

From qubits 2000 to Nobel Prize 2025

Göran Wendin RISE & Chalmers

But this Nobel Prize story began 1913

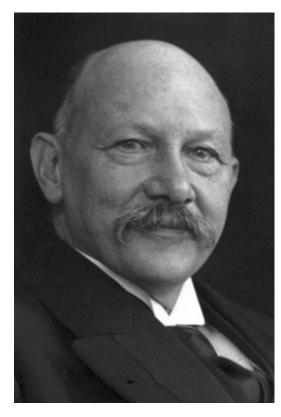
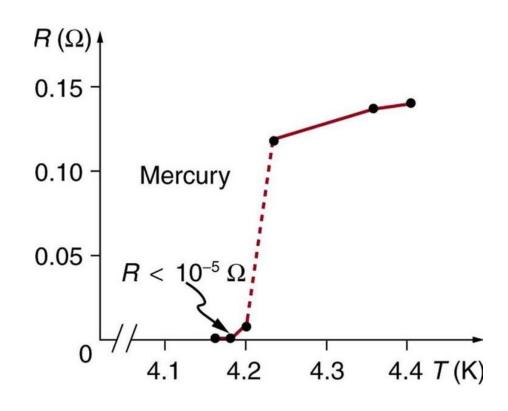



Photo from the Nobel Foundation archive.

Heike Kamerlingh Onnes The Nobel Prize in Physics 1913 was awarded to Heike Kamerlingh Onnes "for his investigations on the properties of matter at low temperatures which led, inter alia, to the production of liquid helium"

But this Nobel Prize story began 1913

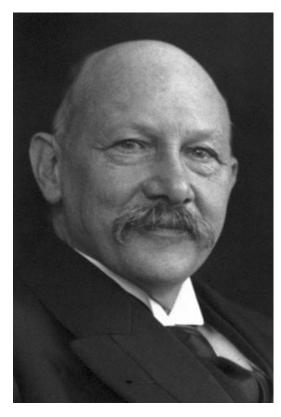
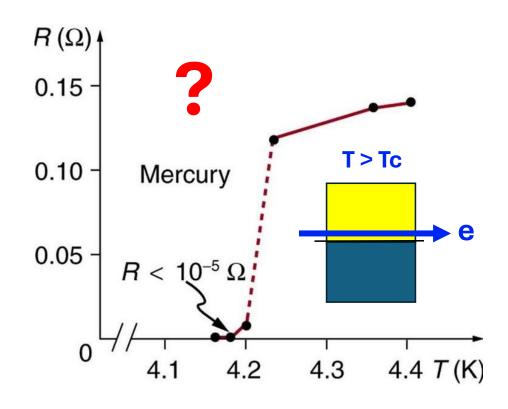



Photo from the Nobel Foundation archive.

Heike Kamerlingh Onnes The Nobel Prize in Physics 1913 was awarded to Heike Kamerlingh Onnes "for his investigations on the properties of matter at low temperatures which led, inter alia, to the production of liquid helium"

But this Nobel Prize story began 1913

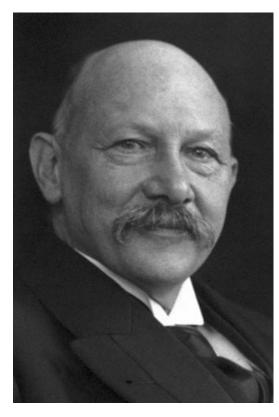
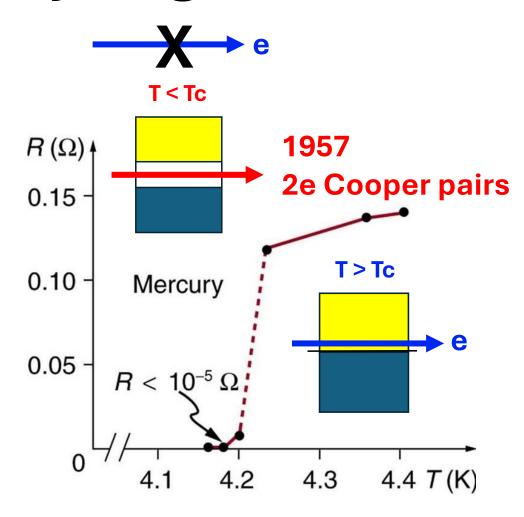
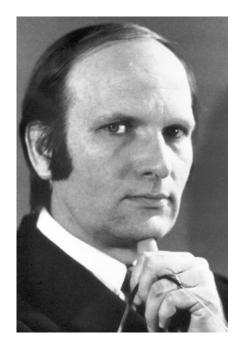



Photo from the Nobel Foundation archive.

Heike Kamerlingh Onnes


The Nobel Prize in Physics 1913 was awarded to Heike Kamerlingh Onnes "for his investigations on the properties of matter at low temperatures which led, inter alia, to the production of liquid helium"

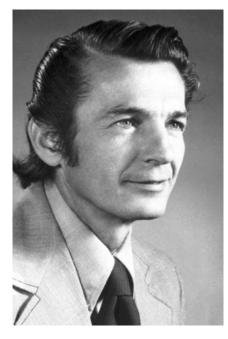
And continued - 1972

BCS-theory (1957) Cooper pairs – 2e

> Bardeen Cooper Schrieffer

The Nobel Prize in Physics 1972 was awarded jointly to John Bardeen, Leon Neil Cooper and John Robert Schrieffer "for their jointly developed theory of superconductivity, usually called the BCS-theory"

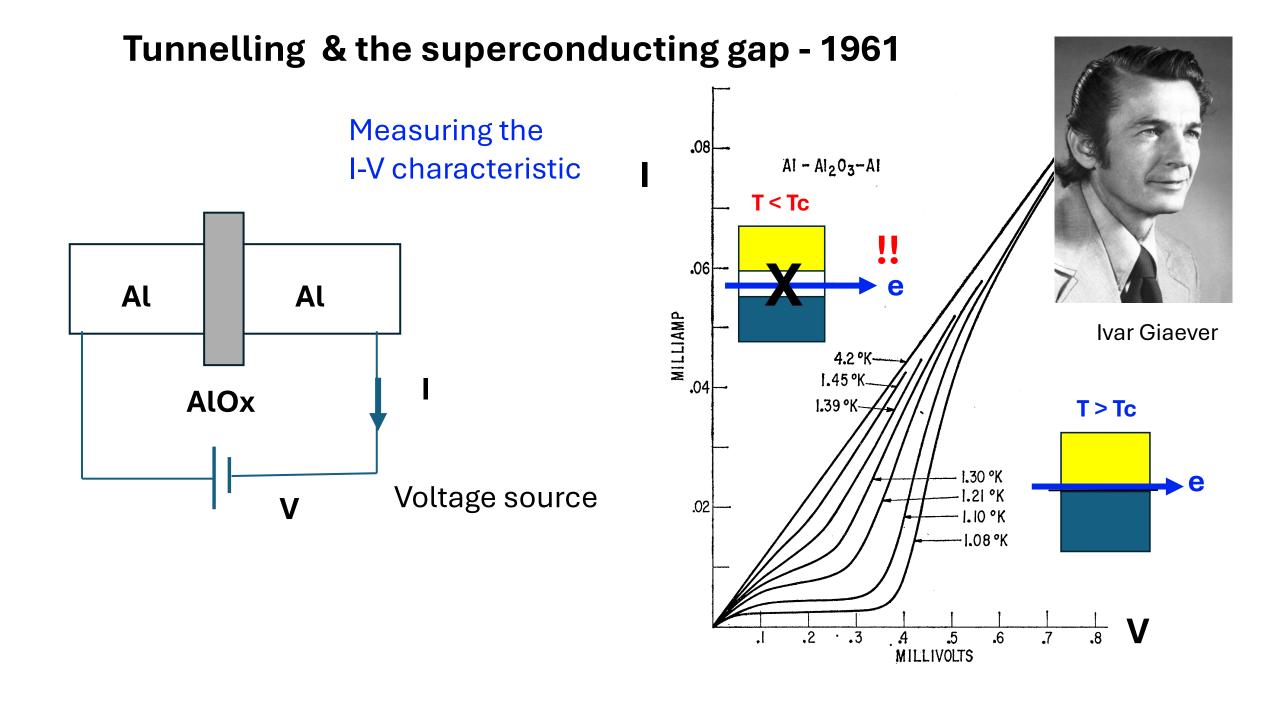
And was celebrated - 1973

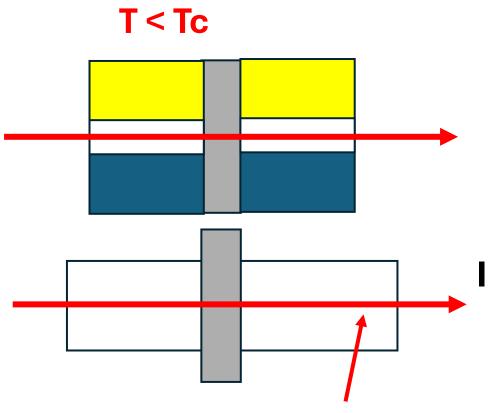

Collective properties of physical systems

24-th Nobel Symposium

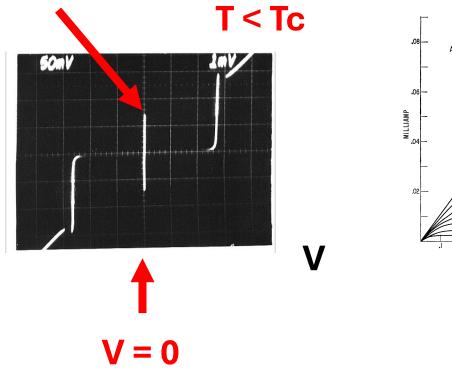
June 12-16, 1973 Aspenäsgården, Lerum, Sweden.

And continued - 1973

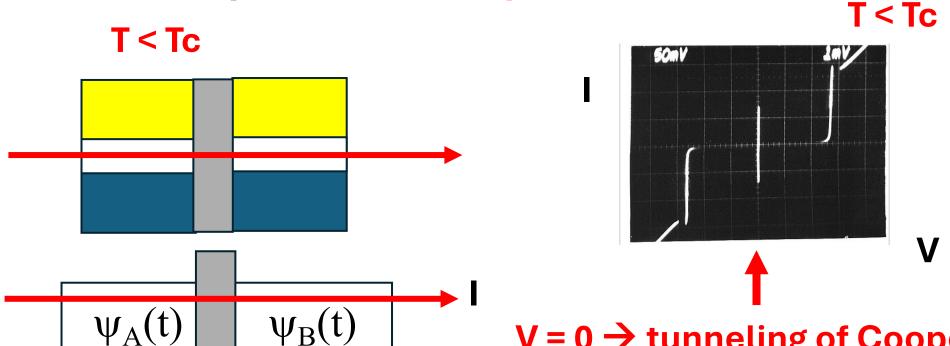




Electron tunneling in semiconductors
(Leo Esaki)
superconductors (Ivar Giaever)
Josephson effect
(Brian Josephson)


The Nobel Prize in Physics 1973 was divided, one half jointly to Leo Esaki and Ivar Giaever "for their experimental discoveries regarding tunneling phenomena in semiconductors and superconductors, respectively" and the other half to Brian David Josephson "for his theoretical predictions of the properties of a supercurrent through a tunnel barrier, in particular those phenomena which are generally known as the Josephson effects"

Josephson current - measured 1963


Current source ©
Setting the current and
measuring the voltage

Zero-voltage state.

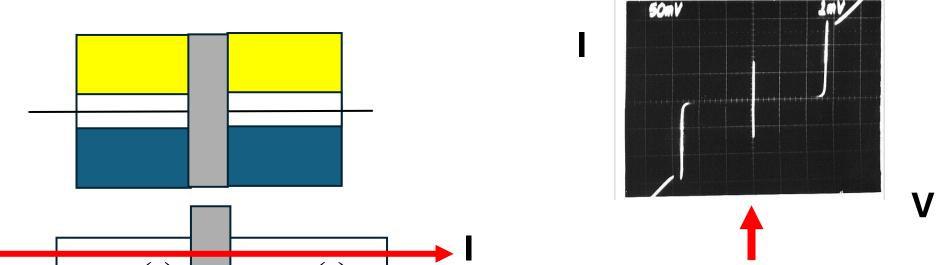
The current crosses a resistive barrier, but no voltage drop!

The Josephson effect - predicted 1962

Nobel Prize 1973

V = 0 → tunneling of Cooper pairs Current flows without resistance

The Cooper pairs ("bosons") live in a superconducting condensate that is described by an order parameter ψ , similar to a wave function, with amplitude and phase:


$$\Psi = |\Psi| \exp(i\varphi)$$

$$\varphi = \varphi_A - \varphi_A$$

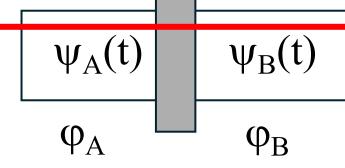
 $\phi_{\rm B}$

 ϕ_{A}

The Josephson effect - 1962

Nobel Prize 1973

Josephson relations


$$I(t) = I_c \sin(arphi(t))$$

$$\frac{\partial \varphi}{\partial t} = \frac{2eV(t)}{\hbar}$$

$$V = 0 \rightarrow \varphi \text{ constant}$$

 $I(\varphi) = Ic \sin(\varphi)$

$$V = constant \neq 0$$

 $\Rightarrow I = Ic sin(\omega t)$ $\omega = \frac{2eV}{\hbar}$

Josephson frequency → voltage-to-frequency converter

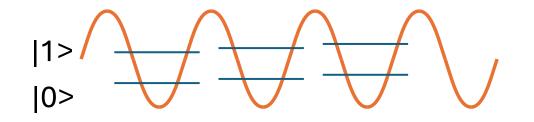
$$\phi = \phi_A$$
 - ϕ_A

$$\Psi = |\Psi| \exp(i\varphi)$$

The Josephson energy E(φ)

E(ϕ) is the energy needed to transfer a Cooper pair charge (- 2e) across the phase difference ϕ .

Nobel Prize 1973


$$\psi_{A}(t)$$
 $\psi_{B}(t)$ ϕ_{A} ϕ_{B}

$$\Phi_0 = rac{h}{2e}$$
 Magnetic flux quantum

$$E(arphi) = -rac{\Phi_0 I_c}{2\pi}\cosarphi = -E_J\cosarphi$$

$$\varphi = \varphi_A - \varphi_A$$

E(φ) is the "potential energy" of a Cooper pair

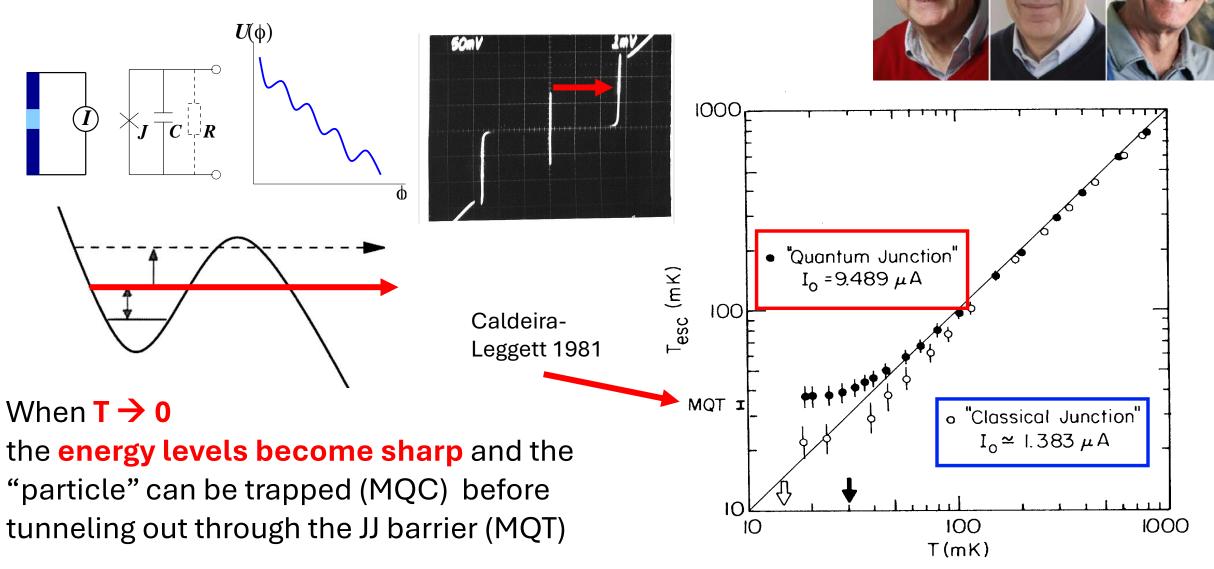
It can trap the system in quasi-bound states

The potential energy of a current-biased (I_e) Josephson Junction (JJ)

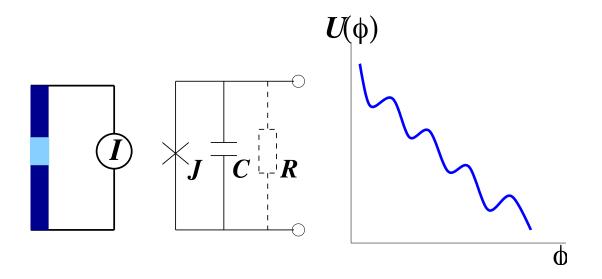
$$U(\phi) = E_J(1 - \cos\phi) - \Phi_0 I_e \phi$$

$$E_{J}=rac{\Phi_{0}I_{c}}{2\pi}$$
 $U(\phi)$

Non-linear LC circuit!

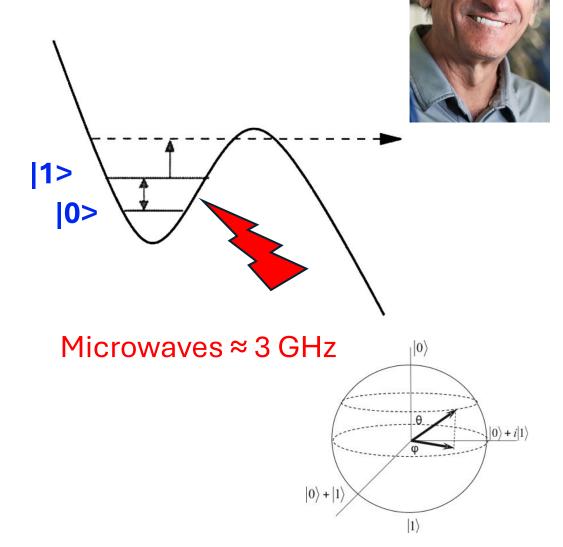

Large JJ critical current Ic

- → Deep potential energy well
- → Can create bound quantum states!!
- → MQC; MQT



- → Macroscopic quantum coherence
- MOC
- → Macroscopic quantum tunneling **MQT**

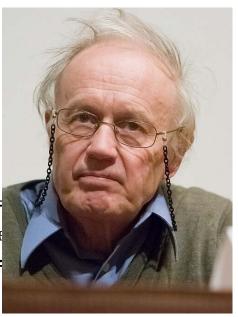
Now is finally 1985 – the origin of the 2025 Nobel Prize



John Martinis' qubit (2003-2007)

When $T \rightarrow 0$

the **energy levels become sharp** and the "particle" can be trapped (MQC) before tunneling out through the JJ barrier (MQT)



Nobel Prize – 2003: Anthony Leggett ->

Volume 46

26 JANUARY 1981

Numi

Leggett in 2007

Liquid He₃

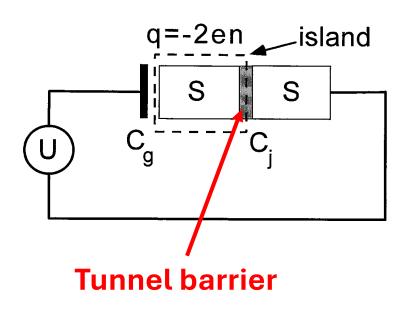
Physical Review Letters

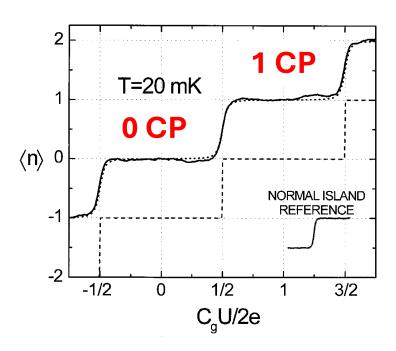
Influence of Dissipation on Quantum Tunneling in Macroscopic Systems

A. O. Caldeira and A. J. Leggett

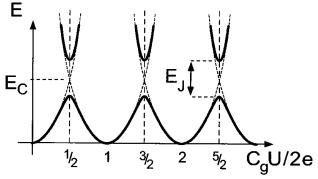
School of Mathematical and Physical Sciences, University of Sussex, Brighton BN1 9QH, Sussex, United Kingdom (Received 28 July 1980)

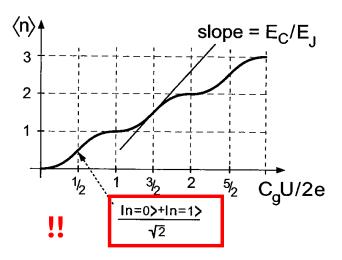
A quantum system which can tunnel, at T=0, out of a metastable state and whose interaction with its environment is adequately described in the classically accessible region by a phenomenological friction coefficient η , is considered. By only assuming that the environment response is linear, it is found that dissipation multiplies the tunneling probability by the factor $\exp[-A\eta(\Delta q)^2/\hbar]$, where Δq is the "distance under the barrier" and A is a numerical factor which is generally of order unity.


Quantum Coherence with a Single Cooper Pair


V. Bouchiat,* D. Vion, P. Joyez, D. Esteve and M. H. Devoret

Quantronics group, Service de Physique de l'Etat Condensé CEA-Saclay, F-91191 Gif-sur-Yvette, France


Received October 27, 1997; revised version received January 15, 1998; accepted January 23, 1998


Cooper Pair Box (CPB)

Coherent control of macroscopic quantum states in a single-Cooper-pair box

Y. Nakamura*, Yu. A. Pashkin† & J. S. Tsai*

* NEC Fundamental Research Laboratories, Tsukuba, Ibaraki 305-8051, Japan † CREST, Japan Science and Technology Corporation (JST), Kawaguchi, Saitama 332-0012, Japan

NATURE | VOL 398 | 29 APRIL 1999

This started the superconducting qubit technology race!!

IST-1999-10673 - SQUBIT

SQUBIT

Superconducting Qubits: Quantum Computing with Josephson Junctions

Coordinator: Göran Wendin, Chalmers

Chalmers P. Delsing,

G. Wendin (coord)

Jyväskylä J. Pekola

KTH D. Haviland

TU Delft H. Mooij

Karlsruhe G. Schön

CEA Saclay M. Devoret

ISI-Torino/Catania R. Fazio

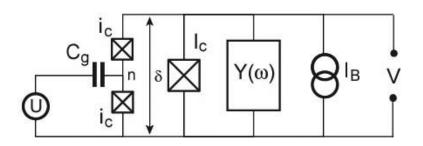
SQUBIT Go/Nogo milestone: criteria

Evidence, direct or indirect, that at least one particular realization of a qubit based on a superconducting system should be able to display a coherence time at least 1000 time longer than its switching time

There are two important (classes of) qubit lifetimes:

- (1) T₁ characterizing level transitions (relaxation, mixing, saturation)
- (2) T_{ϕ} characterizing the decoherence (dephasing) time of the two levels at fixed level population.

When T_{ϕ} dominates the lifetime, it approximately determines the line width Γ in spectroscopic experiments:


$$T_{\phi} \approx T_2 = h\Gamma^{-1} \ll T_1$$

Quality factor must be >> 1

For qubit operation to be possible, $Q_{\phi} = \omega_0 T_{\phi} >> 1$.

ANEW SUPERCONDUCTING QUBIT WITH SEPARATION OF WRITE AND READ PORTS

M.D.

D. ESTEVE

C. URBINA

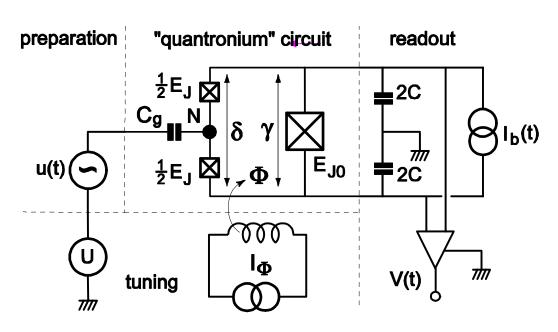
P. JOYEZ

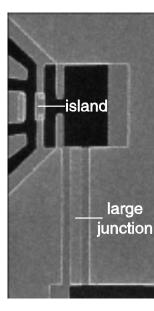
H. POTHIER

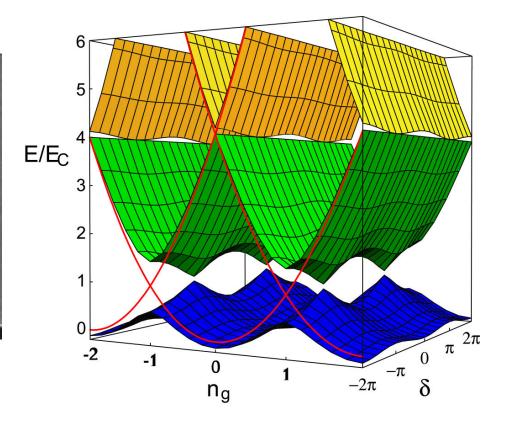
D. VION

V. BOUCHIAT

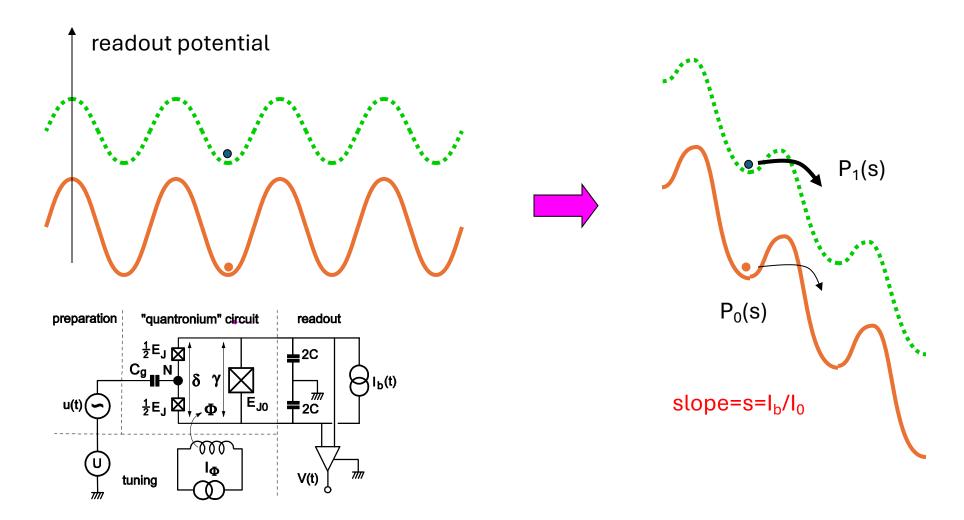
A. COTTET


A. AASSIME





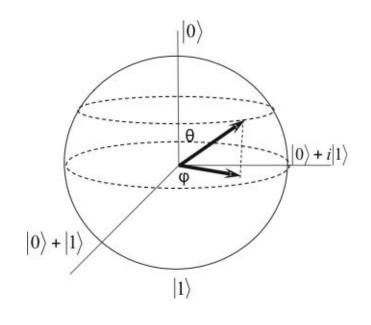
COOPER PAIR TRANSISTOR WITH PHASE BIAS



advantages:

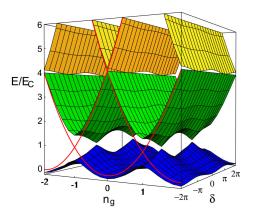
- 1) two knobs to tune ω_{01}
- 2) read-out using current Is

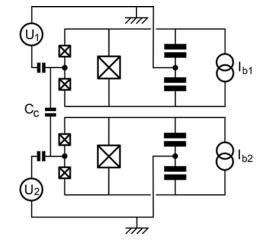

 $E_J/E_c=1$; $E_c=e^2/(2C_{\Sigma})$

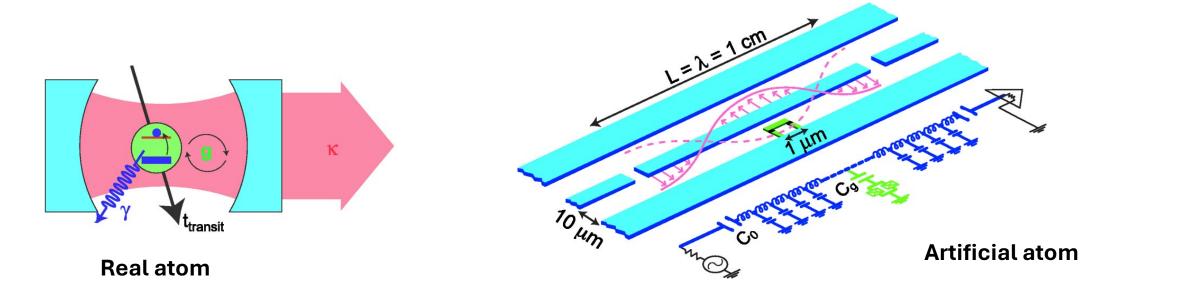

PRINCIPLE OF READ-OUT

very efficient read-out since $P_1(s) \sim 500P_0(s)$ when escape limited by MQT

Evidence, direct or indirect, that at least one particular realization of a qubit based on a superconducting system should be able to display a coherence time at least 1000 times longer than its switching time (month 20).


$$Q_{\phi} = 2.5 \times 10^4 >> 1$$


We passed!

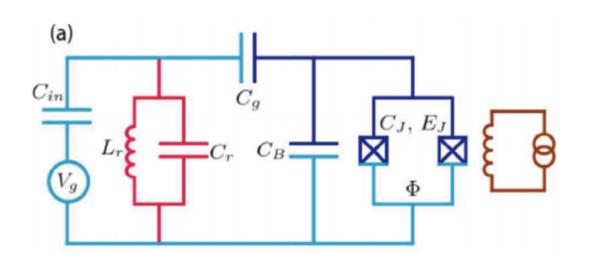


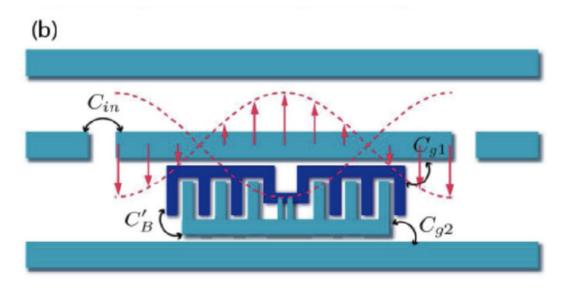
2004 – the birth of CQED

PHYSICAL REVIEW A **69**, 062320 (2004)

Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation

Alexandre Blais, Ren-Shou Huang, Andreas Wallraff, S. M. Girvin, and R. J. Schoelkopf Departments of Physics and Applied Physics, Yale University, New Haven, Connecticut 06520, USA Department of Physics, Indiana University, Bloomington, Indiana 47405, USA

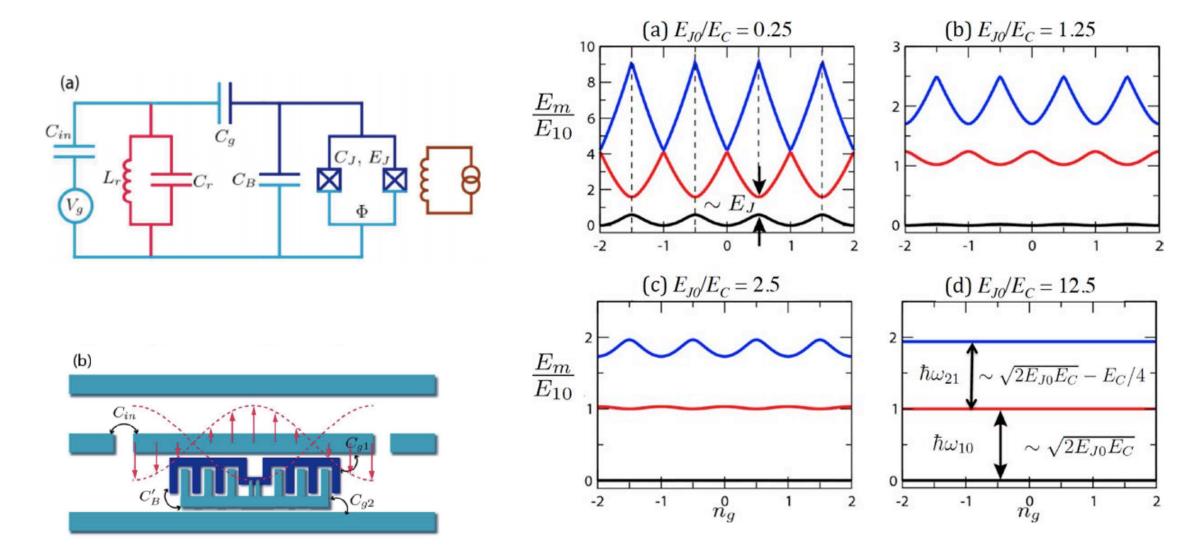

2007 – the birth of the Transmon

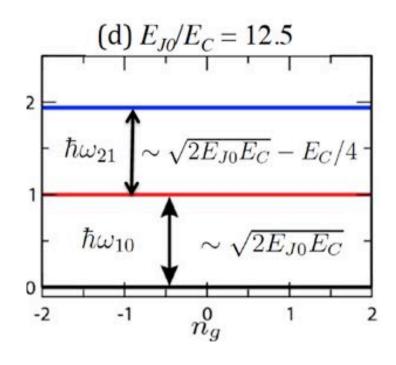

PHYSICAL REVIEW A **76**, 042319 (2007)

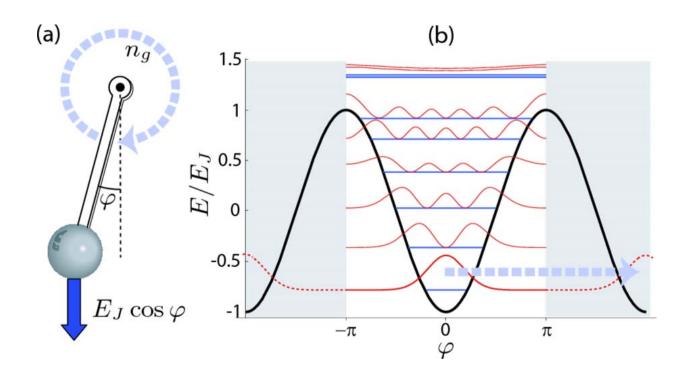
Charge-insensitive qubit design derived from the Cooper pair box

Jens Koch,¹ Terri M. Yu,¹ Jay Gambetta,¹ A. A. Houck,¹ D. I. Schuster,¹ J. Majer,¹ Alexandre Blais,² M. H. Devoret,¹ S. M. Girvin,¹ and R. J. Schoelkopf¹

¹Departments of Physics and Applied Physics, Yale University, New Haven, Connecticut 06520, USA




LARGE capacitance


²Département de Physique et Regroupement Québécois sur les Matériaux de Pointe, Université de Sherbrooke, Sherbrooke, Québec,

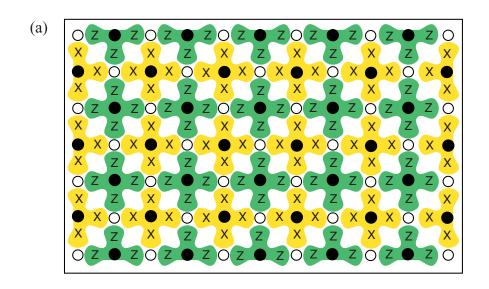
From Cooper Pair Box to Transmon – $E_J/E_C >> 1$

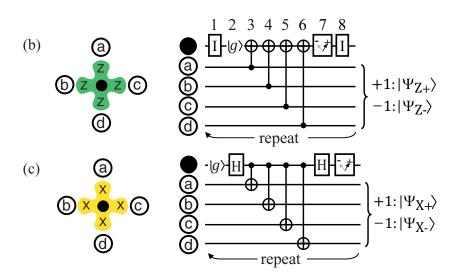
Transmon = Artificial atom

Anharmonic LC circuit

2012 - the Surface Code

PHYSICAL REVIEW A **86**, 032324 (2012)

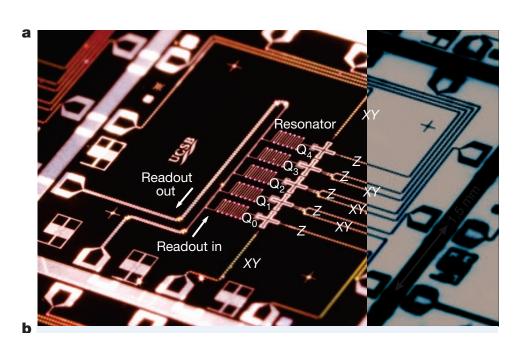

Surface codes: Towards practical large-scale quantum computation


Austin G. Fowler

untum Computation and Communication Technology, School of Physics, The University of Melbourne, Victoria 3

Matteo Mariantoni, John M. Martinis, and Andrew N. Cleland

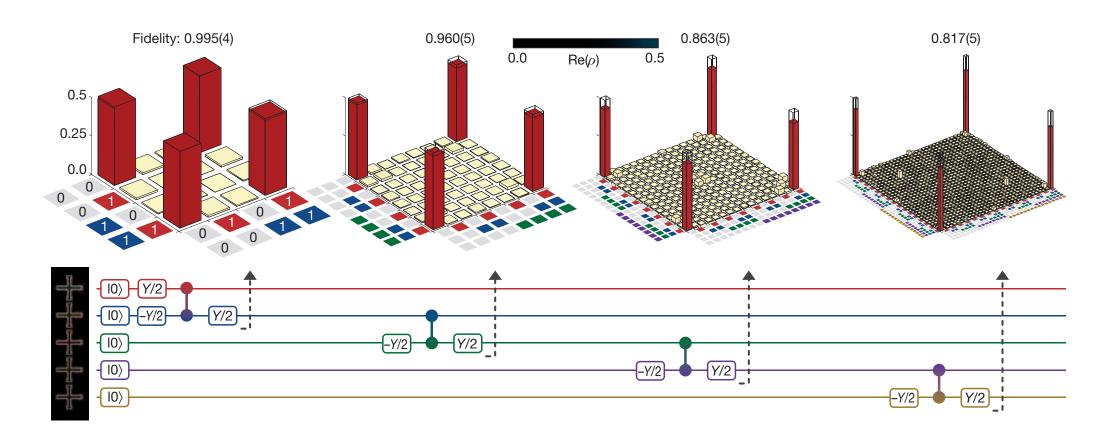
Department of Physics, University of California, Santa Barbara, California 93106-9530, USA and California Nanosystems Institute, University of California, Santa Barbara, California 93106-9530, USA

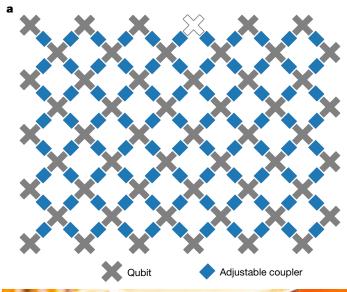


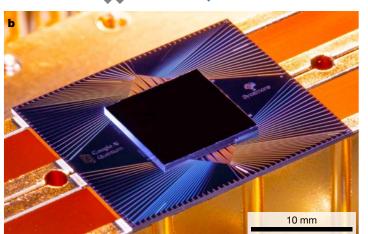

2014 - At the threshold for scaling up

Superconducting quantum circuits at the surface code threshold for fault tolerance

R. Barends¹*, J. Kelly¹*, A. Megrant¹, A. Veitia², D. Sank¹, E. Jeffrey¹, T. C. White¹, J. Mutus¹, A. G. Fowler^{1,3}, B. Campbell¹, Y. Chen¹, Z. Chen¹, B. Chiaro¹, A. Dunsworth¹, C. Neill¹, P. O'Malley¹, P. Roushan¹, A. Vainsencher¹, J. Wenner¹, A. N. Korotkov², A. N. Cleland¹ & John M. Martinis¹

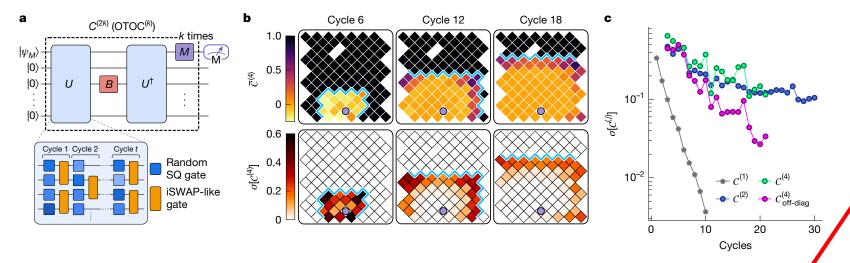

500 | NATURE | VOL 508 | 24 APRIL 2014


2014 – At the threshold for scaling up


500 | NATURE | VOL 508 | 24 APRIL 2014

Gate fidelities: 1q, 99.92; 2q, 99.4

Quantum supremacy using a programmable superconducting processor


Frank Arute¹, Kunal Arya¹, Ryan Babbush¹, Dave Bacon¹, Joseph C. Bardin^{1,2}, Rami Barends¹, Rupak Biswas³, Sergio Boixo¹, Fernando G. S. L. Brandao^{1,4}, David A. Buell¹, Brian Burkett¹, Yu Chen¹, Zijun Chen¹, Ben Chiaro⁵, Roberto Collins¹, William Courtney¹, Andrew Dunsworth¹, Edward Farhi¹, Brooks Foxen^{1,5}, Austin Fowler¹, Craig Gidney¹, Marissa Giustina¹, Rob Graff¹, Keith Guerin¹, Steve Habegger¹, Matthew P. Harrigan¹, Michael J. Hartmann^{1,6}, Alan Ho¹, Markus Hoffmann¹, Trent Huang¹, Travis S. Humble⁷, Sergei V. Isakov¹, Evan Jeffrey¹, Zhang Jiang¹, Dvir Kafri¹, Kostyantyn Kechedzhi¹, Julian Kelly¹, Paul V. Klimov¹, Sergey Knysh¹, Alexander Korotkov^{1,8}, Fedor Kostritsa¹, David Landhuis¹, Mike Lindmark¹, Erik Lucero¹, Dmitry Lyakh⁹, Salvatore Mandrà^{3,10}, Jarrod R. McClean¹, Matthew McEwen⁵, Anthony Megrant¹, Xiao Mi¹, Kristel Michielsen^{11,12}, Masoud Mohseni¹, Josh Mutus¹, Ofer Naaman¹, Matthew Neeley¹, Charles Neill¹, Murphy Yuezhen Niu¹, Eric Ostby¹, Andre Petukhov¹, John C. Platt¹, Chris Quintana¹, Eleanor G. Rieffel³, Pedram Roushan¹, Nicholas C. Rubin¹, Daniel Sank¹, Kevin J. Satzinger¹, Vadim Smelyanskiy¹, Kevin J. Sung^{1,13}, Matthew D. Trevithick¹, Amit Vainsencher¹, Benjamin Villalonga^{1,14}, Theodore White¹, Z. Jamie Yao¹, Ping Yeh¹, Adam Zalcman¹, Hartmut Neven¹ & John M. Martinis^{1,5*}

Nature | Vol 574 | 24 OCTOBER 2019 | **505**John M. Martinis, Google

Observation of constructive interference at the edge of quantum ergodicity Frank Arute', Kunal Arya', Abraham Asfaw', Nikita Astrakhantsev', Juan A Ryan Babbush', Dave Bacon', Brian Ballard', Joseph C. Bardin's, Christian

Nature | Vol 646 | 23 October 2025 | **829**

Google

Michel Devoret

Frank Arute¹, Kunal Arva¹, Abraham Asfaw¹, Nikita Astrakhantsev¹, Juan Atalava¹, Ryan Babbush¹, Dave Bacon¹, Brian Ballard¹, Joseph C. Bardin^{1,6}, Christian Bengs^{3,4}, Andreas Bengtsson¹, Alexander Bilmes¹, Sergio Boixo¹, Gina Bortoli¹, Alexandre Bourassa¹, Jenna Bovaird¹, Dylan Bowers¹, Leon Brill¹, Michael Broughton¹, David A. Browne¹, Brett Buchea¹, Bob B. Buckley¹, David A. Buell¹, Tim Burger¹, Brian Burkett¹, Nicholas Bushnell¹, Anthony Cabrera¹, Juan Campero¹, Hung-Shen Chang¹, Yu Chen¹, Zijun Chen¹, Ben Chiaro¹, Liang-Ying Chih¹, Desmond Chik¹, Charina Chou¹, Jahan Claes¹, Agnetta Y. Cleland¹, Josh Cogan¹, Saul Cohen⁷, Roberto Collins¹, Paul Conner¹, William Courtney¹, Alexander L. Crook¹, Ben Curtin¹, Sayan Das¹, Laura De Lorenzo¹, Dripto M. Debroy¹, Sean Demura¹, Michel Devoret^{1,8}, Agustin Di Paolo¹, Paul Donohoe¹, Ilya Drozdov^{1,9}, Andrew Dunsworthi Clint Earle¹, Alec Eickbusch¹, Aviv Moshe Elbag¹, Mahmoud Elzouka¹, Catherine Eric Son¹, Lara Faoro¹, Edward Farhi¹, Vinicius S. Ferreira¹, Leslie Flores Burgos¹, Ebrahim Ferati¹, Austin G. Fowler¹, Brooks Foxen¹, Suhas Ganjam¹, Gonzalo Garcia¹, Robert Gasca, Élie Genois¹, William Giang¹, Craig Gidney¹, Dar Gilboa¹, Raja Gosula¹, Algandro Grajales Dau¹, Dietrich Graumann¹, Alex Greene¹, Jonathan A. Gross¹, Hanfeld Gu⁷, Steve Habegger¹, John Hall¹, Ikko Hamamura⁷, Michael C. Hamilton^{1,10}, Monica Hansen¹, Matthew P. Harrigan¹, Sean D. Harrington¹, Stephen Heslin¹, Paula Heu¹, Oscar Higgott¹, Gordon Hill¹, Jeremy Hilton¹, Sabrina Hong¹, Hsin-Yuan Huang¹, Amley Huff¹, William J. Huggins¹, Ley B. Ioffe¹, Sergei V. Isakoy¹, Justin Iveland¹, Evan Jeffrey¹, Zhang Jiang¹, Xiaoxuan Jin¹, Cody Jones¹, Stephen Jordan¹, Chaitali Joshi¹, Pvol Juhas¹, Andreas Kabel¹, Dvir Kafri¹, Hui Kang¹, Amir H. Karamlou¹, Kostvantvn Kernedzhi¹, Julian Kellv¹, Trupti Khaire¹, Tanui Khattar¹, Mostafa Khezri¹, Seon Kim1, Robbie King1,11,12, Paul V. Klimov1, Andrey R. Klots1, Bryce Kobrin1, Alexander N. Korotkov¹, Fedor Kostritsa¹, Robin Kothari¹, John Mark Kreikebaum¹, Vladisla D. Kurilovich¹, Elica Kyoseva⁷, David Landhuis¹, Tiano Lange-Dei¹, Branden W. Langley¹, Pavel Laptev¹, Kim-Ming Lau¹, Loïck Le Guevel¹, Justin Ledford¹, Joon to Lee^{1,13}, Kenny Lee¹, Yuri D. Lensky¹, Shannon Leon¹, Brian J. Lester¹, Wing Yan Li¹, Alexander T. Lill¹, Wayne Liu¹, William P. Livingston¹, Aditya Locharla¹, Erik Lucero¹, miel Lundahl¹, Aaron Lunt¹, Sid Madhuk¹, Fionn D. Malone¹, Ashley Maloney¹, Salvatore Mandrà^{1,14,15}, James M. Manyika¹, Leigh S. Martin¹, Orion Martin¹, Steven Martin¹, Yossi Matias¹, Cameron Maxfield¹, Jarrod R. McClean¹, Matt McEwen¹, Seneca Meeks¹, Anthony Megrant¹, Xiao Mi¹, Kevin C, Miao¹, Amanda Mieszala¹, Zlatko Minev¹, Reza Molavi¹, Sebastian Molina¹, Shirin Montazeri¹, Alexis Morvan¹, Ramis Movassagh¹, Woiciech Mruczkiewicz¹, Ofer Naaman¹, Matthew Neelev¹, Charles Neill¹. Ani Nersisyan¹. Hartmut Neven¹⊠. Michael Newman¹. Jiun How Ng¹. Anthony Nguyen¹, Murray Nguyen¹, Chia-Hung Ni¹, Murphy Yuezhen Niu^{1,16}, Logan Oas¹, Thomas E. O'Brien¹, William D. Oliver^{1,17,18,19}, Alex Opremcak¹, Kristoffer Ottosson¹, Andre Petukhov¹, Alex Pizzuto¹, John Platt¹, Rebecca Potter¹, Orion Pritchard¹, Leonid P. Pryadko^{1,20}, Chris Quintana¹, Ganesh Ramachandran¹, Chandrasekhar Ramanathan²¹, Matthew J. Reagor¹, John Redding¹, David M. Rhodes¹, Gabrielle Roberts¹, Eliott Rosenberg¹, Emma Rosenfeld¹, Pedram Roushan¹, Nicholas C. Rubin¹, Negar Saei¹, Daniel Sank¹, Kannan Sankaragomathi¹, Kevin J. Satzinger¹, Alexander Schmidhuber¹, Henry F. Schurkus¹, Christopher Schuster¹, Thomas Schuster^{11,22}, Michael J. Shearn¹, Aaron Shorter¹, Noah Shutty¹, Vladimir Shvarts¹, Volodymyr Sivak¹, Jindra Skruzny¹, Spencer Small¹, Vadim Smelyanskiy¹, W. Clarke Smith¹, Rolando D. Somma¹, Sofia Springer¹, George Sterling¹, Doug Strain¹, Jordan Suchard¹, Philippe Suchsland^{1,23} Aaron Szasz1, Alex Sztein1, Douglas Thor1, Eifu Tomita1, Alfredo Torres1, M. Mert Torunbalc11, Abeer Vaishnav¹, Justin Vargas¹, Sergey Vdovichev¹, Guifre Vidal¹, Benjamin Villalonga¹, Catherine Vollgraff Heidweiller¹. Steven Waltman¹. Shannon X. Wang¹. Brayden Ware¹. Kate Weber¹, Travis Weidel¹, Tom Westerhout¹, Theodore White¹, Kristi Wong¹, Bryan W. K. Woo¹, Cheng Xing¹, Z. Jamie Yao¹, Ping Yeh¹, Bicheng Ying¹, Juhwan Yoo¹, Noureldin Yosri¹, Grayson Young¹, Adam Zalcman¹, Chongwei Zhang³, Yaxing Zhang¹, Ningfeng Zhu1 & Nicholas Zobrist1

From Nobel Prize 2025 to Quantum Advantage 20xx

To be continued on Wednesday in the Panel

