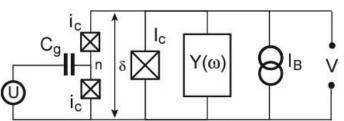
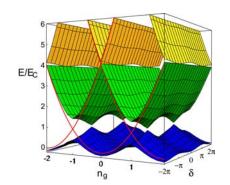
From MQC/MQT 1985 to Qubits 2000 to Nobel Prize 2025 to Quantum Advantage 2045?

•••••


And then what ??

IST-1999-10673 - SQUBIT



SQUBIT

Superconducting Qubits:
Quantum Computing with Josephson Junctions

Coordinator: Göran Wendin, Chalmers

Cooper Pair Box

Chalmers P. Delsing,

G. Wendin (coord)

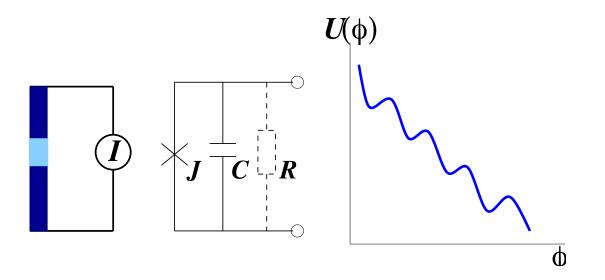
Jyväskylä J. Pekola

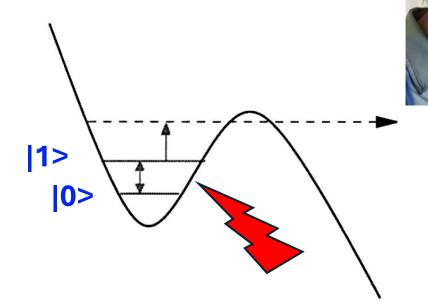
KTH D. Haviland

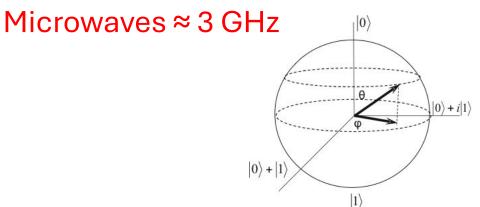
TU Delft H. Mooij

Karlsruhe G. Schön

CEA Saclay M. Devoret

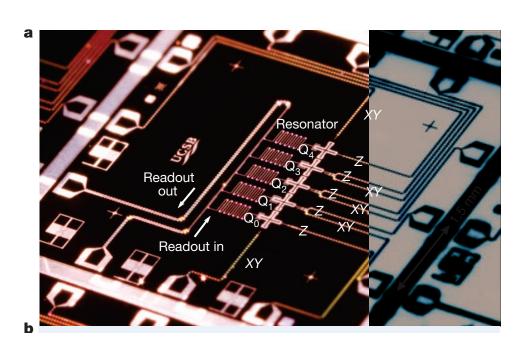

ISI-Torino/Catania R. Fazio

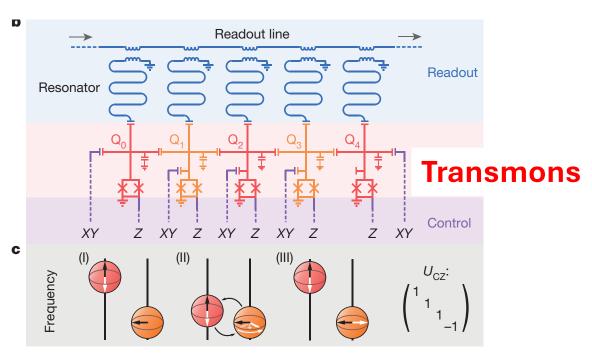



John Martinis' JJ-qubit (2003-2007)

When $T \rightarrow 0$ (thermal energy $k_BT \rightarrow 0$) the "particle" becomes trapped (MQC) before tunneling out through the JJ barrier (MQT)

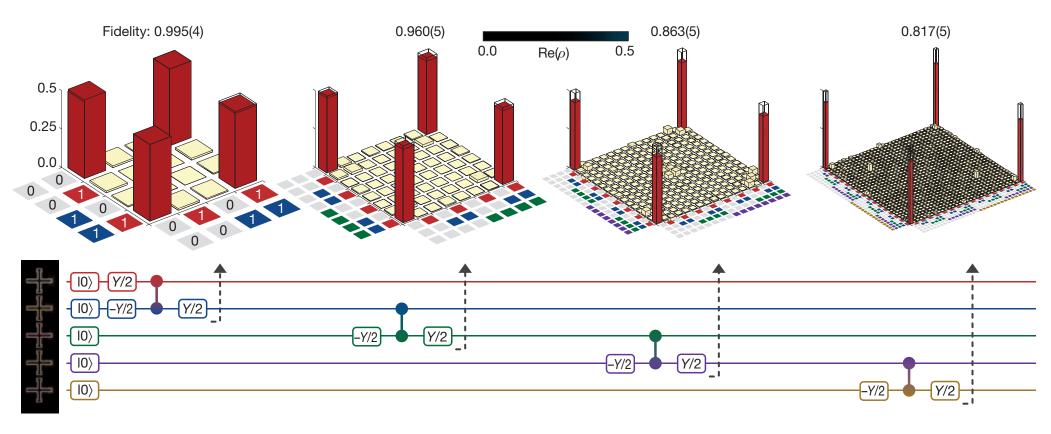
→ Sharp, long-lived qubit levels



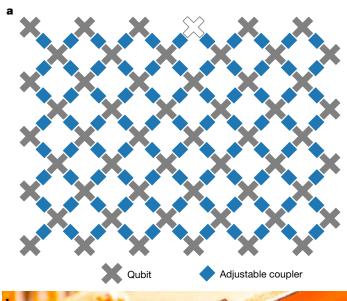


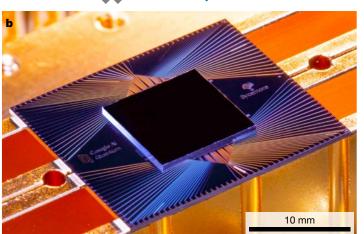
2014 – At the threshold for scaling up Superconducting quantum circuits at the surface code threshold for fault tolerance John Martinis UCSB

R. Barends^{1*}, J. Kelly^{1*}, A. Megrant¹, A. Veitia², D. Sank¹, E. Jeffrey¹, T. C. White¹, J. Mutus¹, A. G. Fowler^{1,3}, B. Campbell¹, Y. Chen¹, Z. Chen¹, B. Chiaro¹, A. Dunsworth¹, C. Neill¹, P. O'Malley¹, P. Roushan¹, A. Vainsencher¹, J. Wenner¹, A. N. Korotkov², A. N. Cleland¹ & John M. Martinis¹


500 | NATURE | VOL 508 | 24 APRIL 2014

2014 – At the threshold for scaling up

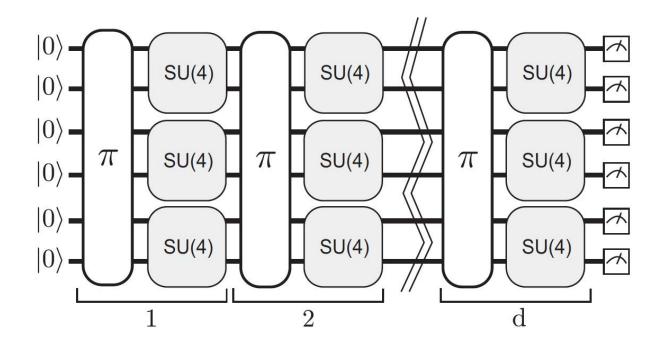

500 | NATURE | VOL 508 | 24 APRIL 2014



Gate fidelities: 1q, 99.92; 2q, 99.4

"5-qubit entanglement"
After millions of tries!!

Quantum supremacy using a programmable superconducting processor



Frank Arute¹, Kunal Arya¹, Ryan Babbush¹, Dave Bacon¹, Joseph C. Bardin^{1,2}, Rami Barends¹, Rupak Biswas³, Sergio Boixo¹, Fernando G. S. L. Brandao^{1,4}, David A. Buell¹, Brian Burkett¹, Yu Chen¹, Zijun Chen¹, Ben Chiaro⁵, Roberto Collins¹, William Courtney¹, Andrew Dunsworth¹, Edward Farhi¹, Brooks Foxen^{1,5}, Austin Fowler¹, Craig Gidney¹, Marissa Giustina¹, Rob Graff¹, Keith Guerin¹, Steve Habegger¹, Matthew P. Harrigan¹, Michael J. Hartmann^{1,6}, Alan Ho¹, Markus Hoffmann¹, Trent Huang¹, Travis S. Humble⁷, Sergei V. Isakov¹, Evan Jeffrey¹, Zhang Jiang¹, Dvir Kafri¹, Kostyantyn Kechedzhi¹, Julian Kelly¹, Paul V. Klimov¹, Sergey Knysh¹, Alexander Korotkov^{1,8}, Fedor Kostritsa¹, David Landhuis¹, Mike Lindmark¹, Erik Lucero¹, Dmitry Lyakh⁹, Salvatore Mandrà^{3,10}, Jarrod R. McClean¹, Matthew McEwen⁵, Anthony Megrant¹, Xiao Mi¹, Kristel Michielsen^{11,12}, Masoud Mohseni¹, Josh Mutus¹, Ofer Naaman¹, Matthew Neeley¹, Charles Neill¹, Murphy Yuezhen Niu¹, Eric Ostby¹, Andre Petukhov¹, John C. Platt¹, Chris Quintana¹, Eleanor G. Rieffel³, Pedram Roushan¹, Nicholas C. Rubin¹, Daniel Sank¹, Kevin J. Satzinger¹, Vadim Smelyanskiy¹, Kevin J. Sung^{1,13}, Matthew D. Trevithick¹, Amit Vainsencher¹, Benjamin Villalonga^{1,14}, Theodore White¹, Z. Jamie Yao¹, Ping Yeh¹, Adam Zalcman¹, Hartmut Neven¹ & John M. Martinis^{1,5*}

Nature | Vol 574 | 24 OCTOBER 2019 | **505**John M. Martinis, Google

Quantum Volume (QV) (IBM 2019)

r

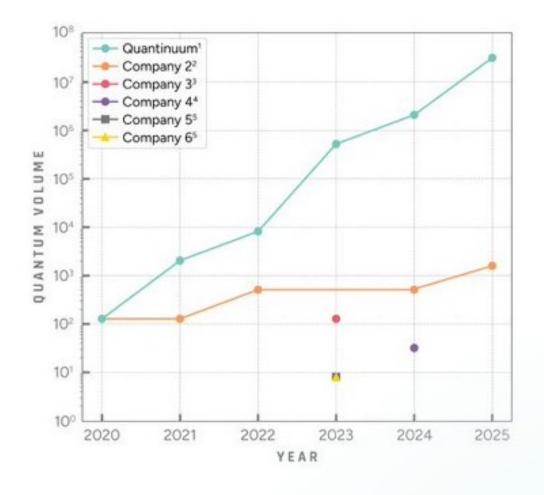
QV = 2^N
Size of the state space!

IBM, IQM:

N = 8 - 10

Quantinuum:

N= 25


RI. SE

The definition of QV: d = N

Quantinuum Sets New World Record in Quantum Volume

Quantum Volume:

$$2^{25} = 33,554,432$$

Simulating physical systems on engineered quantum platforms

Quantum information scrambling:

Quantum scrambling is the

dispersal of local information

into many-body quantum entanglements and correlations distributed throughout an entire system, leading to the

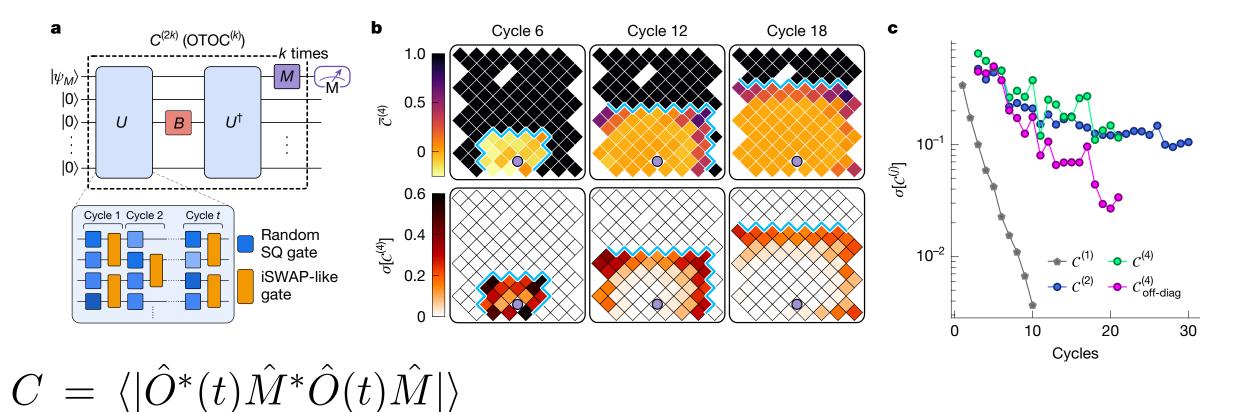
loss of local recoverability of quantum information

Simulating physical systems on engineered quantum platforms

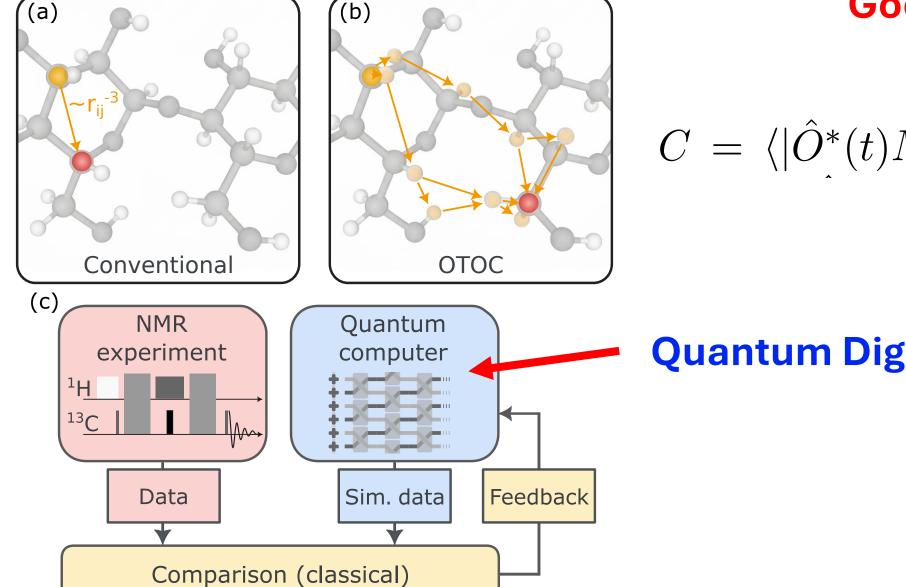
Quantum information scrambling:

Quantum scrambling is the

dispersal of local information


into many-body quantum entanglements and correlations distributed throughout an entire system, leading to the

loss of local recoverability of quantum information

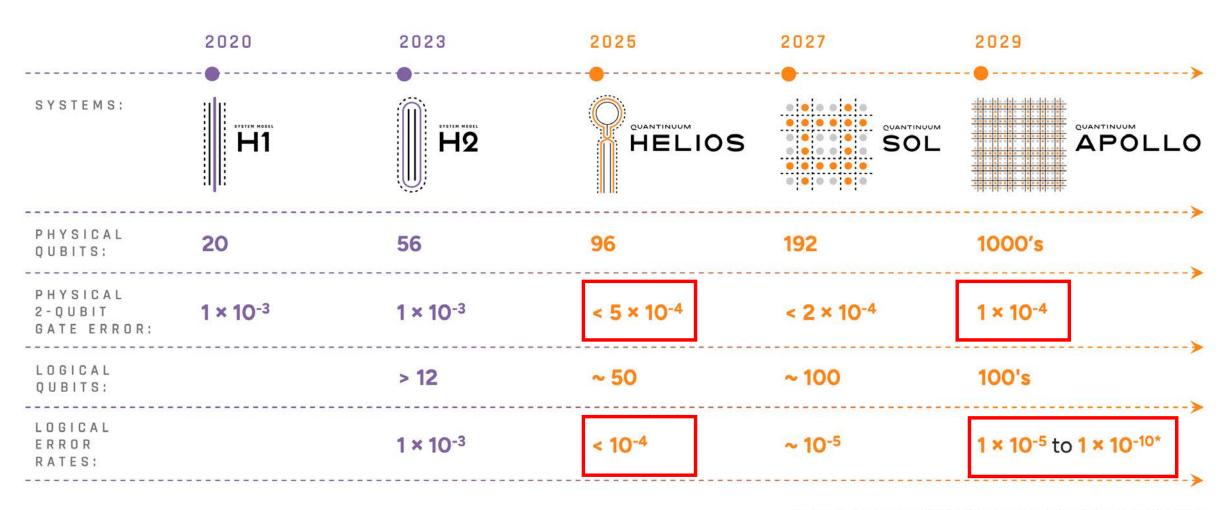


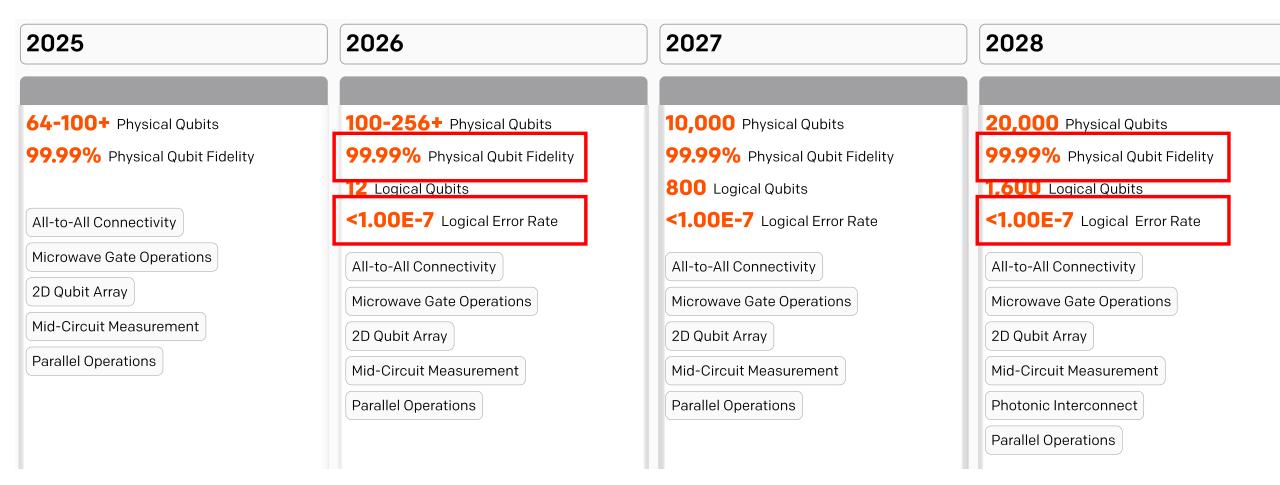
Observation of constructive interference at the edge of quantum ergodicity

Nature | Vol 646 | 23 October 2025 | **829** Google

quantum computation of molecular geometry via many-body nuclear spin echoes

Google 2025


$$C = \langle |\hat{O}^*(t)\hat{M}^*\hat{O}(t)\hat{M}| \rangle$$


Quantum Digital Twin!!

	2022	2023	2024	2025	2026	2027	2028	2030	2031	2033+
	Foundation				Quantum Utility			Quantum Advantage		
Simulation \$28bn value in 2030		and simulations of Is	ed molecular simulations (e.g., H2O, LiH, BeH2) ing and fermion models nulation of battery electrolytes		Medium size molecular simulations and new quantum materials for battery optimization and carbon capture			Drug discovery, catalyst and fertilizers design, carbon capture Development of novel quantum materials, battery materials and energy storage		
Optimization \$18bn value in 2030	benchmarking, optimization, train scl noise characterisation		wer plant maintenance scheduling, Product portfolio cheduling		Medium size problems: portfolio optimization, traveling salesperson and graph coloring problems			Advanced logistics and routing, energy grid optimization, risk management, infrastructure planning, telecom and data center management		Global supply chain and transport, global energy systems
Quantum Machine Learning \$26bn value in 2030			predicting chemical reaction behaviour,		Anomaly detection, feature selection, quantum data encoding, drug discovery, image generation			Bio data generation for training, drug-discovery, personalized medicine, complex market dynamics modelling, optimizing trading strategies, smart cities and autonomous systems		
Software		id-alone	Loose HPC integration	HPC integration guidebook	Tight HPC integration	ight HPC integration Realtime encoding o		of QLDPC code		
Platform	algorithr	Pulse-level access Open architectu		Open architecture an	nd programming framework for developers and partners					
Processor Layout				\						
			NISQ	NISQ		QEC Demonstrators		Fault Tolerance		
Performance	99.8%	99.8%	99.9% Two-qubit gate fidelity	99.92%	99.94%	10 -5	10 -6	10 ⁻⁷ Logical error rate	10 ⁻⁸	10 -9
Crystal Topology	5	20	54	150	300 150×2			Legical Crioi Take		
Count Topology Star Topology			6	24 46	150 × 2 150	1k	5k	40k	100k	1M
Logical qubits	eal qubits Testbeds for 1-2 logical qubits					4-36	60-180	240-720	600-1800	2400-7200

Development roadmap

Quantum Computing Benchmarks: Top Specs by Architecture

	QUANTINUUM QCCD	SUPERCONDUCTING	NEUTRAL ATOM	
QUBIT TYPE	lon (charged atom)	Transmon	Neutral Atom	
ARCHITECTURE	Quantum Charge-coupled Device	Fixed 2D grid	Neutral atom tweezer array	
IDENTICAL QUBITS	Yes	No	Yes	
CONNECTIVITY	All-to-all	Nearest-neighbor	All-to-all	
MID-CIRCUIT MEASUREMENT AND RE-USE (DEMONSTRATED)	Yes	Yes	Yes	
QUANTUM VOLUME [1] [2]	8,388,608	512	Not published	
2 QUBIT GATE ERROR RATE [3] [4] [5]	0.9 ×10 ⁻³	1.4 ×10 ⁻³	4.8 ×10 ⁻³	
1 QUBIT GATE ERROR RATE [6] [7] [8]	0.199 ×10 ⁻⁴	3.5 ×10 ⁻⁴	2.2 ×10 ⁻⁴	

STATE PREP AND MEASUREMENT (SPAM) ERROR (%) [9] [10] [11]	0.15	0.67	0.6
COHERENCE TIME (µS) [12] [13] [14]	~1,000,000	<100	~1,000,000
LOGICAL ERROR RATE PER ERROR CORRECTION ROUND (%) (DEMONSTRATED) [12] [13] [14]	0.022	0.143	4.9
2 QUBIT GATE TIME (μ S), INCLUDING TRANSPORT OVERHEADS [15] [16] [17]	~2000	0.068	- ~3
CONDITIONAL LOGIC? [18] [19] [20]	Yes	Yes	Yes
PARAMETERIZED ANGLE GATES [20] [21]	Yes	Yes	No
REAL-TIME DECODING [22] [23]	Yes	Yes	No

- 1. Quantum Benchmarks: QV versus?
- 2. Are the roadmaps realistic FTQC around the corner.
- 3. Who is creating all the Q-hype?
- 4. QA for physical experiments but not for digital computation?
- 5. Role of AI: AI-4-QC / QC-4-AI (QML)?
- 6. Q-integration: Q-sensors + QIP + Qcomm +
- 7. 2045 where are we?
- 8. Quantum Evolution or Revolution?

