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Introduction

▶ Health and disability insurance provides economic protection
from illness or disability

▶ Typically, an insured individual receives a monthly payment
from an insurance company in the case of illness

▶ The expected cost should be covered by premium payments

▶ The insurance company needs to predict future costs using
statistical models based on historical data

▶ Typically done by estimating transition probabilities between
states such as ’healthy’, ’ill’, ’dead’, ...
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Disability model

▶ Consider a population of insured individuals

▶ Let Ei be the number of healthy individuals from the
population subgroup i

▶ We denote by Di the number of individuals falling ill amongst
the Ei insured healthy individuals:

Di ∼ Bin(Ei , p(xi ))

▶ For each i there is some associated data xi ∈ Rd which may
e.g. contain information about age, gender, ...

▶ p(xi ) is the probability that an individual randomly selected
from Ei falls ill
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Disability model

▶ We propose Support Vector Regression (SVR) to model the
logistic disability inception probability:

logit p(x) := log
p(x)

1− p(x)
=

n∑
i=1

αiK (x , xi ) + β

▶ K is a quantum kernel estimated on a quantum computer.

▶ The parameters {αi}i and β subsequently fitted using SVR.

▶ Hybrid quantum-classical learner!

▶ Functional form guarantees p(x) ∈ (0, 1).
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Review: Kernels and support vector regression

▶ Let xi ∈ Rd , yi ∈ R, i = 1, . . . , n, be observations in a data set

▶ A feature map Φ : Rd 7→ F maps a sample data point x to a
feature vector Φ(x) in a feature space F (Hilbert space with
inner product ⟨·, ·⟩)

▶ Φ naturally gives rise to a kernel through the relation

K (x , z) = ⟨Φ(x),Φ(z)⟩, (1)

▶ K (x , z) is a similarity measure between x and z in the feature
space.

▶ The reproducing kernel Hilbert space associated with Φ is
defined by

R = {f : Rd 7→ C; f (x) = ⟨w ,Φ(x)⟩ ∀ x ∈ Rd ,w ∈ F}.
(2)

▶ f (x) := ⟨w ,Φ(x)⟩ can be interpreted as linear models in the
feature space F .
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Review: Kernels and support vector regression

SVR can be formulated as a convex optimization problem of the
form

P: min
w ,b,ξ,ξ′

1

2
∥w∥2 + C

n∑
i=1

(ξi + ξ′i )

s.t. (wTΦ(xi ) + b)− yi ≤ ε− ξi , i = 1, . . . , n,

yi − (wTΦ(xi ) + b) ≤ ε− ξ′i , i = 1, . . . , n,

ξi , ξ
′
i ≥ 0, i = 1, . . . , n,

where ε determines the error tolerance of the solution, C is a
regularization parameter, and ξi ∈ R and ξ′i ∈ R, i = 1, . . . , n, are
slack variables.

B. Djehiche, B. Löfdahl Quantum kernel estimation 7 / 26



Review: Kernels and support vector regression

The dual formulation D of P is (recall K (xi , xj) = ⟨Φ(xi ),Φ(xj)⟩)

D: max
λ,λ′

− 1

2

n∑
i ,j=1

(λi − λ′i )(λj − λ′j)K (xi , xj)

− ε

n∑
i=1

(λi − λ′i ) +
n∑

i=1

yi (λi − λ′i )

s.t.

n∑
i=1

(λi − λ′i ) = 0,

0 ≤ λi ≤ C , i = 1, . . . , n,

0 ≤ λ′i ≤ C , i = 1, . . . , n,

The solutions of P and D coincide and are given by

f (x) =
n∑

i=1

αiK (x , xi ) + β, (3)
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Review: Kernels and support vector regression

▶ The feature map (and thus the kernel) can be chosen in many
different ways

▶ Ideally, the feature map should be chosen such that the kernel
can be efficiently computed

▶ Well known classical kernels include e.g. the Gaussian kernel:

K (x , z) = e−γ||x−z||2

▶ A modern alternative is provided by the class of quantum
kernels
▶ Data is mapped to quantum states in some quantum feature

(Hilbert) space H

▶ Quantum kernels can be estimated using quantum computers!
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Review: Quantum computers

▶ A quantum computer is a computer that is governed by the
laws of quantum physics

▶ In classical computers, information is represented by bits
taking values in {0, 1}

▶ Quantum computers use qubits
▶ Information represented by quantum state

|ψ⟩ = a |0⟩+ b |1⟩ , |a|2 + |b|2 = 1.

▶ A quantum state induces a probability distribution on {0, 1}

▶ At measurement of the quantum state of the qubit, an
outcome is determined
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Review: Quantum computers

The state of a qubit can be represented using

spherical coordinates on the Bloch sphere:

|ψ⟩ = cos θ
2 |0⟩+ e iφ sin θ

2 |1⟩
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Review: Quantum computers

▶ Programming a quantum computer with d qubits is performed
by creating a quantum circuit A

▶ A induces a probability measure for a r.v. V on {0, 1}d

▶ Running the circuit A essentially means sampling from V

▶ Intuitively appealing to probabilists, statisticians, actuaries,
quants, ...
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Review: Quantum kernel estimation

▶ Let Φ : x 7→ Φ(x) be a quantum feature map that maps a
data point to a quantum state in a Hilbert space H

▶ Any quantum state ψ ∈ H satisfies the Schrödinger equation

iℏ
∂

∂t
ψ(t, x) = Hψ(t, x), ψ(0, ·) ∈ H is given, (4)

where H is the Hamiltonian operator associated to the
quantum system.

▶ If H is time-independent, the solution to (4) is given by

ψ(t, x) = U(t)ψ(0, x), (5)

where the operator U defined by

U(t) = e−iHt/ℏ (6)

is the unitary time evolution operator associated with H.
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Review: Quantum kernel estimation

▶ For every pair (Φ, x) there is an operator UΦ(x) (feature
embedding circuit), implicitly determined by

Φ(x) = UΦ(x)Ω0, (7)

where Ω0 denotes the ground state (|0 . . . 0⟩).
▶ Let the kernel K corresponding to Φ be given by

K (x , z) = |⟨Φ(x),Φ(z)⟩|2 = |Ω†
0 U

†
Φ(z)UΦ(x) Ω0|2 (8)

that is, K (x , z) is given by the probability of obtaining the
measurement outcome Ω0 when measuring the quantum state
Ψ(x , z) defined by

Ψ(x , z) = U†
Φ(z)UΦ(x)Ω0, (9)
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Review: Quantum kernel estimation

▶ The kernel can now be estimated on a quantum computer!

▶ We load the state Ψ(x , z) into a quantum circuit.

▶ This circuit is run n times

▶ K (x , z) is estimated by the frequency of Ω0-measurements.

▶ The form (8) of the kernel is what allows us to estimate it
using a quantum computer! i.e.

K (x , z) = |⟨Φ(x),Φ(z)⟩|2 = |Ω†
0 U

†
Φ(z)UΦ(x) Ω0|2
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Disability model

▶ We propose to model the logistic disability inception
probability logit p(x) as

logit p(x) := log
p(x)

1− p(x)
=

n∑
i=1

αiK (x , xi ) + β,

where K is a quantum kernel (to be defined) that is to be
estimated on a quantum computer, and the parameters {αi}i
and β are to be subsequently fitted using SVR.
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Disability model

▶ Our data: gender (xi ,1) and age (xi ,2)

▶ We choose the kernel K associated with the unitary operator
UΦ(·) defined by

UΦ(xi ) =
(
I ⊗RY(πxi ,2)

)
CRZ

(πxi ,2)
(
RY(πxi ,2)⊗RY(πxi ,1)

)
,

(10)

▶ RY(·) denotes a rotation around the Y -axis of the Bloch
sphere

▶ CRZ
(·) denotes a rotation around the Z -axis for the second

qubit, conditional on the state of the first qubit.
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Disability model

The unitary operator (10) can be represented by the quantum
circuit

q0 : RY (πxi ,1) • RY (πxi ,2)

q1 : RY (πxi ,2) RZ (πxi ,2)

▶ xi ,1 takes the value 1 if the population subgroup is male, and
0 otherwise

▶ xi ,2 is the age of the population subgroup, in centuries.

This circuit is designed to

▶ clearly separate male and female subgroups.

▶ gradually increase the dissimilarity between different age
groups as the difference in ages increases.
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Disability model

For each pair (xi , xj), we run this quantum circuit inserting the
values of xi , and then run the adjoint circuit inserting the values of
xj :

|0⟩ RY (πxi ,1) • RY (πxi ,2)

|0⟩ RY (πxi ,2) RZ (πxi ,2)

/2

RY (−πxj ,2) • RY (−πxj ,1)

RZ (−πxj ,2) RY (−πxj ,2)

0 1
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Numerical results: kernel

▶ We perform simulations on the IBM Yorktown quantum
computer

▶ For each pair (xi , xj) we
▶ run the circuit 8192 times and measure the outcomes

▶ estimate K (xi , xj) with the observed frequency of the ground
state.

▶ Binomial sampling error small (< 1%), hardware error
dominates

▶ Results are compared with exact (classically determined)
kernel
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Numerical results: kernel

Figure: Classically determined Kernel matrix.
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Numerical results: kernel

Figure: Kernel matrix estimated on the IBM Yorktown quantum
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Numerical results: disability inception
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Figure: Out-of-sample disability inception rates estimated by state vector
simulation and from the IBM Yorktown quantum computer.
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Numerical results: disability inception

Leave-one-out crossvalidation:

Table: Weighted out-of-sample R2 for the classical and quantum kernels.

kernel R2

polynomial 0.550
state vector quantum kernel 0.541
Gaussian kernel 0.529
Yorktown quantum kernel 0.518
sigmoid 0.494
linear 0.426
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Conclusions

▶ We propose a hybrid classical-quantum approach to estimate
disability inception probabilities

▶ Suggested model performs similar to existing classical model,
even on noisy hardware

▶ The approach is not restricted to insurance applications, and
can be used for general regression and classification problems,
e.g. Credit Risk, Fraud detection, ...

▶ Outlook: As the hardware improves and becomes more
powerful, this approach might be able to surpass classical
models
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