (2024) raw data to reproduce the workflow

Demo video on YouTube: video demo

Future Directions

Immediate goals:

- ullet Expand active space (currently 2e,50 ightarrow 10e,20o)
- Test the workflow using SQD on real quantum hardware (IQM)
- Benchmark against FCI for accuracy validation

Long-term vision:

- Apply to other materials challenges:
 - Carbon capture (metal-organic frameworks)
 - Hydrogen storage (catalysis)
 - Battery materials
- Integrate with HPC scheduling systems
- Develop automated active space selection

Quantum-centric supercomputing is ready for materials science applications. Let's collaborate to accelerate material discovery!

Sample-based Quantum Diagonalization (SQD)

Classical post-processing of quantum samples to find eigenvalues/eigenvectors

Advantages:

- Noise robust, reduced qubit requirements
- Large Hamiltonians (millions of terms)
- Quantum + classical hybrid computing

Method:

- Sample quantum circuits
- Refine configurations classically
- Diagonalize in sampled subspace

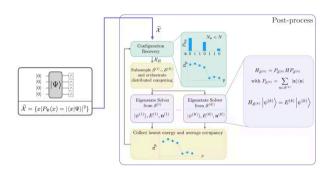


Figure: SQD workflow

Want to Learn More About SQD and Quantum Computing?

Quantum Autumn School 2025 - Information

Nov 3-7, 2025 | Stockholm, Sweden

- Introduction and how to build a Quantum algorithm
- SQD & variational quantum algorithms
- Quantum error correction (QEC)
- EuroHPC-JU quantum HW (VLQ)
- Industry: IQM, IonQ, NVIDIA

FREE Registration!

https://enccs.se/events/qas-2025/

Agenda & Materials:

https://enccs.github.io/qas2025/

Follow us on LinkedIn:

https://www.linkedin.com/company/enccs

Quantum Autumn School 2025 - Detailed Program

Useful literature and resources

Learning resources

- For some recent VQE implementations: [14]
- A good review article on the topic of quantum-centric supercomputing: [3]
- For more insights, see the tutorial video lecture [15]
- NVidia blog post on ADAPT-VQE [9]

Qiskit Nature and CP2K resources

- Qiskit-nature-CP2K integration https://github.com/Qiskit/qiskit-nature-cp2k
- Qiskit-nature https://github.com/qiskit-community/qiskit-nature

Quantum Embedding tools

- A Python package for Bootstrap Embedding (BE) method for quantum embedding: [16], the related publication is [17]
- For more on quantum embedding: [18]

Acknowledgements

- AWS for Braket credits and EC2 AMD HPC instances.
- Airbus and BMW experts for industrial insights
- Qiskit nature CP2K integration https://github.com/mrossinek/qiskit-nature-cp2k

Thank you! Questions?

Contact: karim.elgammal@ri.se

LinkedIn: linkedin.com/in/karimelgammal

References I

- [1] Y. Shikano, H. C. Watanabe, K. M. Nakanishi, and Y.-y. Ohnishi, The European Physical Journal Special Topics **230**, 1037 (2021).
- [2] P. S. Goh, K. C. Wong, and A. F. Ismail, Membranes 10, 297 (2020).
- [3] Y. Alexeev and Others, Future Generation Computer Systems 160, 666 (2024).
- [4] J. Li, G. Michelogiannakis, B. Cook, D. Cooray, and Y. Chen, in *High Performance Computing*, edited by A. Bhatele, J. Hammond, M. Baboulin, and C. Kruse (Springer Nature Switzerland, Cham, 2023) pp. 297–316.
- [5] I. Jackson, "High performance computing for DFT and MD simulations," https://indico.ph.ed.ac.uk/event/2/contributions/211/attachments/109/119/ Jackson_HPC_DFT_nFAME_FeCr_workshop_5June2013.pdf (2013), presentation at nFAME FeCr Workshop, June 5, 2013.
- [6] A. Al-Amiery, W. Norsani, w. s. wan nik, M. Sabri, M. Ghazali, E. Yousif, W. al azzawi, M. Fakhratul, R. Zulkifli, W. Daoudi, V. Izionworu, and D. Dhande, Journal of Sustainability Science and Management 19, 146 (2024).
- [7] H. Ma, M. Govoni, and G. Galli, npj Computational Materials **6**, 85 (2020).

HPC in Europe webinars, Stockholm, Sweden

References II

- [8] M. Rossmannek, F. Pavošević, A. Rubio, and I. Tavernelli, The Journal of Physical Chemistry Letters 14, 3491 (2023).
- [9] M. Perricone, "Introducing NVIDIA CUDA-QX libraries for accelerated quantum supercomputing," https://developer.nvidia.com/blog/ introducing-nvidia-cuda-qx-libraries-for-accelerated-quantum-supercomputing/ (2024), accessed: 2024-12-04.
- [10] K. Dalton, C. K. Long, Y. S. Yordanov, C. G. Smith, C. H. W. Barnes, N. Mertig, and D. R. M. Arvidsson-Shukur, npj Quantum Information 10 (2024), 10.1038/s41534-024-00808-x.
- [11] K. Elgammal and M. Maußner, "inhibit project repository," https://github.com/MarcMaussner/2024_inhibitQ/ (2024), open-source implementation of quantum-HPC integration for corrosion inhibition.
- [12] K. Elgammal and M. Maußner, in *ISC High Performance 2025 Research Paper Proceedings (40th International Conference)* (2025) pp. 1–10.
- [13] S. Battaglia, M. Rossmannek, V. V. Rybkin, I. Tavernelli, and J. Hütter, "A general framework for active space embedding methods: applications in quantum computing," (2024), arXiv:2404.18737 [physics.chem-ph].

References III

- [14] D. Gunlycke, C. S. Hellberg, and J. P. T. Stenger, Phys. Rev. Res. 6, 013238 (2024).
- [15] ""materials science simulations on quantum computers," andré schleife," https://www.youtube.com/live/lvdL-gsn3Fg?si=jEgBYEzljM7AYZDP (2024), accessed: 2024-12-03.
- [16] "Bootstrap embedding (be) method for quantum embedding," https://github.com/oimeitei/quemb?tab=readme-ov-file (2024), accessed: 2024-12-03.
- [17] L. P. Weisburn, M. Cho, M. Bensberg, O. R. Meitei, M. Reiher, and T. V. Voorhis, "Multiscale embedding for quantum computing," (2024), arXiv:2409.06813 [physics.chem-ph].
- [18] M. Nusspickel and G. H. Booth, Phys. Rev. X 12, 011046 (2022).