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Sammanfattning av remissinstansens synpunkter  
Sveriges forskningsinstitut RISE instämmer i förslaget med reservation för att strategin 
behöver utvecklas så att den tydligt: 

 
• förmedlar en vision av skolväsendets digitalisering 2027 eller senare 
• adresserar skolan som system och samhällsbärande institution 
• vägleder kring digitalisering för både innovation och effektivisering 
• lyfter fram effektmål för digital kompetens även för lärare och rektorer/chefer 
• adresserar ojämlikheten mellan skolhuvudmännen avseende i vilken grad barn och 

elever erbjuds en relevant digital lärmiljö. 

RISE förslår också att ett tredje övergripande mål med två tillhörande delmål om forskning 
och uppföljning (effektivitet) samt om utforskande av digitaliseringens möjligheter 
(innovation) adderas. 

 

Utgångpunkt för RISE ställningstaganden 
Som oberoende forskningsinstitut följer och stödjer RISE dagligen den alltmer accelererande 
samhällsutvecklingen. En utveckling där digitalisering är både katalysator och motor.  

I dessa dagar tas också ett gigantiskt (digitalt) utvecklingssteg som spås bli ett av det mest 
omvälvande mänskligheten upplevt. För första gången i vår historia är det möjligt för gemene 
man att för egen del nyttja potentialen och kraften i artificiell intelligens (AI). Detta steg 
jämförs med den stora samhällstransformation som pågått sedan alla fick tillgång till internet. 
Skillnaden är att det nu går mycket fortare. Som exempel kan nämnas att det tog endast fem 
dagar för den artificiella intelligensen (språkmodellen) ChatGPT 1 att nå en miljon användare, 
att jämföra med att det tog tio månader för Facebook och 3,5 år för strömningstjänsten Netflix 
att göra detsamma. 

 
1 https://openai.com/ 



But this Nobel Prize story began 1913
The Nobel Prize in 
Physics 1913 was 
awarded to Heike 
Kamerlingh Onnes 
"for his investigations 
on the properties of 
matter at low 
temperatures which 
led, inter alia, to the 
production of liquid 
helium"

Nobel Prize in Physics 1913

Summary

Photo from the Nobel Foundation
archive.

Heike Kamerlingh
Onnes
Prize share: 1/1

The Nobel Prize in Physics 1913 was awarded to Heike Kamerlingh
Onnes "for his investigations on the properties of matter at low
temperatures which led, inter alia, to the production of liquid helium"
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Tunnelling  & the superconducting gap - 1961ii06 I. GIAEVER AN D K. M EGERLE

left with

I=A' n'nf f(E) f—(E+eV))dE, (4.5) .08
where A' is a constant and eU is the difference between
the two Fermi levels. (V is the applied voltage. )
For the current between two normal metals we obtain

at absolute zero and for small applied voltages: .06
Isr~ A'n'(——Ep)n(Er )eV, (4.6)

i.e., the current is proportional to voltage.
For a superconductor we may take the density of

states from the Bardeen-Cooper-Schrieffer theory: ,04

n =e-
(E& e&) t

(4.7)

where E is measured from the Fermi energy, and e is
half the energy gap. Thus the current between one
metal in the normal state and one metal in the super-
conducting state can be written:

.02

Its=A'n'(Er)n(Er )J (Es es)-',
.2 .5 .4 .5

M I Lt.IVOLTS
.6 .7 .8

X&f(E) f(E+e —V)]dE (4 y FIG. 8. Current-voltage characteristics of an Al-Also~-Al sandwich
at various temperatures.
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For small applied voltages such that eU(e we may
evaluate the above integral, as shown in Appendix I,
and obtain:

e ~ ( e) ( eV)hr8=2&xx —P (—~)™+1I~r~ns I sinh( m
e m=& ( kT) t. kT)

(4 9)

where C~~ is the conductance when both metals are in
the normal state, E~ is the first order of the modified
Bessel function of the second kind, e the electron
charge, k the Boltzmann constant, T the temperature,
and ns a,n integer. Evaluation of (4.9) for special cases is
given in Sec. (c) below. Calculations of the current for
eU& e and for tunneling between two superconductors,
require more extensive computation.
Finally, it should be mentioned here that we have

treated the insulating layer as if it were a vacuum.
However, since the insulator has both a conduction
band and a valence band, we could possibly also get a
"hole" current. In this particular case this is of little
importance as we are mostly interested in the current
ratio Its/Isr~ rather than the absolute values of
current.
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FIG. 7. Current-voltage characteristics of an Al-A1203-In sandwich
at various temperatures.

We report on four diGerent combinations of supercon-
ductors namely Al-Al&O~-Pb, Al-A1203-Sn, Al-Al203-In,
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And continued - 1972

The Nobel Prize in Physics 1972 was awarded jointly to John Bardeen, 
Leon Neil Cooper and John Robert Schrieffer "for their jointly developed 
theory of superconductivity, usually called the BCS-theory"

Nobel Prize in Physics 1972

Summary
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archive.
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Prize share: 1/3

Photo from the Nobel Foundation
archive.
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Prize share: 1/3

Photo from the Nobel Foundation
archive.

John Robert
Schrieffer
Prize share: 1/3

The Nobel Prize in Physics 1972 was awarded jointly to John Bardeen,
Leon Neil Cooper and John Robert Schrieffer "for their jointly
developed theory of superconductivity, usually called the BCS-
theory"
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And was celebrated - 1973
Collective properties 
of physical systems 

24-th Nobel Symposium 
 
June 12-16, 1973 
Aspenäsgården,
Lerum, Sweden.



And continued - 1973

The Nobel Prize in Physics 1973 was divided, one half jointly to Leo Esaki and Ivar Giaever 
"for their experimental discoveries regarding tunneling phenomena in semiconductors and 
superconductors, respectively" and the other half to Brian David Josephson "for his 
theoretical predictions of the properties of a supercurrent through a tunnel barrier, in 
particular those phenomena which are generally known as the Josephson effects" 
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For small applied voltages such that eU(e we may
evaluate the above integral, as shown in Appendix I,
and obtain:

e ~ ( e) ( eV)hr8=2&xx —P (—~)™+1I~r~ns I sinh( m
e m=& ( kT) t. kT)

(4 9)

where C~~ is the conductance when both metals are in
the normal state, E~ is the first order of the modified
Bessel function of the second kind, e the electron
charge, k the Boltzmann constant, T the temperature,
and ns a,n integer. Evaluation of (4.9) for special cases is
given in Sec. (c) below. Calculations of the current for
eU& e and for tunneling between two superconductors,
require more extensive computation.
Finally, it should be mentioned here that we have

treated the insulating layer as if it were a vacuum.
However, since the insulator has both a conduction
band and a valence band, we could possibly also get a
"hole" current. In this particular case this is of little
importance as we are mostly interested in the current
ratio Its/Isr~ rather than the absolute values of
current.
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Josephson current – measured 1963

Typical I-V characteristic of a
superconducting tunnel junction, a
common kind of Josephson junction. The
scale of the vertical axis is 50 μA and that
of the horizontal one is 1 mV. The bar at

 represents the DC Josephson
effect, while the current at large values of

 is due to the finite value of the
superconductor bandgap and not
reproduced by the above equations.

which is very similar to Faraday's law of induction. But note that this voltage does not come from
magnetic energy, since there is no magnetic field in the superconductors;  Instead,  this  voltage
comes from the kinetic energy of the carriers (i.e.  the Cooper pairs).  This phenomenon is also
known as kinetic inductance.

There are three main effects predicted by Josephson that
follow directly from the Josephson equations:

The DC Josephson effect is  a direct current crossing the
insulator  in  the  absence  of  any  external  electromagnetic
field,  owing  to  tunneling.  This  DC  Josephson  current  is
proportional  to  the  sine  of  the  Josephson  phase  (phase
difference across the insulator, which stays constant over
time), and may take values between  and .

With a fixed voltage  across  the junction,  the phase
will  vary  linearly  with  time  and  the  current  will  be  a
sinusoidal AC (alternating current) with amplitude  and
frequency . This means a Josephson junction can
act as a perfect voltage-to-frequency converter.

Microwave radiation of a single (angular) frequency  can induce quantized DC voltages[20] across
the  Josephson  junction,  in  which  case  the  Josephson  phase  takes  the  form

, and the voltage and current across the junction will be:

The DC components are:

This means a Josephson junction can act like a perfect frequency-to-voltage converter,[21] which is
the theoretical basis for the Josephson voltage standard.

Three main effects

DC Josephson effect

AC Josephson effect

Inverse AC Josephson effect

Josephson effect - Wikipedia https://en.wikipedia.org/wiki/Josephson_effect
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evaluate the above integral, as shown in Appendix I,
and obtain:
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where C~~ is the conductance when both metals are in
the normal state, E~ is the first order of the modified
Bessel function of the second kind, e the electron
charge, k the Boltzmann constant, T the temperature,
and ns a,n integer. Evaluation of (4.9) for special cases is
given in Sec. (c) below. Calculations of the current for
eU& e and for tunneling between two superconductors,
require more extensive computation.
Finally, it should be mentioned here that we have

treated the insulating layer as if it were a vacuum.
However, since the insulator has both a conduction
band and a valence band, we could possibly also get a
"hole" current. In this particular case this is of little
importance as we are mostly interested in the current
ratio Its/Isr~ rather than the absolute values of
current.
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The Josephson effect - predicted 1962

Nobel Prize 1973

Typical I-V characteristic of a
superconducting tunnel junction, a
common kind of Josephson junction. The
scale of the vertical axis is 50 μA and that
of the horizontal one is 1 mV. The bar at

 represents the DC Josephson
effect, while the current at large values of

 is due to the finite value of the
superconductor bandgap and not
reproduced by the above equations.

which is very similar to Faraday's law of induction. But note that this voltage does not come from
magnetic energy, since there is no magnetic field in the superconductors;  Instead,  this  voltage
comes from the kinetic energy of the carriers (i.e.  the Cooper pairs).  This phenomenon is also
known as kinetic inductance.

There are three main effects predicted by Josephson that
follow directly from the Josephson equations:

The DC Josephson effect is  a direct current crossing the
insulator  in  the  absence  of  any  external  electromagnetic
field,  owing  to  tunneling.  This  DC  Josephson  current  is
proportional  to  the  sine  of  the  Josephson  phase  (phase
difference across the insulator, which stays constant over
time), and may take values between  and .

With a fixed voltage  across  the junction,  the phase
will  vary  linearly  with  time  and  the  current  will  be  a
sinusoidal AC (alternating current) with amplitude  and
frequency . This means a Josephson junction can
act as a perfect voltage-to-frequency converter.

Microwave radiation of a single (angular) frequency  can induce quantized DC voltages[20] across
the  Josephson  junction,  in  which  case  the  Josephson  phase  takes  the  form

, and the voltage and current across the junction will be:

The DC components are:

This means a Josephson junction can act like a perfect frequency-to-voltage converter,[21] which is
the theoretical basis for the Josephson voltage standard.

Three main effects

DC Josephson effect

AC Josephson effect

Inverse AC Josephson effect

Josephson effect - Wikipedia https://en.wikipedia.org/wiki/Josephson_effect
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Similarly, for superconductor B we can derive that:

Noting that the evolution of Josephson phase is  and the time derivative of charge
carrier  density  is  proportional  to  current  ,  when ,  the  above solution yields  the
Josephson equations:[19]

where  and  are the voltage across and the current through the Josephson junction, and 
is  a  parameter  of  the  junction  named  the  critical  current.  Equation  (1)  is  called  the  first
Josephson relation  or  weak-link current-phase relation,  and equation (2) is  called the
second Josephson relation or superconducting phase evolution equation.  The critical
current of the Josephson junction depends on the properties of the superconductors, and can also
be affected by environmental factors like temperature and externally applied magnetic field.

The Josephson constant is defined as:

and its inverse is the magnetic flux quantum:

The superconducting phase evolution equation can be reexpressed as:

If we define:

then the voltage across the junction is:

(1)

(2)
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jA jB

j = jA - jA

The superconducting phase evolution equation is analogous to Faraday's law:

Assume that at time , the Josephson phase is ; At a later time , the Josephson phase evolved
to . The energy increase in the junction is equal to the work done on the junction:

This shows that the change of energy in the Josephson junction depends only on the initial and
final state of the junction and not the path. Therefore, the energy stored in a Josephson junction is
a state function, which can be defined as:

Here  is a characteristic parameter of the Josephson junction, named the

Josephson energy. It is related to the Josephson inductance by .  An alternative but
equivalent definition  is also often used.

Again, note that a non-linear magnetic coil inductor accumulates potential energy in its magnetic
field when a current passes through it; However, in the case of Josephson junction, no magnetic
field is created by a supercurrent — the stored energy comes from the kinetic energy of the charge
carriers instead.

The  resistively  capacitance  shunted  junction  (RCSJ)  model,[24][25]  or  simply  shunted  junction
model, includes the effect of AC impedance of an actual Josephson junction on top of the two basic
Josephson relations stated above.

As per Thévenin's theorem,[26] the AC impedance of the junction can be represented by a capacitor
and a shunt resistor, both parallel[27] to the ideal Josephson Junction. The complete expression for
the current drive  becomes:

where the first  term is  displacement current with  – effective  capacitance,  and the third is
normal current with  – effective resistance of the junction.

RCSJ model
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The Josephson energy E(j)

Nobel Prize 1973

E(j) is the energy needed to transfer a 
Cooper pair charge (- 2e) across the 
phase difference j.

E(j)  is the “potential energy” of a Cooper pair
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FIG. 7: Current-biased Josephson junction (JJ) (left), equiv-
alent circuit (center), and effective (washboard-like) potential
(right). The superconducting leads are indicated with dark
color, and the tunnel junction with light color.

which are used as building blocks in qubit applications.
These basic circuits are: single current biased Joseph-
son junction; single Josephson junction (JJ) included in
a superconducting loop (rf SQUID); two Josephson junc-
tions included in a superconducting loop (dc SQUID);
and an ultra-small superconducting island connected to
a massive superconducting electrode via tunnel Joseph-
son junction (Single Cooper pair Box, SCB).

A. Current biased Josephson junction

The simplest superconducting circuit, shown in Fig. 7,
consists of a tunnel junction with superconducting elec-
trodes, a tunnel Josephson junction, connected to a cur-
rent source. An equivalent electrical circuit, which repre-
sents the junction consists of the three lumped elements
connected in parallel: the junction capacitance C, the
junction resistance R, which generally differs from the
normal junction resistance RN and strongly depends on
temperature and applied voltage, and the Josephson ele-
ment associated with the tunneling through the junction.

The current-voltage relations for the junction ca-
pacitance and resistance have standard forms, IC =
C (dV/dt), and IR = V/R. To write down a similar rela-
tion for the Josephson element, it is necessary to intro-
duce the superconducting phase difference ω(t) across the
junction, often simply referred to as the superconducting
phase, which is related to the voltage drop across the
junction,

ω(t) =
2e

h̄

∫

V dt + ω, (5.1)

where ω is the time-independent part of the phase dif-
ference. The phase difference can be also related to a
magnetic flux,

ω =
2e

h̄
Φ = 2ε

Φ

Φ0
, (5.2)

where Φ0 = h/2e is the magnetic flux quantum. The

current through the Josephson element has the form85,

IJ = Ic sinω, (5.3)

where Ic is the critical Josephson current, i.e.
the maximum non-dissipative current that may flow
through the junction. The microscopic theory of
superconductivity111,112,113 gives the following equation
for the Josephson current,

Ic =
ε∆

2eRN
tanh

∆

2T
, (5.4)

where ∆ is the superconducting order parameter, and T
is the temperature. Using these relations and expressing
voltage through the superconducting phase, we can write
down Kirchhoff’s rule for the circuit,

h̄

2e
Cω̈+

h̄

2eR
ω̇+ Ic sinω = Ie, (5.5)

where Ie is the bias current. This equation describes the
dynamics of the phase, and it has the form of a damped
non-linear oscillator. The role of the non-linear induc-
tance is here played by the Josephson element.

The dissipation determines the qubit lifetime, and
therefore circuits suitable for qubit applications must
have extremely small dissipation. Let us assume zero
level of the dissipation, dropping the resistive term in
Eq. (5.5). Then the circuit dynamic equations, using the
mechanical analogy, can be presented in the Lagrangian
form, and, equivalently, in the Hamiltonian form. The
circuit Lagrangian consists of the difference between the
kinetic and potential energies, the electrostatic energy of
the junction capacitors playing the role of kinetic energy,
while the energy of the Josephson current plays the role
of potential energy.

The kinetic energy corresponding to the first term in
the Kirchhoff equation (5.5) reads,

K(ω̇) =

(

h̄

2e

)2 Cω̇2

2
. (5.6)

This energy is equal to the electrostatic energy of the
junction capacitor, CV 2/2. It is convenient to introduce
the charging energy of the junction capacitor charged
with one electron pair (Cooper pair),

EC =
(2e)2

2C
, (5.7)

in which case Eq. (5.6) takes the form

K(ω̇) =
h̄2ω̇2

4EC
. (5.8)

The potential energy corresponds to the last two terms
in Eq. (5.5), and consists of the energy of the Josephson
current, and the magnetic energy of the bias current,

U(ω) = EJ (1 → cosω) →
h̄

2e
Ieω, (5.9)
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in Eq. (5.5), and consists of the energy of the Josephson
current, and the magnetic energy of the bias current,

U(ω) = EJ (1 → cosω) →
h̄
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The potential energy of a current-biased (Ie)  
Josephson Junction (JJ) 

the qubit should involve a low-lying pair of levels, well sepa-
rated from the spectrum of higher levels, and not being close
to resonance with any other transitions.

Single Josephson junction qubit

The simplest qubit realization is a current-biased JJ with
large Josephson energy compared to the charging energy. In
the classical regime, the particle representing the phase either
rests at the bottom of one of the wells of the tilted cosine
potential !“washboard” potential", or oscillates within the
well.

Due to the periodic motion, the average voltage across
the junction is zero: !=0. Strongly excited states, where the
particle may escape from the well, correspond to the dissipa-
tive regime with nonzero average voltage across the junction,
!̇!0.

In the quantum regime described by the Hamiltonian !1",
particle confinement, rigorously speaking, is impossible be-
cause of MQT through the potential barrier; see Fig. 3. How-
ever, the probability of MQT is small and the tunneling may
be neglected if the particle energy is close to the bottom of
the local potential well, i.e., when E!EJ. To find the con-
ditions for such a regime, it is convenient to approximate the
potential with a parabolic function, U!!"
#!1/2"EJ cos !0!!−!0"2, where !0 corresponds to the po-
tential minimum, EJ sin !0= !" /2e"Ie. Then the lowest en-
ergy levels, Ek="#p!k+1/2" are determined by the plasma
frequency, #p=21/4#J!1− Ie / Ic"1/4. It then follows that the
levels are close to the bottom of the potential if EC!EJ, i.e.,
when the JJ is in the phase regime, and moreover, if the bias
current is not too close to the critical value, Ie$ Ic.

It is essential for qubit operation that the spectrum in the
well is not equidistant. Then the two lowest energy levels,
k=0,1, can be employed for the qubit operation. Truncating
the full Hilbert space of the junction to the subspace spanned
by these two states, $0% and $1%, we may write the qubit
Hamiltonian in the form

Hq = −
1
2

%&z, !8"

where %=E1−E2.
The interlevel distance is controlled by the bias current.

When bias current approaches the critical current, level
broadening due to MQT starts to play a role, Ek→Ek
+ i'k /2. The MQT rate for the lowest level is given by60

'MQT =
52#p

2(
&Umax

"#p
exp'−

7.2Umax

"#p
( , !9"

where Umax=2&2!)0 /2("!1− Ie / Ic"3/2 is the height of the
potential barrier at given bias current.

Flux qubit

An elementary flux qubit can be constructed with an rf
SQUID operating in the phase regime, EJ#EC. Let us con-
sider the Hamiltonian !2" at !e=(, i.e., at half-integer bias
magnetic flux. The potential U!!" shown in Fig. 4 has two
identical wells with equal energy levels when MQT between
the wells is neglected !phase regime, #J!EJ". These levels
are connected with current fluctuations within each well
around averaged values corresponding to clockwise and
counterclockwise persistent currents circulating in the loop
!the flux states". Let us consider the lowest, doubly degener-
ate, energy level. When the tunneling is switched on, the
levels split, and a tight two-level system is formed with the
level spacing determined by the MQT rate, which is much
smaller than the level spacing in the well.

In the case that the tunneling barrier is much smaller
than the Josephson energy, the potential in Eq. !2" can be
approximated as

U!!" = EJ!1 − cos !" + EL
!! − !e"2

2

# EL'− !
!̃2

2
− f!̃ +

1 + !

24
!̃4( , !10"

where !̃=!−(, f =!e−(, and where the parameter *
= !EJ /EL"−1!1 determines the height of the tunnel barrier.

The qubit Hamiltonian is derived by projecting the full
Hilbert space of the Hamiltonian !2" on the subspace
spanned by these two levels. The starting point of the trun-
cation procedure is to approximate the double-well potential
with Ul and Ur, as shown in Fig. 4, to confine the particle to
the left or to the right well, respectively. The corresponding
ground-state wave functions $l% and $r% satisfy the stationary
Schrödinger equation

Hl$l% = El$l%, Hr$r% = Er$r% . !11"

The averaged induced flux for these states, !l and !r,
has opposite sign, manifesting opposite directions of the cir-
culating persistent currents. Let us allow the bias flux to
deviate slightly from the half-integer value, !e=(+ f , so that
the ground-state energies are not equal but still close to each

FIG. 3. Quantized energy levels in the potential of a current-biased JJ; the
two lower levels form the JJ qubit, the dashed line indicates a leaky level
with higher energy.

FIG. 4. Double-well potential of the rf SQUID with degenerate quantum
levels in the wells. Macroscopic quantum tunneling through the potential
barrier introduces a level splitting +, and the lowest level pair forms a qubit
!a"; truncation of the junction Hamiltonian, dashed lines indicate potentials
of the left and right wells with ground energy levels !b".
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FIG. 7: Current-biased Josephson junction (JJ) (left), equiv-
alent circuit (center), and effective (washboard-like) potential
(right). The superconducting leads are indicated with dark
color, and the tunnel junction with light color.

which are used as building blocks in qubit applications.
These basic circuits are: single current biased Joseph-
son junction; single Josephson junction (JJ) included in
a superconducting loop (rf SQUID); two Josephson junc-
tions included in a superconducting loop (dc SQUID);
and an ultra-small superconducting island connected to
a massive superconducting electrode via tunnel Joseph-
son junction (Single Cooper pair Box, SCB).

A. Current biased Josephson junction

The simplest superconducting circuit, shown in Fig. 7,
consists of a tunnel junction with superconducting elec-
trodes, a tunnel Josephson junction, connected to a cur-
rent source. An equivalent electrical circuit, which repre-
sents the junction consists of the three lumped elements
connected in parallel: the junction capacitance C, the
junction resistance R, which generally differs from the
normal junction resistance RN and strongly depends on
temperature and applied voltage, and the Josephson ele-
ment associated with the tunneling through the junction.

The current-voltage relations for the junction ca-
pacitance and resistance have standard forms, IC =
C (dV/dt), and IR = V/R. To write down a similar rela-
tion for the Josephson element, it is necessary to intro-
duce the superconducting phase difference ω(t) across the
junction, often simply referred to as the superconducting
phase, which is related to the voltage drop across the
junction,

ω(t) =
2e

h̄

∫

V dt + ω, (5.1)

where ω is the time-independent part of the phase dif-
ference. The phase difference can be also related to a
magnetic flux,

ω =
2e

h̄
Φ = 2ε

Φ

Φ0
, (5.2)

where Φ0 = h/2e is the magnetic flux quantum. The

current through the Josephson element has the form85,

IJ = Ic sinω, (5.3)

where Ic is the critical Josephson current, i.e.
the maximum non-dissipative current that may flow
through the junction. The microscopic theory of
superconductivity111,112,113 gives the following equation
for the Josephson current,

Ic =
ε∆

2eRN
tanh

∆

2T
, (5.4)

where ∆ is the superconducting order parameter, and T
is the temperature. Using these relations and expressing
voltage through the superconducting phase, we can write
down Kirchhoff’s rule for the circuit,

h̄

2e
Cω̈+

h̄

2eR
ω̇+ Ic sinω = Ie, (5.5)

where Ie is the bias current. This equation describes the
dynamics of the phase, and it has the form of a damped
non-linear oscillator. The role of the non-linear induc-
tance is here played by the Josephson element.

The dissipation determines the qubit lifetime, and
therefore circuits suitable for qubit applications must
have extremely small dissipation. Let us assume zero
level of the dissipation, dropping the resistive term in
Eq. (5.5). Then the circuit dynamic equations, using the
mechanical analogy, can be presented in the Lagrangian
form, and, equivalently, in the Hamiltonian form. The
circuit Lagrangian consists of the difference between the
kinetic and potential energies, the electrostatic energy of
the junction capacitors playing the role of kinetic energy,
while the energy of the Josephson current plays the role
of potential energy.

The kinetic energy corresponding to the first term in
the Kirchhoff equation (5.5) reads,

K(ω̇) =

(

h̄

2e

)2 Cω̇2

2
. (5.6)

This energy is equal to the electrostatic energy of the
junction capacitor, CV 2/2. It is convenient to introduce
the charging energy of the junction capacitor charged
with one electron pair (Cooper pair),

EC =
(2e)2

2C
, (5.7)

in which case Eq. (5.6) takes the form

K(ω̇) =
h̄2ω̇2

4EC
. (5.8)

The potential energy corresponds to the last two terms
in Eq. (5.5), and consists of the energy of the Josephson
current, and the magnetic energy of the bias current,

U(ω) = EJ (1 → cosω) →
h̄

2e
Ieω, (5.9)
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son junction; single Josephson junction (JJ) included in
a superconducting loop (rf SQUID); two Josephson junc-
tions included in a superconducting loop (dc SQUID);
and an ultra-small superconducting island connected to
a massive superconducting electrode via tunnel Joseph-
son junction (Single Cooper pair Box, SCB).

A. Current biased Josephson junction

The simplest superconducting circuit, shown in Fig. 7,
consists of a tunnel junction with superconducting elec-
trodes, a tunnel Josephson junction, connected to a cur-
rent source. An equivalent electrical circuit, which repre-
sents the junction consists of the three lumped elements
connected in parallel: the junction capacitance C, the
junction resistance R, which generally differs from the
normal junction resistance RN and strongly depends on
temperature and applied voltage, and the Josephson ele-
ment associated with the tunneling through the junction.

The current-voltage relations for the junction ca-
pacitance and resistance have standard forms, IC =
C (dV/dt), and IR = V/R. To write down a similar rela-
tion for the Josephson element, it is necessary to intro-
duce the superconducting phase difference ω(t) across the
junction, often simply referred to as the superconducting
phase, which is related to the voltage drop across the
junction,
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ference. The phase difference can be also related to a
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where Φ0 = h/2e is the magnetic flux quantum. The

current through the Josephson element has the form85,

IJ = Ic sinω, (5.3)

where Ic is the critical Josephson current, i.e.
the maximum non-dissipative current that may flow
through the junction. The microscopic theory of
superconductivity111,112,113 gives the following equation
for the Josephson current,

Ic =
ε∆

2eRN
tanh

∆

2T
, (5.4)

where ∆ is the superconducting order parameter, and T
is the temperature. Using these relations and expressing
voltage through the superconducting phase, we can write
down Kirchhoff’s rule for the circuit,

h̄
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Cω̈+
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2eR
ω̇+ Ic sinω = Ie, (5.5)

where Ie is the bias current. This equation describes the
dynamics of the phase, and it has the form of a damped
non-linear oscillator. The role of the non-linear induc-
tance is here played by the Josephson element.

The dissipation determines the qubit lifetime, and
therefore circuits suitable for qubit applications must
have extremely small dissipation. Let us assume zero
level of the dissipation, dropping the resistive term in
Eq. (5.5). Then the circuit dynamic equations, using the
mechanical analogy, can be presented in the Lagrangian
form, and, equivalently, in the Hamiltonian form. The
circuit Lagrangian consists of the difference between the
kinetic and potential energies, the electrostatic energy of
the junction capacitors playing the role of kinetic energy,
while the energy of the Josephson current plays the role
of potential energy.

The kinetic energy corresponding to the first term in
the Kirchhoff equation (5.5) reads,

K(ω̇) =

(

h̄
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)2 Cω̇2
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. (5.6)

This energy is equal to the electrostatic energy of the
junction capacitor, CV 2/2. It is convenient to introduce
the charging energy of the junction capacitor charged
with one electron pair (Cooper pair),

EC =
(2e)2

2C
, (5.7)

in which case Eq. (5.6) takes the form

K(ω̇) =
h̄2ω̇2

4EC
. (5.8)

The potential energy corresponds to the last two terms
in Eq. (5.5), and consists of the energy of the Josephson
current, and the magnetic energy of the bias current,

U(ω) = EJ (1 → cosω) →
h̄

2e
Ieω, (5.9)

Similarly, for superconductor B we can derive that:

Noting that the evolution of Josephson phase is  and the time derivative of charge
carrier  density  is  proportional  to  current  ,  when ,  the  above solution yields  the
Josephson equations:[19]

where  and  are the voltage across and the current through the Josephson junction, and 
is  a  parameter  of  the  junction  named  the  critical  current.  Equation  (1)  is  called  the  first
Josephson relation  or  weak-link current-phase relation,  and equation (2) is  called the
second Josephson relation or superconducting phase evolution equation.  The critical
current of the Josephson junction depends on the properties of the superconductors, and can also
be affected by environmental factors like temperature and externally applied magnetic field.

The Josephson constant is defined as:

and its inverse is the magnetic flux quantum:

The superconducting phase evolution equation can be reexpressed as:

If we define:

then the voltage across the junction is:

(1)

(2)

Josephson effect - Wikipedia https://en.wikipedia.org/wiki/Josephson_effect
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The potential energy of a current-biased  
Josephson junction

Magnetic 
flux quantum

the qubit should involve a low-lying pair of levels, well sepa-
rated from the spectrum of higher levels, and not being close
to resonance with any other transitions.

Single Josephson junction qubit

The simplest qubit realization is a current-biased JJ with
large Josephson energy compared to the charging energy. In
the classical regime, the particle representing the phase either
rests at the bottom of one of the wells of the tilted cosine
potential !“washboard” potential", or oscillates within the
well.

Due to the periodic motion, the average voltage across
the junction is zero: !=0. Strongly excited states, where the
particle may escape from the well, correspond to the dissipa-
tive regime with nonzero average voltage across the junction,
!̇!0.

In the quantum regime described by the Hamiltonian !1",
particle confinement, rigorously speaking, is impossible be-
cause of MQT through the potential barrier; see Fig. 3. How-
ever, the probability of MQT is small and the tunneling may
be neglected if the particle energy is close to the bottom of
the local potential well, i.e., when E!EJ. To find the con-
ditions for such a regime, it is convenient to approximate the
potential with a parabolic function, U!!"
#!1/2"EJ cos !0!!−!0"2, where !0 corresponds to the po-
tential minimum, EJ sin !0= !" /2e"Ie. Then the lowest en-
ergy levels, Ek="#p!k+1/2" are determined by the plasma
frequency, #p=21/4#J!1− Ie / Ic"1/4. It then follows that the
levels are close to the bottom of the potential if EC!EJ, i.e.,
when the JJ is in the phase regime, and moreover, if the bias
current is not too close to the critical value, Ie$ Ic.

It is essential for qubit operation that the spectrum in the
well is not equidistant. Then the two lowest energy levels,
k=0,1, can be employed for the qubit operation. Truncating
the full Hilbert space of the junction to the subspace spanned
by these two states, $0% and $1%, we may write the qubit
Hamiltonian in the form

Hq = −
1
2

%&z, !8"

where %=E1−E2.
The interlevel distance is controlled by the bias current.

When bias current approaches the critical current, level
broadening due to MQT starts to play a role, Ek→Ek
+ i'k /2. The MQT rate for the lowest level is given by60

'MQT =
52#p

2(
&Umax

"#p
exp'−

7.2Umax

"#p
( , !9"

where Umax=2&2!)0 /2("!1− Ie / Ic"3/2 is the height of the
potential barrier at given bias current.

Flux qubit

An elementary flux qubit can be constructed with an rf
SQUID operating in the phase regime, EJ#EC. Let us con-
sider the Hamiltonian !2" at !e=(, i.e., at half-integer bias
magnetic flux. The potential U!!" shown in Fig. 4 has two
identical wells with equal energy levels when MQT between
the wells is neglected !phase regime, #J!EJ". These levels
are connected with current fluctuations within each well
around averaged values corresponding to clockwise and
counterclockwise persistent currents circulating in the loop
!the flux states". Let us consider the lowest, doubly degener-
ate, energy level. When the tunneling is switched on, the
levels split, and a tight two-level system is formed with the
level spacing determined by the MQT rate, which is much
smaller than the level spacing in the well.

In the case that the tunneling barrier is much smaller
than the Josephson energy, the potential in Eq. !2" can be
approximated as

U!!" = EJ!1 − cos !" + EL
!! − !e"2

2

# EL'− !
!̃2

2
− f!̃ +

1 + !

24
!̃4( , !10"

where !̃=!−(, f =!e−(, and where the parameter *
= !EJ /EL"−1!1 determines the height of the tunnel barrier.

The qubit Hamiltonian is derived by projecting the full
Hilbert space of the Hamiltonian !2" on the subspace
spanned by these two levels. The starting point of the trun-
cation procedure is to approximate the double-well potential
with Ul and Ur, as shown in Fig. 4, to confine the particle to
the left or to the right well, respectively. The corresponding
ground-state wave functions $l% and $r% satisfy the stationary
Schrödinger equation

Hl$l% = El$l%, Hr$r% = Er$r% . !11"

The averaged induced flux for these states, !l and !r,
has opposite sign, manifesting opposite directions of the cir-
culating persistent currents. Let us allow the bias flux to
deviate slightly from the half-integer value, !e=(+ f , so that
the ground-state energies are not equal but still close to each

FIG. 3. Quantized energy levels in the potential of a current-biased JJ; the
two lower levels form the JJ qubit, the dashed line indicates a leaky level
with higher energy.

FIG. 4. Double-well potential of the rf SQUID with degenerate quantum
levels in the wells. Macroscopic quantum tunneling through the potential
barrier introduces a level splitting +, and the lowest level pair forms a qubit
!a"; truncation of the junction Hamiltonian, dashed lines indicate potentials
of the left and right wells with ground energy levels !b".
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The superconducting phase evolution equation is analogous to Faraday's law:

Assume that at time , the Josephson phase is ; At a later time , the Josephson phase evolved
to . The energy increase in the junction is equal to the work done on the junction:

This shows that the change of energy in the Josephson junction depends only on the initial and
final state of the junction and not the path. Therefore, the energy stored in a Josephson junction is
a state function, which can be defined as:

Here  is a characteristic parameter of the Josephson junction, named the

Josephson energy. It is related to the Josephson inductance by .  An alternative but
equivalent definition  is also often used.

Again, note that a non-linear magnetic coil inductor accumulates potential energy in its magnetic
field when a current passes through it; However, in the case of Josephson junction, no magnetic
field is created by a supercurrent — the stored energy comes from the kinetic energy of the charge
carriers instead.

The  resistively  capacitance  shunted  junction  (RCSJ)  model,[24][25]  or  simply  shunted  junction
model, includes the effect of AC impedance of an actual Josephson junction on top of the two basic
Josephson relations stated above.

As per Thévenin's theorem,[26] the AC impedance of the junction can be represented by a capacitor
and a shunt resistor, both parallel[27] to the ideal Josephson Junction. The complete expression for
the current drive  becomes:

where the first  term is  displacement current with  – effective  capacitance,  and the third is
normal current with  – effective resistance of the junction.

RCSJ model

Josephson effect - Wikipedia https://en.wikipedia.org/wiki/Josephson_effect
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Similarly, for superconductor B we can derive that:

Noting that the evolution of Josephson phase is  and the time derivative of charge
carrier  density  is  proportional  to  current  ,  when ,  the  above solution yields  the
Josephson equations:[19]

where  and  are the voltage across and the current through the Josephson junction, and 
is  a  parameter  of  the  junction  named  the  critical  current.  Equation  (1)  is  called  the  first
Josephson relation  or  weak-link current-phase relation,  and equation (2) is  called the
second Josephson relation or superconducting phase evolution equation.  The critical
current of the Josephson junction depends on the properties of the superconductors, and can also
be affected by environmental factors like temperature and externally applied magnetic field.

The Josephson constant is defined as:

and its inverse is the magnetic flux quantum:

The superconducting phase evolution equation can be reexpressed as:

If we define:

then the voltage across the junction is:

(1)

(2)

Josephson effect - Wikipedia https://en.wikipedia.org/wiki/Josephson_effect
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The Josephson energy E(j)

Nobel Prize 1973

E(j) is the energy needed to transfer a 
Cooper pair (- 2e) across the phase 
difference j.

E(j)  is the “potential energy” of a Cooper pair
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FIG. 7: Current-biased Josephson junction (JJ) (left), equiv-
alent circuit (center), and effective (washboard-like) potential
(right). The superconducting leads are indicated with dark
color, and the tunnel junction with light color.

which are used as building blocks in qubit applications.
These basic circuits are: single current biased Joseph-
son junction; single Josephson junction (JJ) included in
a superconducting loop (rf SQUID); two Josephson junc-
tions included in a superconducting loop (dc SQUID);
and an ultra-small superconducting island connected to
a massive superconducting electrode via tunnel Joseph-
son junction (Single Cooper pair Box, SCB).

A. Current biased Josephson junction

The simplest superconducting circuit, shown in Fig. 7,
consists of a tunnel junction with superconducting elec-
trodes, a tunnel Josephson junction, connected to a cur-
rent source. An equivalent electrical circuit, which repre-
sents the junction consists of the three lumped elements
connected in parallel: the junction capacitance C, the
junction resistance R, which generally differs from the
normal junction resistance RN and strongly depends on
temperature and applied voltage, and the Josephson ele-
ment associated with the tunneling through the junction.

The current-voltage relations for the junction ca-
pacitance and resistance have standard forms, IC =
C (dV/dt), and IR = V/R. To write down a similar rela-
tion for the Josephson element, it is necessary to intro-
duce the superconducting phase difference ω(t) across the
junction, often simply referred to as the superconducting
phase, which is related to the voltage drop across the
junction,

ω(t) =
2e

h̄

∫

V dt + ω, (5.1)

where ω is the time-independent part of the phase dif-
ference. The phase difference can be also related to a
magnetic flux,

ω =
2e

h̄
Φ = 2ε

Φ

Φ0
, (5.2)

where Φ0 = h/2e is the magnetic flux quantum. The

current through the Josephson element has the form85,

IJ = Ic sinω, (5.3)

where Ic is the critical Josephson current, i.e.
the maximum non-dissipative current that may flow
through the junction. The microscopic theory of
superconductivity111,112,113 gives the following equation
for the Josephson current,

Ic =
ε∆

2eRN
tanh

∆

2T
, (5.4)

where ∆ is the superconducting order parameter, and T
is the temperature. Using these relations and expressing
voltage through the superconducting phase, we can write
down Kirchhoff’s rule for the circuit,

h̄

2e
Cω̈+

h̄

2eR
ω̇+ Ic sinω = Ie, (5.5)

where Ie is the bias current. This equation describes the
dynamics of the phase, and it has the form of a damped
non-linear oscillator. The role of the non-linear induc-
tance is here played by the Josephson element.

The dissipation determines the qubit lifetime, and
therefore circuits suitable for qubit applications must
have extremely small dissipation. Let us assume zero
level of the dissipation, dropping the resistive term in
Eq. (5.5). Then the circuit dynamic equations, using the
mechanical analogy, can be presented in the Lagrangian
form, and, equivalently, in the Hamiltonian form. The
circuit Lagrangian consists of the difference between the
kinetic and potential energies, the electrostatic energy of
the junction capacitors playing the role of kinetic energy,
while the energy of the Josephson current plays the role
of potential energy.

The kinetic energy corresponding to the first term in
the Kirchhoff equation (5.5) reads,

K(ω̇) =

(

h̄

2e

)2 Cω̇2

2
. (5.6)

This energy is equal to the electrostatic energy of the
junction capacitor, CV 2/2. It is convenient to introduce
the charging energy of the junction capacitor charged
with one electron pair (Cooper pair),

EC =
(2e)2

2C
, (5.7)

in which case Eq. (5.6) takes the form

K(ω̇) =
h̄2ω̇2

4EC
. (5.8)

The potential energy corresponds to the last two terms
in Eq. (5.5), and consists of the energy of the Josephson
current, and the magnetic energy of the bias current,

U(ω) = EJ (1 → cosω) →
h̄

2e
Ieω, (5.9)
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(right). The superconducting leads are indicated with dark
color, and the tunnel junction with light color.

which are used as building blocks in qubit applications.
These basic circuits are: single current biased Joseph-
son junction; single Josephson junction (JJ) included in
a superconducting loop (rf SQUID); two Josephson junc-
tions included in a superconducting loop (dc SQUID);
and an ultra-small superconducting island connected to
a massive superconducting electrode via tunnel Joseph-
son junction (Single Cooper pair Box, SCB).

A. Current biased Josephson junction

The simplest superconducting circuit, shown in Fig. 7,
consists of a tunnel junction with superconducting elec-
trodes, a tunnel Josephson junction, connected to a cur-
rent source. An equivalent electrical circuit, which repre-
sents the junction consists of the three lumped elements
connected in parallel: the junction capacitance C, the
junction resistance R, which generally differs from the
normal junction resistance RN and strongly depends on
temperature and applied voltage, and the Josephson ele-
ment associated with the tunneling through the junction.

The current-voltage relations for the junction ca-
pacitance and resistance have standard forms, IC =
C (dV/dt), and IR = V/R. To write down a similar rela-
tion for the Josephson element, it is necessary to intro-
duce the superconducting phase difference ω(t) across the
junction, often simply referred to as the superconducting
phase, which is related to the voltage drop across the
junction,

ω(t) =
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where ω is the time-independent part of the phase dif-
ference. The phase difference can be also related to a
magnetic flux,
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where Φ0 = h/2e is the magnetic flux quantum. The

current through the Josephson element has the form85,

IJ = Ic sinω, (5.3)

where Ic is the critical Josephson current, i.e.
the maximum non-dissipative current that may flow
through the junction. The microscopic theory of
superconductivity111,112,113 gives the following equation
for the Josephson current,

Ic =
ε∆

2eRN
tanh

∆

2T
, (5.4)

where ∆ is the superconducting order parameter, and T
is the temperature. Using these relations and expressing
voltage through the superconducting phase, we can write
down Kirchhoff’s rule for the circuit,

h̄

2e
Cω̈+

h̄

2eR
ω̇+ Ic sinω = Ie, (5.5)

where Ie is the bias current. This equation describes the
dynamics of the phase, and it has the form of a damped
non-linear oscillator. The role of the non-linear induc-
tance is here played by the Josephson element.

The dissipation determines the qubit lifetime, and
therefore circuits suitable for qubit applications must
have extremely small dissipation. Let us assume zero
level of the dissipation, dropping the resistive term in
Eq. (5.5). Then the circuit dynamic equations, using the
mechanical analogy, can be presented in the Lagrangian
form, and, equivalently, in the Hamiltonian form. The
circuit Lagrangian consists of the difference between the
kinetic and potential energies, the electrostatic energy of
the junction capacitors playing the role of kinetic energy,
while the energy of the Josephson current plays the role
of potential energy.

The kinetic energy corresponding to the first term in
the Kirchhoff equation (5.5) reads,

K(ω̇) =

(

h̄

2e

)2 Cω̇2

2
. (5.6)

This energy is equal to the electrostatic energy of the
junction capacitor, CV 2/2. It is convenient to introduce
the charging energy of the junction capacitor charged
with one electron pair (Cooper pair),

EC =
(2e)2

2C
, (5.7)

in which case Eq. (5.6) takes the form

K(ω̇) =
h̄2ω̇2

4EC
. (5.8)

The potential energy corresponds to the last two terms
in Eq. (5.5), and consists of the energy of the Josephson
current, and the magnetic energy of the bias current,

U(ω) = EJ (1 → cosω) →
h̄

2e
Ieω, (5.9)

Similarly, for superconductor B we can derive that:

Noting that the evolution of Josephson phase is  and the time derivative of charge
carrier  density  is  proportional  to  current  ,  when ,  the  above solution yields  the
Josephson equations:[19]

where  and  are the voltage across and the current through the Josephson junction, and 
is  a  parameter  of  the  junction  named  the  critical  current.  Equation  (1)  is  called  the  first
Josephson relation  or  weak-link current-phase relation,  and equation (2) is  called the
second Josephson relation or superconducting phase evolution equation.  The critical
current of the Josephson junction depends on the properties of the superconductors, and can also
be affected by environmental factors like temperature and externally applied magnetic field.

The Josephson constant is defined as:

and its inverse is the magnetic flux quantum:

The superconducting phase evolution equation can be reexpressed as:

If we define:

then the voltage across the junction is:

(1)

(2)
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The potential energy of a current-biased  
Josephson junction

Magnetic 
flux quantum

the qubit should involve a low-lying pair of levels, well sepa-
rated from the spectrum of higher levels, and not being close
to resonance with any other transitions.

Single Josephson junction qubit

The simplest qubit realization is a current-biased JJ with
large Josephson energy compared to the charging energy. In
the classical regime, the particle representing the phase either
rests at the bottom of one of the wells of the tilted cosine
potential !“washboard” potential", or oscillates within the
well.

Due to the periodic motion, the average voltage across
the junction is zero: !=0. Strongly excited states, where the
particle may escape from the well, correspond to the dissipa-
tive regime with nonzero average voltage across the junction,
!̇!0.

In the quantum regime described by the Hamiltonian !1",
particle confinement, rigorously speaking, is impossible be-
cause of MQT through the potential barrier; see Fig. 3. How-
ever, the probability of MQT is small and the tunneling may
be neglected if the particle energy is close to the bottom of
the local potential well, i.e., when E!EJ. To find the con-
ditions for such a regime, it is convenient to approximate the
potential with a parabolic function, U!!"
#!1/2"EJ cos !0!!−!0"2, where !0 corresponds to the po-
tential minimum, EJ sin !0= !" /2e"Ie. Then the lowest en-
ergy levels, Ek="#p!k+1/2" are determined by the plasma
frequency, #p=21/4#J!1− Ie / Ic"1/4. It then follows that the
levels are close to the bottom of the potential if EC!EJ, i.e.,
when the JJ is in the phase regime, and moreover, if the bias
current is not too close to the critical value, Ie$ Ic.

It is essential for qubit operation that the spectrum in the
well is not equidistant. Then the two lowest energy levels,
k=0,1, can be employed for the qubit operation. Truncating
the full Hilbert space of the junction to the subspace spanned
by these two states, $0% and $1%, we may write the qubit
Hamiltonian in the form

Hq = −
1
2

%&z, !8"

where %=E1−E2.
The interlevel distance is controlled by the bias current.

When bias current approaches the critical current, level
broadening due to MQT starts to play a role, Ek→Ek
+ i'k /2. The MQT rate for the lowest level is given by60

'MQT =
52#p

2(
&Umax

"#p
exp'−

7.2Umax

"#p
( , !9"

where Umax=2&2!)0 /2("!1− Ie / Ic"3/2 is the height of the
potential barrier at given bias current.

Flux qubit

An elementary flux qubit can be constructed with an rf
SQUID operating in the phase regime, EJ#EC. Let us con-
sider the Hamiltonian !2" at !e=(, i.e., at half-integer bias
magnetic flux. The potential U!!" shown in Fig. 4 has two
identical wells with equal energy levels when MQT between
the wells is neglected !phase regime, #J!EJ". These levels
are connected with current fluctuations within each well
around averaged values corresponding to clockwise and
counterclockwise persistent currents circulating in the loop
!the flux states". Let us consider the lowest, doubly degener-
ate, energy level. When the tunneling is switched on, the
levels split, and a tight two-level system is formed with the
level spacing determined by the MQT rate, which is much
smaller than the level spacing in the well.

In the case that the tunneling barrier is much smaller
than the Josephson energy, the potential in Eq. !2" can be
approximated as

U!!" = EJ!1 − cos !" + EL
!! − !e"2

2

# EL'− !
!̃2

2
− f!̃ +

1 + !

24
!̃4( , !10"

where !̃=!−(, f =!e−(, and where the parameter *
= !EJ /EL"−1!1 determines the height of the tunnel barrier.

The qubit Hamiltonian is derived by projecting the full
Hilbert space of the Hamiltonian !2" on the subspace
spanned by these two levels. The starting point of the trun-
cation procedure is to approximate the double-well potential
with Ul and Ur, as shown in Fig. 4, to confine the particle to
the left or to the right well, respectively. The corresponding
ground-state wave functions $l% and $r% satisfy the stationary
Schrödinger equation

Hl$l% = El$l%, Hr$r% = Er$r% . !11"

The averaged induced flux for these states, !l and !r,
has opposite sign, manifesting opposite directions of the cir-
culating persistent currents. Let us allow the bias flux to
deviate slightly from the half-integer value, !e=(+ f , so that
the ground-state energies are not equal but still close to each

FIG. 3. Quantized energy levels in the potential of a current-biased JJ; the
two lower levels form the JJ qubit, the dashed line indicates a leaky level
with higher energy.

FIG. 4. Double-well potential of the rf SQUID with degenerate quantum
levels in the wells. Macroscopic quantum tunneling through the potential
barrier introduces a level splitting +, and the lowest level pair forms a qubit
!a"; truncation of the junction Hamiltonian, dashed lines indicate potentials
of the left and right wells with ground energy levels !b".
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The superconducting phase evolution equation is analogous to Faraday's law:

Assume that at time , the Josephson phase is ; At a later time , the Josephson phase evolved
to . The energy increase in the junction is equal to the work done on the junction:

This shows that the change of energy in the Josephson junction depends only on the initial and
final state of the junction and not the path. Therefore, the energy stored in a Josephson junction is
a state function, which can be defined as:

Here  is a characteristic parameter of the Josephson junction, named the

Josephson energy. It is related to the Josephson inductance by .  An alternative but
equivalent definition  is also often used.

Again, note that a non-linear magnetic coil inductor accumulates potential energy in its magnetic
field when a current passes through it; However, in the case of Josephson junction, no magnetic
field is created by a supercurrent — the stored energy comes from the kinetic energy of the charge
carriers instead.

The  resistively  capacitance  shunted  junction  (RCSJ)  model,[24][25]  or  simply  shunted  junction
model, includes the effect of AC impedance of an actual Josephson junction on top of the two basic
Josephson relations stated above.

As per Thévenin's theorem,[26] the AC impedance of the junction can be represented by a capacitor
and a shunt resistor, both parallel[27] to the ideal Josephson Junction. The complete expression for
the current drive  becomes:

where the first  term is  displacement current with  – effective  capacitance,  and the third is
normal current with  – effective resistance of the junction.

RCSJ model

Josephson effect - Wikipedia https://en.wikipedia.org/wiki/Josephson_effect
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Similarly, for superconductor B we can derive that:

Noting that the evolution of Josephson phase is  and the time derivative of charge
carrier  density  is  proportional  to  current  ,  when ,  the  above solution yields  the
Josephson equations:[19]

where  and  are the voltage across and the current through the Josephson junction, and 
is  a  parameter  of  the  junction  named  the  critical  current.  Equation  (1)  is  called  the  first
Josephson relation  or  weak-link current-phase relation,  and equation (2) is  called the
second Josephson relation or superconducting phase evolution equation.  The critical
current of the Josephson junction depends on the properties of the superconductors, and can also
be affected by environmental factors like temperature and externally applied magnetic field.

The Josephson constant is defined as:

and its inverse is the magnetic flux quantum:

The superconducting phase evolution equation can be reexpressed as:

If we define:

then the voltage across the junction is:

(1)

(2)
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The Josephson energy E(j)

Nobel Prize 1973

E(j) is the energy needed to transfer a 
Cooper pair (- 2e) across the phase 
difference j.

E(j)  is the “potential energy” of a Cooper pair
àMacroscopic quantum coherence
MQC
àMacroscopic quantum tunneling
MQTNon-linear LC circuit!

‘L’



Now is finally 1985 – 
the origin of the 2025 Nobel Prize
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FIG. 2. T„, vs T for two values of critical current for
In(ra~/2mi ) =11. The solid and open arrows indicate the
predicted crossover temperatures for the higher and lower
critical currents, respectively. The prediction of Eq. (5) for
the higher critical current is indicated at the left.

perature-independent value observed in our experi-
ment. The contribution of the damping to the predict-
ed value of T„, is —1.5 mK, which is less than the
combined uncertainty of the theoretical prediction and
experiment. Thus we cannot presently make any
statement about the effect of dissipation on quantum
tunneling. We note that the error in the measured
values of T„, in the quantum limit is dominated by
the uncertainty in 4 U, which arises, in turn, from the
uncertainty in Ip. On the other hand, the error in the
predicted value of T„, arises predominantly from un-
certainties in su~ and 0.
Although the low-temperature values of T„,plotted

in Fig. 2 are in good agreement with the T = 0 predic-
tion, nevertheless one should demonstrate that the
flattening of T„, is not due to an unknown, spurious
noise source. To establish that the effective tempera-
ture of the dissipative element was close to T down to
the lowest temperatures of the experiment, we applied
a magnetic field to the junction to reduce the critical
current. After we had corrected the data for the tem-
perature dependence of a„we found that this reduced
critical current still varied very slightly with tempera-
ture, from 1.376 + 0.005 p,A at 800 mK to 1.388
+0.002 p,A at 20 mK. The temperature dependence
of Ip may have arisen because of the sensitivity of Ip
to magnetic field and the fact that the applied field
possibly changed with temperature. In Fig. 2, we have
also plotted T„,for the junction with the lower critical
current for In(t0~/27ri ) =11. At each temperature,
we calculated T„, using the value of Ip measured at
that temperature. The predicted crossover tempera-
ture, 14 mK, is indicated with an open arrow. We ob-
serve that T„,is equal to T to within the experimental
error, although there is a suggestion that T„, is begin-

9.34 9.42
I (+w)

FIG. 3. T„, vs I for a junction with Io——9.489 + 0.007@,A
(a) in the classical regime and (b) in the quantum regime.
Points are the experimental data and solid lines are the
theoretical prediction. The dashed line in (b) is the predic-
tion for zero damping. The error bar on the left and the
right of each figure represents the possible shift in the
theoretical and experimental curves, respectively, due to un-
certainties in the experimental parameters. The solid line
represents T„,= T.

ning to flatten off at the lowest temperature, where
quantum effects are likely to become significant. Thus
we conclude that the flattening of T„,for the junction
with the higher critical current did not arise from
spurious noise sources.
An important difference between the thermal and

quantum regimes may be observed through the weak
dependence of T„, on the bias current, which arises
from the different forms of a, and a~ and from the
current dependence of so~. This behavior is illustrated
in Fig. 3 for Io——9.489@,A. In Fig. 3 (a) we plot T„,vs
I in the thermal regime (T= 151 mK), together with
the prediction of Eq. (4). The decrease of T„,with in-
creasing bias current arises because a, & 1. Within the
uncertainties, the data are in good agreement with
theory. Figure 3(b) shows T„,vs I in the quantum re-
gime (T= 19 mK), together with the prediction of Eq.
(5). In this limit, T„, increases with increasing bias
current through the current dependence of 4U be-
cause a~ && 1; the current dependence of co~ is rela-
tively unimportant. Again, within the experimental
uncertainties, the data are in good agreement with
theory. The very different current dependence of T„,
at low and high temperatures lends further support to
the claim that the escape mechanisms are different in
the two temperature regimes.
In summary, we have measured the escape rate of a

current-biased, underdamped (0 = 30) Josephson
tunnel junction from the zero-voltage state for two
values of critical current, the lower value being
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the qubit should involve a low-lying pair of levels, well sepa-
rated from the spectrum of higher levels, and not being close
to resonance with any other transitions.

Single Josephson junction qubit

The simplest qubit realization is a current-biased JJ with
large Josephson energy compared to the charging energy. In
the classical regime, the particle representing the phase either
rests at the bottom of one of the wells of the tilted cosine
potential !“washboard” potential", or oscillates within the
well.

Due to the periodic motion, the average voltage across
the junction is zero: !=0. Strongly excited states, where the
particle may escape from the well, correspond to the dissipa-
tive regime with nonzero average voltage across the junction,
!̇!0.

In the quantum regime described by the Hamiltonian !1",
particle confinement, rigorously speaking, is impossible be-
cause of MQT through the potential barrier; see Fig. 3. How-
ever, the probability of MQT is small and the tunneling may
be neglected if the particle energy is close to the bottom of
the local potential well, i.e., when E!EJ. To find the con-
ditions for such a regime, it is convenient to approximate the
potential with a parabolic function, U!!"
#!1/2"EJ cos !0!!−!0"2, where !0 corresponds to the po-
tential minimum, EJ sin !0= !" /2e"Ie. Then the lowest en-
ergy levels, Ek="#p!k+1/2" are determined by the plasma
frequency, #p=21/4#J!1− Ie / Ic"1/4. It then follows that the
levels are close to the bottom of the potential if EC!EJ, i.e.,
when the JJ is in the phase regime, and moreover, if the bias
current is not too close to the critical value, Ie$ Ic.

It is essential for qubit operation that the spectrum in the
well is not equidistant. Then the two lowest energy levels,
k=0,1, can be employed for the qubit operation. Truncating
the full Hilbert space of the junction to the subspace spanned
by these two states, $0% and $1%, we may write the qubit
Hamiltonian in the form

Hq = −
1
2

%&z, !8"

where %=E1−E2.
The interlevel distance is controlled by the bias current.

When bias current approaches the critical current, level
broadening due to MQT starts to play a role, Ek→Ek
+ i'k /2. The MQT rate for the lowest level is given by60

'MQT =
52#p

2(
&Umax

"#p
exp'−

7.2Umax

"#p
( , !9"

where Umax=2&2!)0 /2("!1− Ie / Ic"3/2 is the height of the
potential barrier at given bias current.

Flux qubit

An elementary flux qubit can be constructed with an rf
SQUID operating in the phase regime, EJ#EC. Let us con-
sider the Hamiltonian !2" at !e=(, i.e., at half-integer bias
magnetic flux. The potential U!!" shown in Fig. 4 has two
identical wells with equal energy levels when MQT between
the wells is neglected !phase regime, #J!EJ". These levels
are connected with current fluctuations within each well
around averaged values corresponding to clockwise and
counterclockwise persistent currents circulating in the loop
!the flux states". Let us consider the lowest, doubly degener-
ate, energy level. When the tunneling is switched on, the
levels split, and a tight two-level system is formed with the
level spacing determined by the MQT rate, which is much
smaller than the level spacing in the well.

In the case that the tunneling barrier is much smaller
than the Josephson energy, the potential in Eq. !2" can be
approximated as

U!!" = EJ!1 − cos !" + EL
!! − !e"2

2

# EL'− !
!̃2

2
− f!̃ +

1 + !

24
!̃4( , !10"

where !̃=!−(, f =!e−(, and where the parameter *
= !EJ /EL"−1!1 determines the height of the tunnel barrier.

The qubit Hamiltonian is derived by projecting the full
Hilbert space of the Hamiltonian !2" on the subspace
spanned by these two levels. The starting point of the trun-
cation procedure is to approximate the double-well potential
with Ul and Ur, as shown in Fig. 4, to confine the particle to
the left or to the right well, respectively. The corresponding
ground-state wave functions $l% and $r% satisfy the stationary
Schrödinger equation

Hl$l% = El$l%, Hr$r% = Er$r% . !11"

The averaged induced flux for these states, !l and !r,
has opposite sign, manifesting opposite directions of the cir-
culating persistent currents. Let us allow the bias flux to
deviate slightly from the half-integer value, !e=(+ f , so that
the ground-state energies are not equal but still close to each

FIG. 3. Quantized energy levels in the potential of a current-biased JJ; the
two lower levels form the JJ qubit, the dashed line indicates a leaky level
with higher energy.

FIG. 4. Double-well potential of the rf SQUID with degenerate quantum
levels in the wells. Macroscopic quantum tunneling through the potential
barrier introduces a level splitting +, and the lowest level pair forms a qubit
!a"; truncation of the junction Hamiltonian, dashed lines indicate potentials
of the left and right wells with ground energy levels !b".
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When T à 0 
the energy levels become sharp and the 
“particle” can be trapped (MQC)  before 
tunneling out through the JJ barrier (MQT)
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U(φ)

φ

I C RJ

FIG. 7: Current-biased Josephson junction (JJ) (left), equiv-
alent circuit (center), and effective (washboard-like) potential
(right). The superconducting leads are indicated with dark
color, and the tunnel junction with light color.

which are used as building blocks in qubit applications.
These basic circuits are: single current biased Joseph-
son junction; single Josephson junction (JJ) included in
a superconducting loop (rf SQUID); two Josephson junc-
tions included in a superconducting loop (dc SQUID);
and an ultra-small superconducting island connected to
a massive superconducting electrode via tunnel Joseph-
son junction (Single Cooper pair Box, SCB).

A. Current biased Josephson junction

The simplest superconducting circuit, shown in Fig. 7,
consists of a tunnel junction with superconducting elec-
trodes, a tunnel Josephson junction, connected to a cur-
rent source. An equivalent electrical circuit, which repre-
sents the junction consists of the three lumped elements
connected in parallel: the junction capacitance C, the
junction resistance R, which generally differs from the
normal junction resistance RN and strongly depends on
temperature and applied voltage, and the Josephson ele-
ment associated with the tunneling through the junction.

The current-voltage relations for the junction ca-
pacitance and resistance have standard forms, IC =
C (dV/dt), and IR = V/R. To write down a similar rela-
tion for the Josephson element, it is necessary to intro-
duce the superconducting phase difference ω(t) across the
junction, often simply referred to as the superconducting
phase, which is related to the voltage drop across the
junction,

ω(t) =
2e

h̄

∫

V dt + ω, (5.1)

where ω is the time-independent part of the phase dif-
ference. The phase difference can be also related to a
magnetic flux,

ω =
2e

h̄
Φ = 2ε

Φ

Φ0
, (5.2)

where Φ0 = h/2e is the magnetic flux quantum. The

current through the Josephson element has the form85,

IJ = Ic sinω, (5.3)

where Ic is the critical Josephson current, i.e.
the maximum non-dissipative current that may flow
through the junction. The microscopic theory of
superconductivity111,112,113 gives the following equation
for the Josephson current,

Ic =
ε∆

2eRN
tanh

∆

2T
, (5.4)

where ∆ is the superconducting order parameter, and T
is the temperature. Using these relations and expressing
voltage through the superconducting phase, we can write
down Kirchhoff’s rule for the circuit,

h̄

2e
Cω̈+

h̄

2eR
ω̇+ Ic sinω = Ie, (5.5)

where Ie is the bias current. This equation describes the
dynamics of the phase, and it has the form of a damped
non-linear oscillator. The role of the non-linear induc-
tance is here played by the Josephson element.

The dissipation determines the qubit lifetime, and
therefore circuits suitable for qubit applications must
have extremely small dissipation. Let us assume zero
level of the dissipation, dropping the resistive term in
Eq. (5.5). Then the circuit dynamic equations, using the
mechanical analogy, can be presented in the Lagrangian
form, and, equivalently, in the Hamiltonian form. The
circuit Lagrangian consists of the difference between the
kinetic and potential energies, the electrostatic energy of
the junction capacitors playing the role of kinetic energy,
while the energy of the Josephson current plays the role
of potential energy.

The kinetic energy corresponding to the first term in
the Kirchhoff equation (5.5) reads,

K(ω̇) =

(

h̄

2e

)2 Cω̇2

2
. (5.6)

This energy is equal to the electrostatic energy of the
junction capacitor, CV 2/2. It is convenient to introduce
the charging energy of the junction capacitor charged
with one electron pair (Cooper pair),

EC =
(2e)2

2C
, (5.7)

in which case Eq. (5.6) takes the form

K(ω̇) =
h̄2ω̇2

4EC
. (5.8)

The potential energy corresponds to the last two terms
in Eq. (5.5), and consists of the energy of the Josephson
current, and the magnetic energy of the bias current,

U(ω) = EJ (1 → cosω) →
h̄

2e
Ieω, (5.9)

Typical I-V characteristic of a
superconducting tunnel junction, a
common kind of Josephson junction. The
scale of the vertical axis is 50 μA and that
of the horizontal one is 1 mV. The bar at

 represents the DC Josephson
effect, while the current at large values of

 is due to the finite value of the
superconductor bandgap and not
reproduced by the above equations.

which is very similar to Faraday's law of induction. But note that this voltage does not come from
magnetic energy, since there is no magnetic field in the superconductors;  Instead,  this  voltage
comes from the kinetic energy of the carriers (i.e.  the Cooper pairs).  This phenomenon is also
known as kinetic inductance.

There are three main effects predicted by Josephson that
follow directly from the Josephson equations:

The DC Josephson effect is  a direct current crossing the
insulator  in  the  absence  of  any  external  electromagnetic
field,  owing  to  tunneling.  This  DC  Josephson  current  is
proportional  to  the  sine  of  the  Josephson  phase  (phase
difference across the insulator, which stays constant over
time), and may take values between  and .

With a fixed voltage  across  the junction,  the phase
will  vary  linearly  with  time  and  the  current  will  be  a
sinusoidal AC (alternating current) with amplitude  and
frequency . This means a Josephson junction can
act as a perfect voltage-to-frequency converter.

Microwave radiation of a single (angular) frequency  can induce quantized DC voltages[20] across
the  Josephson  junction,  in  which  case  the  Josephson  phase  takes  the  form

, and the voltage and current across the junction will be:

The DC components are:

This means a Josephson junction can act like a perfect frequency-to-voltage converter,[21] which is
the theoretical basis for the Josephson voltage standard.

Three main effects

DC Josephson effect

AC Josephson effect

Inverse AC Josephson effect

Josephson effect - Wikipedia https://en.wikipedia.org/wiki/Josephson_effect

6 of 12 2025-10-30, 10:40

Caldeira-
Leggett 1981



4

ducting systems have presently the undisputable advan-
tage of acutally existing, showing Rabi oscillations and
responding to one- and two-qubit gate operations. In
fact, even an elementary SCB two-qubit entangling gate
creating Bell-type states has been demonstrated very
recently36. All of the non-superconducting qubits are
so far, promising but still potential qubits. Several of
the impurity electron spin qubits show impressive relax-
ation lifetimes in bulk measurements, but it remains to
demonstrate how to read out individual qubit spins.

III. BASICS OF QUANTUM COMPUTATION

A. Conditions for quantum information processing

DiVincenzo72 has formulated a set of rules and con-
ditions that need to be fulfilled in order for quantum
computing to be possible:

1. Register of 2-level systems (qubits), n = 2N states
|101..01→ (N qubits)
2. Initialization of the qubit register: e.g. setting it to
|000..00→
3. Tools for manipulation: 1- and 2-qubit gates, e.g.
Hadamard (H) gates to flip the spin to the equator,
UH |0→ = (|0→ + |1→)/2, and Controlled-NOT (CNOT )
gates to create entangled states, UCNOT UH |00 >=
(|00→ + |11→)/2 (Bell state)
4. Read-out of single qubits |ω→ = a|0→ + beiφ|1→ → a, b
(spin projection; phase ε of qubit lost)
5. Long decoherence times: > 104 2-qubit gate opera-
tions needed for error correction to maintain coherence
”forever”.
6. Transport qubits and to transfer entanglement be-
tween different coherent systems (quantum-quantum in-
terfaces).
7. Create classical-quantum interfaces for control, read-
out and information storage.

B. Qubits and entanglement

A qubit is a two-level quantum system caracterized by
the state vector

|ω→ = cos
θ

2
|0→ + sin

θ

2
eiφ|1→ (3.1)

Expressing |0→ and |1→ in terms of the eigenvectors of the
Pauli matrix σz,

|0→ =

(

1
0

)

, |1→ =

(

0
1

)

. (3.2)

this can be described as a rotation from the north pole
of the |0→ state,

|ω→ =

(

1 0
0 eiφ

)(

cos θ
2 − sin θ

2
sin θ

2 cos θ
2

)(

1
0

)

(3.3)

FIG. 3: The Bloch sphere. Points on the sphere correspond
to the quantum states |ψ→; in particular, the north and south
poles correspond to the computational basis states |0→ and
|1→; superposition cat-states |ψ→ = |0→+ eiφ|1→ are situated on
the equator.

can be characterised by a unit vector on the Bloch sphere:

The state vector can be represented as a unitary vector
on the Bloch sphere, and general unitary (rotation) oper-
ations make it possible to reach every point on the Bloch
sphere. The qubit is therefore an analogue object with
a continuum of possible states. Only in the case of spin
1/2 systems do we have a true two-level system. In the
general case, the qubit is represented by the lowest levels
of a multi-level system, which means that the length of
the state vector may not be conserved due to transitions
to other levels. The first condition will therefore be to
operate the qubit so that it stays on the Bloch sphere
(fidelity). Competing with normal operation, noise from
the environment may cause fluctuation of both qubit am-
plitude and phase, leading to relaxation and decoherence.
It is a delicate matter to isolate the qubit from a perturb-
ing environment, and desirable operation and unwanted
perturbation (noise) easily go hand in hand. It is a major
issue to design qubit control and read-out such that the
necessary communication lines can be blocked when not
in use.

The state of N independent qubits can be represented
as a product state,

|ω→ = |ω1→|ω2→....|ωN → = |ω1ω2....ωN → (3.4)

involving any one of all of the configurations |00...0 >,
|00...1 >, ...., |11...1 >. A general state of an N-qubit
memory register (i.e. a many-body system) can then
be written as a time-dependent superposition of many-
particle configurations

|ω(t)→ = c1(t)|0...00→ + c2(t)|0...01→ (3.5)

+ c3(t)|0...10→ + .... + cn(t)|1...11→

John Martinis’ qubit (2003-2007)

the qubit should involve a low-lying pair of levels, well sepa-
rated from the spectrum of higher levels, and not being close
to resonance with any other transitions.

Single Josephson junction qubit

The simplest qubit realization is a current-biased JJ with
large Josephson energy compared to the charging energy. In
the classical regime, the particle representing the phase either
rests at the bottom of one of the wells of the tilted cosine
potential !“washboard” potential", or oscillates within the
well.

Due to the periodic motion, the average voltage across
the junction is zero: !=0. Strongly excited states, where the
particle may escape from the well, correspond to the dissipa-
tive regime with nonzero average voltage across the junction,
!̇!0.

In the quantum regime described by the Hamiltonian !1",
particle confinement, rigorously speaking, is impossible be-
cause of MQT through the potential barrier; see Fig. 3. How-
ever, the probability of MQT is small and the tunneling may
be neglected if the particle energy is close to the bottom of
the local potential well, i.e., when E!EJ. To find the con-
ditions for such a regime, it is convenient to approximate the
potential with a parabolic function, U!!"
#!1/2"EJ cos !0!!−!0"2, where !0 corresponds to the po-
tential minimum, EJ sin !0= !" /2e"Ie. Then the lowest en-
ergy levels, Ek="#p!k+1/2" are determined by the plasma
frequency, #p=21/4#J!1− Ie / Ic"1/4. It then follows that the
levels are close to the bottom of the potential if EC!EJ, i.e.,
when the JJ is in the phase regime, and moreover, if the bias
current is not too close to the critical value, Ie$ Ic.

It is essential for qubit operation that the spectrum in the
well is not equidistant. Then the two lowest energy levels,
k=0,1, can be employed for the qubit operation. Truncating
the full Hilbert space of the junction to the subspace spanned
by these two states, $0% and $1%, we may write the qubit
Hamiltonian in the form

Hq = −
1
2

%&z, !8"

where %=E1−E2.
The interlevel distance is controlled by the bias current.

When bias current approaches the critical current, level
broadening due to MQT starts to play a role, Ek→Ek
+ i'k /2. The MQT rate for the lowest level is given by60

'MQT =
52#p

2(
&Umax

"#p
exp'−

7.2Umax

"#p
( , !9"

where Umax=2&2!)0 /2("!1− Ie / Ic"3/2 is the height of the
potential barrier at given bias current.

Flux qubit

An elementary flux qubit can be constructed with an rf
SQUID operating in the phase regime, EJ#EC. Let us con-
sider the Hamiltonian !2" at !e=(, i.e., at half-integer bias
magnetic flux. The potential U!!" shown in Fig. 4 has two
identical wells with equal energy levels when MQT between
the wells is neglected !phase regime, #J!EJ". These levels
are connected with current fluctuations within each well
around averaged values corresponding to clockwise and
counterclockwise persistent currents circulating in the loop
!the flux states". Let us consider the lowest, doubly degener-
ate, energy level. When the tunneling is switched on, the
levels split, and a tight two-level system is formed with the
level spacing determined by the MQT rate, which is much
smaller than the level spacing in the well.

In the case that the tunneling barrier is much smaller
than the Josephson energy, the potential in Eq. !2" can be
approximated as

U!!" = EJ!1 − cos !" + EL
!! − !e"2

2

# EL'− !
!̃2

2
− f!̃ +

1 + !

24
!̃4( , !10"

where !̃=!−(, f =!e−(, and where the parameter *
= !EJ /EL"−1!1 determines the height of the tunnel barrier.

The qubit Hamiltonian is derived by projecting the full
Hilbert space of the Hamiltonian !2" on the subspace
spanned by these two levels. The starting point of the trun-
cation procedure is to approximate the double-well potential
with Ul and Ur, as shown in Fig. 4, to confine the particle to
the left or to the right well, respectively. The corresponding
ground-state wave functions $l% and $r% satisfy the stationary
Schrödinger equation

Hl$l% = El$l%, Hr$r% = Er$r% . !11"

The averaged induced flux for these states, !l and !r,
has opposite sign, manifesting opposite directions of the cir-
culating persistent currents. Let us allow the bias flux to
deviate slightly from the half-integer value, !e=(+ f , so that
the ground-state energies are not equal but still close to each

FIG. 3. Quantized energy levels in the potential of a current-biased JJ; the
two lower levels form the JJ qubit, the dashed line indicates a leaky level
with higher energy.

FIG. 4. Double-well potential of the rf SQUID with degenerate quantum
levels in the wells. Macroscopic quantum tunneling through the potential
barrier introduces a level splitting +, and the lowest level pair forms a qubit
!a"; truncation of the junction Hamiltonian, dashed lines indicate potentials
of the left and right wells with ground energy levels !b".
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When T à 0 
the energy levels become sharp and the 
“particle” can be trapped (MQC)  before 
tunneling out through the JJ barrier (MQT)
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U(φ)

φ

I C RJ

FIG. 7: Current-biased Josephson junction (JJ) (left), equiv-
alent circuit (center), and effective (washboard-like) potential
(right). The superconducting leads are indicated with dark
color, and the tunnel junction with light color.

which are used as building blocks in qubit applications.
These basic circuits are: single current biased Joseph-
son junction; single Josephson junction (JJ) included in
a superconducting loop (rf SQUID); two Josephson junc-
tions included in a superconducting loop (dc SQUID);
and an ultra-small superconducting island connected to
a massive superconducting electrode via tunnel Joseph-
son junction (Single Cooper pair Box, SCB).

A. Current biased Josephson junction

The simplest superconducting circuit, shown in Fig. 7,
consists of a tunnel junction with superconducting elec-
trodes, a tunnel Josephson junction, connected to a cur-
rent source. An equivalent electrical circuit, which repre-
sents the junction consists of the three lumped elements
connected in parallel: the junction capacitance C, the
junction resistance R, which generally differs from the
normal junction resistance RN and strongly depends on
temperature and applied voltage, and the Josephson ele-
ment associated with the tunneling through the junction.

The current-voltage relations for the junction ca-
pacitance and resistance have standard forms, IC =
C (dV/dt), and IR = V/R. To write down a similar rela-
tion for the Josephson element, it is necessary to intro-
duce the superconducting phase difference ω(t) across the
junction, often simply referred to as the superconducting
phase, which is related to the voltage drop across the
junction,

ω(t) =
2e

h̄

∫

V dt + ω, (5.1)

where ω is the time-independent part of the phase dif-
ference. The phase difference can be also related to a
magnetic flux,

ω =
2e

h̄
Φ = 2ε

Φ

Φ0
, (5.2)

where Φ0 = h/2e is the magnetic flux quantum. The

current through the Josephson element has the form85,

IJ = Ic sinω, (5.3)

where Ic is the critical Josephson current, i.e.
the maximum non-dissipative current that may flow
through the junction. The microscopic theory of
superconductivity111,112,113 gives the following equation
for the Josephson current,

Ic =
ε∆

2eRN
tanh

∆

2T
, (5.4)

where ∆ is the superconducting order parameter, and T
is the temperature. Using these relations and expressing
voltage through the superconducting phase, we can write
down Kirchhoff’s rule for the circuit,

h̄

2e
Cω̈+

h̄

2eR
ω̇+ Ic sinω = Ie, (5.5)

where Ie is the bias current. This equation describes the
dynamics of the phase, and it has the form of a damped
non-linear oscillator. The role of the non-linear induc-
tance is here played by the Josephson element.

The dissipation determines the qubit lifetime, and
therefore circuits suitable for qubit applications must
have extremely small dissipation. Let us assume zero
level of the dissipation, dropping the resistive term in
Eq. (5.5). Then the circuit dynamic equations, using the
mechanical analogy, can be presented in the Lagrangian
form, and, equivalently, in the Hamiltonian form. The
circuit Lagrangian consists of the difference between the
kinetic and potential energies, the electrostatic energy of
the junction capacitors playing the role of kinetic energy,
while the energy of the Josephson current plays the role
of potential energy.

The kinetic energy corresponding to the first term in
the Kirchhoff equation (5.5) reads,

K(ω̇) =

(

h̄

2e

)2 Cω̇2

2
. (5.6)

This energy is equal to the electrostatic energy of the
junction capacitor, CV 2/2. It is convenient to introduce
the charging energy of the junction capacitor charged
with one electron pair (Cooper pair),

EC =
(2e)2

2C
, (5.7)

in which case Eq. (5.6) takes the form

K(ω̇) =
h̄2ω̇2

4EC
. (5.8)

The potential energy corresponds to the last two terms
in Eq. (5.5), and consists of the energy of the Josephson
current, and the magnetic energy of the bias current,

U(ω) = EJ (1 → cosω) →
h̄

2e
Ieω, (5.9)
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Influence of Dissipation on Quantum Tunneling in Macroscopic Systems
A. O. Caldeira and A. J. I eggett
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A quantum system which can tunnel, at T = 0, out of a metastable state and whose in-
teraction with its environment is adequately described in the classically accessible re-
gion by a phenomenological friction coefficient p, is considered. By only assuming that
the environment response is linear, it is found that dissipation multiplies the tunneling
probability by the factor expr. -&p(&p) 2/~], where 4q is the "distance under the barrier"
and 4 is a numerical factor which is generally of order unity.

PACS numbers: 03.65.Bz, 05.30.-d, 05.40.+j, 73.40.Gk

One of the more intriguing prospects opened up
by recent advances in cryogenics is the possibil-
ity of observing quantum tunneling on a macro-
scopic scale. ' Generally, we expect tunneling to
be the predominant decay mode of a metasteble
state when k&T &cS~„where +, is the frequency
of small oscillations about the metastable equi-
librium; and there exist macroscopic systems
for which this condition can be satisfied while the
tunneling probability is not unobservably small.
One particularly promising candidate' is a SQUID'
(superconducting quantum interference device);
in this case the relevant macroscopic variable is
the magnetic flux trapped in the ring, and a
straightforward WEB calculation ignoring dissipa-
tion predicts that for typical SQUID parameters
quantum tunneling should become the dominant
flux transition mechanism for T ( 100 mK. In-
deed, two recent experiments" at even higher
temperatures (-1-2 K) have been interpreted as
possible evidence for quantum tunneling of the
flux. Whether or not this interpretation is cor-
rect, the observation of such a phenomenon would
clearly be of intrinsic interest for the extrapola-
tion of quantum mechanics to the macroscopic
scale. '

An important qualitative difference between
quantum tunneling in macroscopic systems and
its experimentally well-verified microscopic ana-
log lies in the relative importance and nature of
the coupling to the environment. For microscop-
ic systems this coupling is often negligible and,
even when it is not, can usually be described by
a well-defined Hamiltonian and treated in low-
order perturbation theory (as, for example, in
the theory of inelastic electron tunneling in met-
al-insulator junctions'). On the other hand, in
macroscopic systems the coupling is often so
strong that the motion in the classically accessi-
ble region is highly damped or even (as in most
practical SQUID's) overdamped; moreover, we
are often ignorant of the precise details of the
coupling and are reduced to describing its effects
by phenomenological friction or viscosity coeffi-
cients whose values must be taken from experi-
ment. The object of this Letter is to develop a
theory of the quantum tunneling process which
will take these factors into account. There is
space here only to give the general outlines of
this theory; we intend to give a more extended
discussion elsewhere, including the specific ap-
plication to SQUID's. (See also Caldeira, Ref. 4.)
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Anthony James Leggett
Sir  Anthony  James  Leggett  (born  26  March
1938) is a British–American theoretical physicist and
professor  emeritus  at  the  University  of  Illinois
Urbana-Champaign  (UIUC).[5]  Leggett  is  widely
recognised as  a  world leader  in  the theory of  low-
temperature  physics,  and  his  pioneering  work  on
superfluidity was recognised by the 2003 Nobel Prize
in  Physics.[6]  He  has  shaped  the  theoretical
understanding  of  normal  and  superfluid  helium
liquids  and strongly  coupled  superfluids.[7]  He  set
directions  for  research  in  the  quantum  physics  of
macroscopic  dissipative  systems  and  use  of
condensed  systems  to  test  the  foundations  of
quantum mechanics.[8][9]

Leggett was born in Camberwell, south London, and
raised Catholic.[10] His father's forebears were village
cobblers in a small  village in Hampshire;  Leggett's
grandfather  broke  with  this  tradition  to  become  a
greengrocer; his father would relate how he used to
ride with him to buy vegetables at the Covent Garden
market  in  London.  His  mother's  parents  were  of
Irish descent; her father had moved to Britain and
worked as a clerk in the naval dockyard in Chatham.
[10]  His  maternal  grandmother,  who  survived  into
her eighties, was sent out to domestic service at the
age of twelve. She eventually married his grandfather
and  raised  a  large  family,  then  in  her  late  sixties
emigrated to Australia to join her daughter and son-
in-law,  and finally  returned to  the UK for  her  last
years.

His  father  and mother were each the first  in  their
families to receive a university education; they met
and became engaged while students at the Institute
of Education at the University of London, but were

Early life and education
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Abstract
A metallic electrode connected to electron reservoirs by tunnel junctions
has a series of charge states corresponding to the number of excess elec-
trons in the electrode. In contrast with the charge state of an atomic or
molecular ion, the charge states of such an ““islandÏÏ involve a macroscopic
number of conduction electrons of the island. Island charge states bear
some resemblance with the photon number states of the cavity in cavity
QED, the phase conjugate to the number of electrons being analogous to
the phase of the Ðeld in the cavity. For a normal island, charge states decay
irreversibly into charge states of lower energies. However, the ground state
of a superconducting island connected to superconducting reservoirs can be
a coherent superposition of charge states di†ering by two electrons (i.e. a
Cooper pair). We describe an experiment in which this Josephson e†ect
involving only one Cooper pair is measured.

1. Introduction

As shown by several beautiful experiments reported in this
volume, the combined quantum states of individual atoms
or ions in an electromagnetic cavity and the photons of the
cavity can be manipulated and controlled to a high degree
of accuracy. These atomic physics systems open the door to
the practical construction of complex entangled quantum
states of the type on which the theory of quantum com-
puters is based. The question naturally arises as to whether
there exists also solid state electronic systems exhibiting
quantum states amenable to such manipulations. With the
elaborate nanofabrication techniques now available, a large
number of coupled electronic devices can be produced
which could in principle be well suited for practical imple-
mentations of the schemes of quantum computing.
However, the Ñexibility of electronic systems regarding con-
nections between individual elements is also accompanied
by severe drawbacks. Although at the microscopic level,
most electronic devices in practical applications are based
on quantum properties of electrons, electronic degrees of
freedom that can be probed externally such as voltages and
currents almost never behave quantum mechanically. These
variables, which play the role of, for instance, the atomic
dipole moment in cavity QED [1], are usually so strongly
damped that their quantum decoherence time is much
shorter than the time window of experiments.

A notable exception is encountered in superconducting
tunnel junction circuits for which, in principle, very low
internal electric dissipation can be achieved. In the early
80Ïs, A. J. Leggett [2] already remarked that a supercon-
ducting ring interrupted by a tunnel junction (a so-called
RF-SQUID) could, under certain experiment conditions,
behave as a quantum two-level system analogous to the

ÈÈÈ
* Present address : De! partement de Physique Faculte! des Sciences de

Luminy, F-13288 Marseille, France

ammonia molecule. The two ““resonantÏÏ states for this par-
ticular circuit correspond to two opposite values of the
magnetic Ñux threading the ring. Although practical experi-
ments have been proposed [3] to observe the coherent
quantum tunneling between these two degenerate Ñux
states, only irreversible tunneling out of a single metastable
Ñux state has been observed in the RF-SQUID [4] and in
the related current-biased Josephson junction system [5].
The observation of macroscopic quantum coherence in the
RF-SQUID is mainly hindered by the difficulty to control
precisely the external Ñux on the device, which is the key
parameter determining the degenerescence of Ñux states.

More recently, experiments [6È9] have shown that, in
contrast to Ñux states of a superconducting ring which are
easily perturbed by the electromagnetic environment, the
charge states of a superconducting island connected to the
rest of the circuit by tunnel junctions and capacitors might
sufficiently be well decoupled from external inÑuences to
allow long-lived macroscopic quantum superposition of
states. In this article, we report experimental results showing
how a quantum superposition of charge states can be pre-
pared in the simplest superconducting island circuit, namely
the superconducting box.

2. Theoretical description of the superconducting box

The superconducting box circuit (see Fig. 1) is a simpliÐed
version of a circuit Ðrst considered by M. Buttiker [10] for
Bloch oscillations in superconducting tunnel junctions [11].
It consists of a single superconducting island connected to a
superconducting electron reservoir by a tunnel junction with
capacitance Electrons can be transferred from theCj .
reservoir to the island by a voltage source U connected
between the reservoir and the island via a gate capacitance

Both the island and the reservoir are taken to be goodCg .

Fig. 1. Schematics of the single Cooper box : a superconducting electrode
(island) is in contact with a superconducting reservoir though a tunnel
junction (grey zone) with capacitance Excess Cooper pairs tunnel ontoCj .
the island in response to an electric Ðeld applied by means of the gate
capacitance and voltage U.Cg
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BCS superconductors with a gap D much larger than the
energy of thermal Ñuctuations or the Coulomb energykB T

of the island is the total islande2/2C& (C& \ Cg ] Cjcapacitance). Under these conditions, we can consider that
all electrons in the island are paired [12]. The only remain-
ing degree of freedom of the island is its total number of
excess Cooper pairs n which is related to the total charge q
of the island by q \ [2en. The variable n, like the number
of photons in a cavity in cavity QED [1], is discrete.
However it can take negative as well as positive integer
values, n \ 0 corresponding to an electrically neutral island.
The number n can Ñuctuate quantum-mechanically since
Cooper pairs can tunnel in and out the island by Josephson
tunneling. We must therefore describe it by an operator nü .
We can take as a convenient basis for the charge states of
the island the eigenvectors of nü :

nü o nT \ n o nT. (1)

Using this basis, we can write the electrostatic part of the
hamiltonian as

Hel \ EC ;
n

(n [ ng)2 o nTSn o (2)

where is the Coulomb energy of an extraEC \ (2e)2/2C&Cooper pair on the island for zero gate voltage and ng \
the dimensionless gate voltage.CgU/(2e)

The Josephson coupling hamiltonian has the form:

HJ \ [ EJ
2

;
n

(o nTSn ] 1 o ] o n ] 1TSn o) (3)

where the Josephson energy is macroscopic in the senseEJthat it is proportional to the area of the tunnel junction.
This energy can be expressed in terms of the superconduct-
ing gap and the tunnel junction conductance in theGTnormal state by the Ambegaskar-Barato† zelation

EJ \ hGT
8e2 D. (4)

In absence of the Josephson hamiltonian, the energies of
the states of the system are given by a set of parabola shown
as dashed curves in Fig. 2(a). The Josephson hamiltonian
lifts the degeneracy at the crossings of the parabola and for
the case we get the avoided crossings shown on Fig.EJ > EC2(a). This is the case which we consider in this article. In the
opposite limit where the Ñuctuations of n are soEJ ? EC ,
large that we recover the usual situation considered in the
conventional description of the Josephson e†ect, where the
phase of the island is the good-quantum number.

At temperatures such that we can limit ourkB T > EC ,
analysis to the two states with the lowest energy. Because of
the periodicity of the system with respect to the addition of
an extra Cooper pair, we can restrict the dimensionless gate
voltage to vary in the interval We can then work0 \ ng \ 1.
in a Hilbert space spanned with the vectors o 0T and o 1T.

In this space, the total hamiltonian isH \ Hel ] HJrepresented by the following matrix :

H \ 1
2
C[E

[EJ

[EJ
E
D

. (5)

The di†erence between the electrostaticE \ EC(1 [ 2ng)energy of the two states depends linearly on the gate
voltage. The trace of the matrix has been nulled out by an

Fig. 2. (a) Electrostatic energy of the single Cooper box circuit of Fig. 1 as
a function of U, for several values of the number n of excess Cooper pairs
in the island (parabolas in dotted line, n \ 0È3). In full line, total energy of
the box including the e†ect of Cooper pair tunneling through the junction.
(b) Predicted value of the average of n in the ground state of the box, as a
function of U.

adequate choice of the zero of energy E0 \ EC(1/2 [ ng)2.
One can thus make a correspondence between the Cooper
pair box and a spin in a magnetic Ðeld using the Pauli12spin matrices :

px \C0 1
1 0

D
, py \C 0

[i
i
0
D

, pz \C1 0
0 [1

D
. (6)

The hamiltonian takes the form

H \ [s Æ h (7)

where is the spin operator and h an e†ective mag-s \ 12r
netic Ðeld whose components in the bass (x, y, z) are 0,[EJ ,
E] (see Fig. 3).

In this correspondence the average z-component of the
spin gives the average charge of the island :

SnT \ 12 ] SszT. (8)

Here the average SOT of an operator O is given by the
usual expression

SOT \ tr [exp ([bH)O] (9)

adequate for thermal equilibrium at a temperature T \
(kB b)~1.

By simple geometrical considerations (see Fig. 3) one
obtains directly

SszT \ 12 tanh (b o h o /2) cos h (10)

where h is the angle between the Ðeld h and the z axis. The
average Cooper pair number on the island is thus

SnT \ 1
2
C

1 ] f
AEC(2ng [ 1)

EJ
, bEJ/2

BD
(11)
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Abstract
A metallic electrode connected to electron reservoirs by tunnel junctions
has a series of charge states corresponding to the number of excess elec-
trons in the electrode. In contrast with the charge state of an atomic or
molecular ion, the charge states of such an ““islandÏÏ involve a macroscopic
number of conduction electrons of the island. Island charge states bear
some resemblance with the photon number states of the cavity in cavity
QED, the phase conjugate to the number of electrons being analogous to
the phase of the Ðeld in the cavity. For a normal island, charge states decay
irreversibly into charge states of lower energies. However, the ground state
of a superconducting island connected to superconducting reservoirs can be
a coherent superposition of charge states di†ering by two electrons (i.e. a
Cooper pair). We describe an experiment in which this Josephson e†ect
involving only one Cooper pair is measured.

1. Introduction

As shown by several beautiful experiments reported in this
volume, the combined quantum states of individual atoms
or ions in an electromagnetic cavity and the photons of the
cavity can be manipulated and controlled to a high degree
of accuracy. These atomic physics systems open the door to
the practical construction of complex entangled quantum
states of the type on which the theory of quantum com-
puters is based. The question naturally arises as to whether
there exists also solid state electronic systems exhibiting
quantum states amenable to such manipulations. With the
elaborate nanofabrication techniques now available, a large
number of coupled electronic devices can be produced
which could in principle be well suited for practical imple-
mentations of the schemes of quantum computing.
However, the Ñexibility of electronic systems regarding con-
nections between individual elements is also accompanied
by severe drawbacks. Although at the microscopic level,
most electronic devices in practical applications are based
on quantum properties of electrons, electronic degrees of
freedom that can be probed externally such as voltages and
currents almost never behave quantum mechanically. These
variables, which play the role of, for instance, the atomic
dipole moment in cavity QED [1], are usually so strongly
damped that their quantum decoherence time is much
shorter than the time window of experiments.

A notable exception is encountered in superconducting
tunnel junction circuits for which, in principle, very low
internal electric dissipation can be achieved. In the early
80Ïs, A. J. Leggett [2] already remarked that a supercon-
ducting ring interrupted by a tunnel junction (a so-called
RF-SQUID) could, under certain experiment conditions,
behave as a quantum two-level system analogous to the

ÈÈÈ
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ammonia molecule. The two ““resonantÏÏ states for this par-
ticular circuit correspond to two opposite values of the
magnetic Ñux threading the ring. Although practical experi-
ments have been proposed [3] to observe the coherent
quantum tunneling between these two degenerate Ñux
states, only irreversible tunneling out of a single metastable
Ñux state has been observed in the RF-SQUID [4] and in
the related current-biased Josephson junction system [5].
The observation of macroscopic quantum coherence in the
RF-SQUID is mainly hindered by the difficulty to control
precisely the external Ñux on the device, which is the key
parameter determining the degenerescence of Ñux states.

More recently, experiments [6È9] have shown that, in
contrast to Ñux states of a superconducting ring which are
easily perturbed by the electromagnetic environment, the
charge states of a superconducting island connected to the
rest of the circuit by tunnel junctions and capacitors might
sufficiently be well decoupled from external inÑuences to
allow long-lived macroscopic quantum superposition of
states. In this article, we report experimental results showing
how a quantum superposition of charge states can be pre-
pared in the simplest superconducting island circuit, namely
the superconducting box.

2. Theoretical description of the superconducting box

The superconducting box circuit (see Fig. 1) is a simpliÐed
version of a circuit Ðrst considered by M. Buttiker [10] for
Bloch oscillations in superconducting tunnel junctions [11].
It consists of a single superconducting island connected to a
superconducting electron reservoir by a tunnel junction with
capacitance Electrons can be transferred from theCj .
reservoir to the island by a voltage source U connected
between the reservoir and the island via a gate capacitance

Both the island and the reservoir are taken to be goodCg .

Fig. 1. Schematics of the single Cooper box : a superconducting electrode
(island) is in contact with a superconducting reservoir though a tunnel
junction (grey zone) with capacitance Excess Cooper pairs tunnel ontoCj .
the island in response to an electric Ðeld applied by means of the gate
capacitance and voltage U.Cg
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Fig. 7. Full line : direct measurement of the average value of n as a function
of U in the superconducting state. Dotted line : theoretical prediction for
the superconducting box with experimentally determined parameters.
Dashed line : theoretical prediction not taking into account the Josephson
energy and showing the e†ect of thermal rounding alone. Inset in bottom
right shows reference step taken in the normal state at the same tem-
perature T \ 20 mK. The thermal broadening of the step is relatively larger
than the broadening displayed by the dashed line because the Coulomb
energy for electrons is 4 times smaller than for Cooper pairs.

Since the e†ect of quantum Ñuctuations due to Josephson
tunneling is to round the staircase ; it is particularly impor-
tant to check that spurious e†ects, such as extraneous elec-
tromagnetic noise, do not also signiÐcantly contribute to a
rounding of the staircase.

4. Comparison between experiment and theory

Four energies are involved in the comparison between
experiment and theory :

island charging energyI the EC ,
Josephson coupling energyI the EJ ,
odd-even free energy di†erenceI the D3 (T ),
thermal Ñuctuation energyI the kB T .

The two energies and are determined during sampleEC EJfabrication by respectively choosing the tunnel junction
areas at the electron-beam lithography stage, and transpar-
encies at the oxidation stage. The third energy, [12], isD3
also sample dependent, but can also be continuously
reduced down to zero during the measurement by applying
a small magnetic Ðeld. The fourth energy should not be
determined directly from the thermometers. An in-situ
control experiment is necessary to ensure that the electrons
of the box are indeed thermalized at the temperature indi-
cated by the thermometer under the conditions of the
experiment.

4.1. Determination of and TEC
Superconductivity in the aluminum electrodes is suppressed
by applying a magnetic Ðeld of 0.1 T. The device then
becomes a single-electron box [16], the island charge is
quantized in units of e and the Coulomb stair-case(q \ n1e)
is e-periodic. The reduced gate charge is and then1g \ ng/2Coulomb energy is now For each experimentalE1C \ EC/4.

curve (data not shown), we have determined theLSn1T/Ln1gbest Ðtting parameter The Ðtting parameter variesTeff/E1C .
linearly with temperature down to the lowest temperatures,
providing strong evidence that no extraneous noise source
contributes to the rounding of the staircase. The Coulomb
energy of the box in the superconducing state, obtained
from the slope of the best linear Ðt of the data points, is

This value is in good agreement withEC/kB \ 2.5 ^ 0.2 K.
our estimate of the tunnel junction capacitance. Our
analysis is shown in Fig. 6 we plot the values of in theTeffnormal state corresponding to this value of as a functionECof T . We Ðnd that the data in the superconducting state fall
at low temperature on a plateau which is clearly out of the
error bars of the data in the normal state. The shape of the
step of the Coulomb staircase in the normal step is directly
shown at the bottom right of Fig. 7.

4.2. Estimation of the Josephson energy EJ
The Josephson coupling energy was estimated from eq.EJ(5) : where is the parallel combinationEJ \ hD/(8e2RTA

) RTAof the two tunnel resistances of the box. The superconduct-
ing gap D, deduced from IÈV curves, is TheD/kB \ 2.33 K.
tunnel resistance of the two junctions in series measured in
the normal state is Assuming that both junc-RTA

\ 36.6 k).
tions are identical, we obtain the value EJ/kB \ 0.2 ^ 0.02 K
and the ratio EJ/EC \ 0.08 ^ 0.015.

4.3. Estimation of the odd-even free energy di†erence
H \ 0)D3 (T ,

This energy determines the presence of unpaired electrons in
the island. In the BCS theory, it takes the value D3 (T , H \

ln N, where N \ vV D is the number of0) \ D [ kBT
Cooper pairs in the islands given as function of the density
of states v of the metal and V the volume of the island. It
can be deduced from the Coulomb staircase measured at
intermediate magnetic Ðelds, in the regime when H) isD3 (T ,
reduced below thus leading to the appearance of inter-EC ,
mediate steps in the Coulomb staircase. The analysis of the
Coulomb staircase leads to a precise determination of D3 (H)
[17]. The extrapolation of the data to H \ 0 provides

which is smaller thanlim
H?0 D3 (T \ 20 mK, H)/kB \ 0.74 K,

the BCS gap However, this value is suffi-D/kB \ 2.33 K.
ciently large compared with that it is possible in the ÐrstEJapproximation to ignore the corrections to the theoretical
expressions (11) and (12). We attribute this reduced value of

to the existence of one or several discrete quasiparticleD3
states in the gap of the superconductor. Such states, com-
monly observed in other similar samples, can even lead to
the suppression of the 2e-periodicity of the Coulomb stair-
case and jeopardize the observation of quantum coherence
e†ects in superconducing tunnel junction circuits. Their
origin is not understood, but might arise from impurities in
or at the surface of the aluminum island.

From these estimates of the parameters of the theory, we
can compute the e†ective temperature that would be found
at T \ 0 in the superconducting box experiment. This value

is indicated as an arrow in Fig. 6 and isT eff* \ 70 ^ 10 mK
in good agreement with the experimental data.

The staircase at 20 mK obtained by the direct measure-
ment method is also in good agreement with the theoretical
prediction, as shown in Fig. 7 by a dotted line. Also shown
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This started the superconducting qubit technology race !!



SQUBIT
Superconducting Qubits:

Quantum Computing with Josephson Junctions
Coordinator:

Göran Wendin, Chalmers

IST-1999-10673 - SQUBIT

IST-1999-10673 - SQUBIT  
Project funded by the Future and Emerging Technologies arm of the IST-FET-QIPC proactive initiativeProject funded by the Future and Emerging Technologies arm of the IST-FET-QIPC proactive initiative

Chalmers P. Delsing,
G. Wendin (coord)

Jyväskylä J. Pekola
KTH D. Haviland
TU Delft H. Mooij
Karlsruhe G. Schön
CEA Saclay M. Devoret
ISI-Torino/Catania R. Fazio



SQUBIT Go/Nogo milestone: criteria

Evidence, direct or indirect, that at least one particular
realization of a qubit based on a superconducting 
system should be able to display a coherence time at least
1000 time longer than its switching time

IST-1999-10673 - SQUBIT  
Project funded by the Future and Emerging Technologies arm of the IST-FET-QIPC proactive initiativeProject funded by the Future and Emerging Technologies arm of the IST-FET-QIPC proactive initiative

There are two important (classes of) qubit lifetimes:
(1) T1 characterizing level transitions (relaxation, mixing, saturation)
(2) Tφ characterizing the decoherence (dephasing) time of the two
levels at fixed level population.

When Tφ dominates the lifetime, it approximately determines the
line width Γ in spectroscopic experiments:
            Tφ ≈ T2 =hΓ−1 << T1

        For qubit operation to be possible, Qφ = ω0Tφ >> 1.

Quality factor 
must be >> 1



A NEW
SUPERCONDUCTING QUBIT

WITH SEPARATION OF 
WRITE AND READ PORTS

M. D.
D. ESTEVE
C. URBINA

P. JOYEZ
H. POTHIER
D. VION

V. BOUCHIAT
A. COTTET
A. AASSIME

Delft, September 2001

SQUBIT major qubit projects

IST-1999-10673 - SQUBIT  
Project funded by the Future and Emerging Technologies arm of the IST-FET-QIPC proactive initiativeProject funded by the Future and Emerging Technologies arm of the IST-FET-QIPC proactive initiative

Flux qubit with SQUID readout
(TU Delft)

Charge qubit with RF-SET
single-shot readout
(Chalmers)

Charge qubit with SCPT
single-shot readout
(CEA)
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COOPER PAIR TRANSISTOR
WITH PHASE BIAS

advantages:
1) two knobs to tune w01
2) read-out using current Is EJ/Ec=1; Ec=e2/(2CS)
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PRINCIPLE OF READ-OUT

readout potential

P1(s)

P0(s)

slope=s=Ib/I0

very efficient read-out since P1(s)~500P0(s) when escape limited by MQT

COOPER PAIR TRANSISTOR
WITH PHASE BIAS

advantages:
1) two knobs to tune w01
2) read-out using current Is EJ/Ec=1; Ec=e2/(2CS)
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T2 = 0.5 µs

The major objective:
to  implement the preparation, control and readout schemes
needed to measure qubit decoherence times in time-domain
experiments with direct observation of Rabi oscillations.

The challenge :
to meet the "2-year" milestone for a go/nogo decision, imposed on
SQUBIT by Brussels, to be reported in deliverable D11:

Evidence, direct or indirect, that at least one particular
realization of a qubit based on a superconducting system
should be able to display a coherence time at least 1000 times
longer than its switching time (month 20).

SQUBIT major objectives for 2001

IST-1999-10673 - SQUBIT  
Project funded by the Future and Emerging Technologies arm of the IST-FET-QIPC proactive initiativeProject funded by the Future and Emerging Technologies arm of the IST-FET-QIPC proactive initiative
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ducting systems have presently the undisputable advan-
tage of acutally existing, showing Rabi oscillations and
responding to one- and two-qubit gate operations. In
fact, even an elementary SCB two-qubit entangling gate
creating Bell-type states has been demonstrated very
recently36. All of the non-superconducting qubits are
so far, promising but still potential qubits. Several of
the impurity electron spin qubits show impressive relax-
ation lifetimes in bulk measurements, but it remains to
demonstrate how to read out individual qubit spins.

III. BASICS OF QUANTUM COMPUTATION

A. Conditions for quantum information processing

DiVincenzo72 has formulated a set of rules and con-
ditions that need to be fulfilled in order for quantum
computing to be possible:

1. Register of 2-level systems (qubits), n = 2N states
|101..01→ (N qubits)
2. Initialization of the qubit register: e.g. setting it to
|000..00→
3. Tools for manipulation: 1- and 2-qubit gates, e.g.
Hadamard (H) gates to flip the spin to the equator,
UH |0→ = (|0→ + |1→)/2, and Controlled-NOT (CNOT )
gates to create entangled states, UCNOT UH |00 >=
(|00→ + |11→)/2 (Bell state)
4. Read-out of single qubits |ω→ = a|0→ + beiφ|1→ → a, b
(spin projection; phase ε of qubit lost)
5. Long decoherence times: > 104 2-qubit gate opera-
tions needed for error correction to maintain coherence
”forever”.
6. Transport qubits and to transfer entanglement be-
tween different coherent systems (quantum-quantum in-
terfaces).
7. Create classical-quantum interfaces for control, read-
out and information storage.

B. Qubits and entanglement

A qubit is a two-level quantum system caracterized by
the state vector

|ω→ = cos
θ

2
|0→ + sin

θ

2
eiφ|1→ (3.1)

Expressing |0→ and |1→ in terms of the eigenvectors of the
Pauli matrix σz,

|0→ =

(

1
0

)

, |1→ =

(

0
1

)

. (3.2)

this can be described as a rotation from the north pole
of the |0→ state,

|ω→ =

(

1 0
0 eiφ

)(

cos θ
2 − sin θ

2
sin θ

2 cos θ
2

)(

1
0

)

(3.3)

FIG. 3: The Bloch sphere. Points on the sphere correspond
to the quantum states |ψ→; in particular, the north and south
poles correspond to the computational basis states |0→ and
|1→; superposition cat-states |ψ→ = |0→+ eiφ|1→ are situated on
the equator.

can be characterised by a unit vector on the Bloch sphere:

The state vector can be represented as a unitary vector
on the Bloch sphere, and general unitary (rotation) oper-
ations make it possible to reach every point on the Bloch
sphere. The qubit is therefore an analogue object with
a continuum of possible states. Only in the case of spin
1/2 systems do we have a true two-level system. In the
general case, the qubit is represented by the lowest levels
of a multi-level system, which means that the length of
the state vector may not be conserved due to transitions
to other levels. The first condition will therefore be to
operate the qubit so that it stays on the Bloch sphere
(fidelity). Competing with normal operation, noise from
the environment may cause fluctuation of both qubit am-
plitude and phase, leading to relaxation and decoherence.
It is a delicate matter to isolate the qubit from a perturb-
ing environment, and desirable operation and unwanted
perturbation (noise) easily go hand in hand. It is a major
issue to design qubit control and read-out such that the
necessary communication lines can be blocked when not
in use.

The state of N independent qubits can be represented
as a product state,

|ω→ = |ω1→|ω2→....|ωN → = |ω1ω2....ωN → (3.4)

involving any one of all of the configurations |00...0 >,
|00...1 >, ...., |11...1 >. A general state of an N-qubit
memory register (i.e. a many-body system) can then
be written as a time-dependent superposition of many-
particle configurations

|ω(t)→ = c1(t)|0...00→ + c2(t)|0...01→ (3.5)

+ c3(t)|0...10→ + .... + cn(t)|1...11→

Qϕ = 2.5 × 104 >> 1

We passed!     😓  à   😁



2004 – the birth of CQED

Cavity quantum electrodynamics for superconducting electrical circuits:
An architecture for quantum computation
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We propose a realizable architecture using one-dimensional transmission line resonators to reach the strong-
coupling limit of cavity quantum electrodynamics in superconducting electrical circuits. The vacuum Rabi
frequency for the coupling of cavity photons to quantized excitations of an adjacent electrical circuit (qubit)
can easily exceed the damping rates of both the cavity and qubit. This architecture is attractive both as a
macroscopic analog of atomic physics experiments and for quantum computing and control, since it provides
strong inhibition of spontaneous emission, potentially leading to greatly enhanced qubit lifetimes, allows
high-fidelity quantum nondemolition measurements of the state of multiple qubits, and has a natural mecha-
nism for entanglement of qubits separated by centimeter distances. In addition it would allow production of
microwave photon states of fundamental importance for quantum communication.
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I. INTRODUCTION

Cavity quantum electrodynamics (CQED) studies the
properties of atoms coupled to discrete photon modes in high
Q cavities. Such systems are of great interest in the study of
the fundamental quantum mechanics of open systems, the
engineering of quantum states, and measurement-induced de-
coherence [1–3] and have also been proposed as possible
candidates for use in quantum information processing and
transmission [1–3]. Ideas for novel CQED analogs using na-
nomechanical resonators have recently been suggested by
Schwab and collaborators [4,5]. We present here a realistic
proposal for CQED via Cooper pair boxes coupled to a one-
dimensional (1D) transmission line resonator, within a
simple circuit that can be fabricated on a single microelec-
tronic chip. As we discuss, 1D cavities offer a number of
practical advantages in reaching the strong-coupling limit of
CQED over previous proposals using discrete LC circuits
[6,7], large Josephson junctions [8–10], or 3D cavities
[11–13]. Besides the potential for entangling qubits to realize
two-qubit gates addressed in those works, in the present
work we show that the CQED approach also gives strong
and controllable isolation of the qubits from the electromag-
netic environment, permits high-fidelity quantum nondemo-
lition (QND) readout of multiple qubits, and can produce
states of microwave photon fields suitable for quantum com-
munication. The proposed circuits therefore provide a simple
and efficient architecture for solid-state quantum computa-
tion, in addition to opening up a new avenue for the study of
entanglement and quantum measurement physics with mac-
roscopic objects. We will frame our discussion in a way that
makes contact between the language of atomic physics and
that of electrical engineering.
We begin in Sec. II with a brief general overview of

CQED before turning to a discussion of our proposed solid-
state realization of cavity QED in Sec. III. We then discuss in
Sec. IV the case where the cavity and qubit are tuned in
resonance and in Sec. V the case of large detuning which

leads to lifetime enhancement of the qubit. In Sec. VI, a
quantum nondemolition readout protocol is presented. Real-
ization of one-qubit logical operations is discussed in Sec.
VII and two-qubit entanglement in Sec. VIII. We show in
Sec. IX how to take advantage of encoded universality and
decoherence-free subspace in this system.

II. BRIEF REVIEW OF CAVITY QED

Cavity QED studies the interaction between atoms and the
quantized electromagnetic modes inside a cavity. In the op-
tical version of CQED [2], schematically shown in Fig. 1(a),
one drives the cavity with a laser and monitors changes in
the cavity transmission resulting from coupling to atoms fall-
ing through the cavity. One can also monitor the spontaneous
emission of the atoms into transverse modes not confined by
the cavity. It is not generally possible to directly determine
the state of the atoms after they have passed through the
cavity because the spontaneous emission lifetime is on the
scale of nanoseconds. One can, however, infer information
about the state of the atoms inside the cavity from real-time
monitoring of the cavity optical transmission.
In the microwave version of CQED [3], one uses a very-

high-Q superconducting 3D resonator to couple photons to
transitions in Rydberg atoms. Here one does not directly
monitor the state of the photons, but is able to determine
with high efficiency the state of the atoms after they have
passed through the cavity (since the excited state lifetime is
of the order of 30 ms). From this state-selective detection
one can infer information about the state of the photons in
the cavity.
The key parameters describing a CQED system (see Table

I) are the cavity resonance frequency #r, the atomic transi-
tion frequency $, and the strength of the atom-photon cou-
pling g appearing in the Jaynes-Cummings Hamiltonian [14]
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H = !"r!a†a + 12" + !#

2
$z + !g#a†$− + $+a$ + H% + H&.

#1$

Here H% describes the coupling of the cavity to the con-
tinuum which produces the cavity decay rate %="r /Q, while
H& describes the coupling of the atom to modes other than
the cavity mode which cause the excited state to decay at rate
& (and possibly also produce additional dephasing effects).
An additional important parameter in the atomic case is the

transit time ttransit of the atom through the cavity.
In the absence of damping, exact diagonalization of the

Jaynes-Cumming Hamiltonian yields the excited eigenstates
(dressed states) [15]

%+ ,n& = cos 'n%↓ ,n& + sin 'n%↑ ,n + 1& , #2$

%− ,n& = − sin 'n%↓ ,n& + cos 'n%↑ ,n + 1& , #3$

and ground state %↑ ,0& with corresponding eigenenergies

E ±,n = #n + 1$!"r ±
!

2
'4g2#n + 1$ + (2, #4$

E↑,0 = −
!(

2
. #5$

In these expressions,

'n =
1
2
tan−1!2g'n + 1

(
" , #6$

and ((#−"r the atom-cavity detuning.
Figure 1(b) shows the spectrum of these dressed states for

the case of zero detuning, (=0, between the atom and cavity.
In this situation, degeneracy of the pair of states with n+1
quanta is lifted by 2g'n+1 due to the atom-photon interac-
tion. In the manifold with a single excitation, Eqs. (2) and (3)
reduce to the maximally entangled atom-field states %± ,0&
= #%↑ ,1&± %↓ ,0&$ /'2. An initial state with an excited atom and
zero photons %↑ ,0& will therefore flop into a photon %↓ ,1& and
back again at the vacuum Rabi frequency g /). Since the
excitation is half atom and half photon, the decay rate of
%± ,0& is #%+&$ /2. The pair of states %± ,0& will be resolved in
a transmission experiment if the splitting 2g is larger than
this linewidth. The value of g=Ermsd /! is determined by the
transition dipole moment d and the rms zero-point electric
field of the cavity mode. Strong coupling is achieved when
g*% ,& [15].

FIG. 1. (Color online) (a) Standard representation of a cavity
quantum electrodynamic system, comprising a single mode of the
electromagnetic field in a cavity with decay rate % coupled with a
coupling strength g=Ermsd /! to a two-level system with spontane-
ous decay rate & and cavity transit time ttransit. (b) Energy spectrum
of the uncoupled (left and right) and dressed (center) atom-photon
states in the case of zero detuning. The degeneracy of the two-
dimensional manifolds of states with n−1 quanta is lifted by
2g'n+1. (c) Energy spectrum in the dispersive regime (long-
dashed lines). To second order in g, the level separation is indepen-
dent of n, but depends on the state of the atom.

TABLE I. Key rates and CQED parameters for optical [2] and microwave [3] atomic systems using 3D cavities, compared against the
proposed approach using superconducting circuits, showing the possibility for attaining the strong cavity QED limit #nRabi*1$. For the 1D
superconducting system, a full-wave #L=+$ resonator, "r /2)=10 GHz, a relatively low Q of 104, and coupling ,=Cg /C-=0.1 are assumed.
For the 3D microwave case, the number of Rabi flops is limited by the transit time. For the 1D circuit case, the intrinsic Cooper-pair box
decay rate is unknown; a conservative value equal to the current experimental upper bound &.1/ #2 /s$ is assumed.

Parameter Symbol 3D optical 3D microwave 1D circuit

Resonance or transition frequency "r /2), # /2) 350 THz 51 GHz 10 GHz
Vacuum Rabi frequency g /), g /"r 220 MHz, 3010−7 47 kHz, 1010−7 100 MHz, 5010−3

Transition dipole d /ea0 )1 10103 20104

Cavity lifetime 1/% ,Q 10 ns, 30107 1 ms, 30108 160 ns, 104

Atom lifetime 1/& 61 ns 30 ms 2 /s
Atom transit time ttransit 150 /s 100 /s 2

Critical atom number N0=2&% /g2 6010−3 3010−6 .6010−5

Critical photon number m0=&2 /2g2 3010−4 3010−8 .1010−6

Number of vacuum Rabi flops nRabi=2g / #%+&$ )10 )5 )102

BLAIS et al. PHYSICAL REVIEW A 69, 062320 (2004)

062320-2

For large detuning, g /!"1, expansion of Eq. (4) yields
the dispersive spectrum shown in Fig. 1(c). In this situation,
the eigenstates of the one excitation manifold take the form
[15]

!− ,0" # − $g/!%!↓ ,0" + !↑ ,1" , $7%

!+ ,0" # !↓ ,0" + $g/!%!↑ ,1" . $8%

The corresponding decay rates are then simply given by

#− ,0 & $g/!%2$ + % , $9%

#+ ,0 & $ + $g/!%2% . $10%

More insight into the dispersive regime is gained by mak-
ing the unitary transformation

U = exp' g
!

$a&+ − a†&−%( $11%

and expanding to second order in g (neglecting damping for
the moment) to obtain

UHU† ) ''(r +
g2

!
&z(a†a + '

2') +
g2

!
(&z. $12%

As is clear from this expression, the atom transition is ac
Stark/Lamb shifted by $g2 /!%$n+1/2%. Alternatively, one
can interpret the ac Stark shift as a dispersive shift of the
cavity transition by &zg2 /!. In other words, the atom pulls
the cavity frequency by ±g2 /%!.

III. CIRCUIT IMPLEMENTATION OF CAVITY QED

We now consider the proposed realization of cavity QED
using the superconducing circuits shown in Fig. 2. A 1D
transmission line resonator consisting of a full-wave section
of superconducting coplanar waveguide plays the role of the
cavity and a superconducting qubit plays the role of the
atom. A number of superconducting quantum circuits could
function as artificial atom, but for definiteness we focus here
on the Cooper-pair box [6,16–18].

A. Cavity: Coplanar stripline resonator

An important advantage of this approach is that the zero-
point energy is distributed over a very small effective volume
()10−5 cubic wavelengths) for our choice of a quasi-one-
dimensional transmission line “cavity.” As shown in Appen-
dix A, this leads to significant rms voltages Vrms

0 #*'(r /cL
between the center conductor and the adjacent ground plane
at the antinodal positions, where L is the resonator length and
c is the capacitance per unit length of the transmission line.
At a resonant frequency of 10 GHz $h* /kB#0.5 K% and for
a 10 +m gap between the center conductor and the adjacent
ground plane, Vrms#2 +V corresponding to electric fields
Erms#0.2 V/m, some 100 times larger than achieved in the
3D cavity described in Ref. [3]. Thus, this geometry might
also be useful for coupling to Rydberg atoms [19].

In addition to the small effective volume and the fact that
the on-chip realization of CQED shown in Fig. 2 can be
fabricated with existing lithographic techniques, a
transmission-line resonator geometry offers other practical
advantages over lumped LC circuits or current-biased large
Josephson junctions. The qubit can be placed within the cav-
ity formed by the transmission line to strongly suppress the
spontaneous emission, in contrast to a lumped LC circuit,
where without additional special filtering, radiation and para-
sitic resonances may be induced in the wiring [20]. Since the
resonant frequency of the transmission line is determined
primarily by a fixed geometry, its reproducibility and immu-
nity to 1/ f noise should be superior to Josephson junction
plasma oscillators. Finally, transmission-line resonances in
coplanar waveguides with Q#106 have already been dem-
onstrated [21,22], suggesting that the internal losses can be
very low. The optimal choice of the resonator Q in this ap-
proach is strongly dependent on the intrinsic decay rates of
superconducting qubits which, as described below, are pres-
ently unknown, but can be determined with the setup pro-
posed here. Here we assume the conservative case of an
overcoupled resonator with a Q#104, which is preferable for
the first experiments.

B. Artificial atom: The Cooper-pair box

Our choice of “atom,” the Cooper-pair box [6,16], is a
mesoscopic superconducting island. As shown in Fig. 3, the

FIG. 2. (Color online). Schematic layout and equivalent lumped
circuit representation of proposed implementation of cavity QED
using superconducting circuits. The 1D transmission line resonator
consists of a full-wave section of superconducting coplanar wave-
guide, which may be lithographically fabricated using conventional
optical lithography. A Cooper-pair box qubit is placed between the
superconducting lines and is capacitively coupled to the center trace
at a maximum of the voltage standing wave, yielding a strong elec-
tric dipole interaction between the qubit and a single photon in the
cavity. The box consists of two small $#100 nm,100 nm% Joseph-
son junctions, configured in a #1 +m loop to permit tuning of the
effective Josephson energy by an external flux -ext. Input and out-
put signals are coupled to the resonator, via the capacitive gaps in
the center line, from 50) transmission lines which allow measure-
ments of the amplitude and phase of the cavity transmission, and
the introduction of dc and rf pulses to manipulate the qubit states.
Multiple qubits (not shown) can be similarly placed at different
antinodes of the standing wave to generate entanglement and two-
bit quantum gates across distances of several millimeters.
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Short dephasing times pose one of the main challenges in realizing a quantum computer. Different ap-
proaches have been devised to cure this problem for superconducting qubits, a prime example being the
operation of such devices at optimal working points, so-called “sweet spots.” This latter approach led to
significant improvement of T2 times in Cooper pair box qubits #D. Vion et al., Science 296, 886 !2002"$. Here,
we introduce a new type of superconducting qubit called the “transmon.” Unlike the charge qubit, the transmon
is designed to operate in a regime of significantly increased ratio of Josephson energy and charging energy
EJ /EC. The transmon benefits from the fact that its charge dispersion decreases exponentially with EJ /EC,
while its loss in anharmonicity is described by a weak power law. As a result, we predict a drastic reduction in
sensitivity to charge noise relative to the Cooper pair box and an increase in the qubit-photon coupling, while
maintaining sufficient anharmonicity for selective qubit control. Our detailed analysis of the full system shows
that this gain is not compromised by increased noise in other known channels.
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I. INTRODUCTION

Quantum information processing has emerged as a rich,
exciting field due to both its potential applications in cryp-
tography #1$ and computational speedup #2–4$ and its value
in designing quantum systems that can be used to study fun-
damental physics in previously inaccessible regimes of pa-
rameter space. A promising physical paradigm for quantum
computers is the superconducting Josephson junction qubit
#5–7$, which is classified into three types according to their
relevant degree of freedom: charge #8,9$, flux #10,11$, and
phase #12$. These systems have potentially excellent scal-
ability thanks to well-established fabrication techniques such
as photo and electron-beam lithography. Unfortunately, su-
perconducting qubits currently have coherence times which
are not yet sufficient for error correction and scalable quan-
tum computation.

There are several different strategies for enhancing the
dephasing times in superconducting qubits. One approach
#13$ is to improve the properties of junctions and materials to
eliminate excess sources of 1 / f noise, whose origin remains
unclear so far. This is a difficult and costly process, but it is
likely to benefit a wide range of qubit designs when it is
successful. A second approach is the elimination of linear
noise sensitivity by operating qubits at optimal working
points. So-called “sweet-spot” operation has already demon-
strated #14$ an increase in dephasing times over previous
experiments #9$ which could be as large as three orders of
magnitude, and illustrates that simple tailoring of quantum
circuit design can boost qubit performance. In the long run, a
combination of both strategies will probably be necessary to
realize a scalable design for superconducting quantum com-
puting.

In this paper, we follow the second approach and propose
a new superconducting qubit: a transmission-line shunted
plasma oscillation qubit, which we call the transmon. In its

design, it is closely related to the Cooper pair box !CPB"
qubit in Ref. #8$. However, the transmon is operated at a
significantly different ratio of Josephson energy to charging
energy. This design choice, as we will show, should lead to
dramatically improved dephasing times.

Two quantities crucial to the operation of a CPB are the
anharmonicity and the charge dispersion of the energy levels.
A sufficiently large anharmonicity is needed to prevent qubit
operations from exciting other transitions in the system. The
charge dispersion describes the variation of the energy levels
with respect to environmental offset charge and gate voltage,
and determines the sensitivity of the CPB to charge noise:
the smaller the charge dispersion, the less the qubit fre-
quency will change in response to gate charge fluctuations.
The magnitudes of charge dispersion and anharmonicity are
both determined by the ratio of the Josephson energy to the
charging energy EJ /EC. Increasing this ratio reduces the
!relative" energy level anharmonicity !which limits the speed
of qubit operations". However, it also decreases the overall
charge dispersion and thus the sensitivity of the box to
charge noise. This reduction is important, since even with
operation at the first-order insensitive sweet spot, the Cooper
pair box can be limited by higher-order effects of the 1/ f
charge noise #15$, and by the problem of quasiparticle poi-
soning, which can both shift the box from its optimal point.

The transmon exploits a remarkable fact: the charge dis-
persion reduces exponentially in EJ /EC, while the anharmo-
nicity only decreases algebraically with a slow power law in
EJ /EC #16$. Consequently, by operating the transmon at a
much larger EJ /EC ratio than the CPB, one can greatly re-
duce charge noise sensitivity in the qubit while only sacrific-
ing a small amount of anharmonicity. In fact, the charge
dispersion can be so strongly suppressed that the qubit be-
comes practically insensitive to charge. This eliminates the
need for individual electrostatic gates and tuning to a charge
sweet spot, and avoids the susceptibility to quasiparticle poi-
soning, which both benefit the scaling to larger numbers of
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rate ψ (resonance line width) and the qubit decay rate γ  (trans-
ition line width).

One typically distinguishes between four cases of qubit-
oscillator coupling:

 (i) Weak coupling: g ≪ γ,κ, ϵ,ω ; RWA valid for ϵ− ω ≪ ω.
 (ii) Strong coupling: γ,κ≪ g ≪ ϵ,ω ; RWA valid; vacuum 

Rabi oscillations.
 (iii) Ultra-strong coupling (USC): g/ω ! 1; RWA breaks 

down; ĤAJC counter-rotating term important.
 (iv) Deep-strong coupling (DSC): g/ω ! 1; RWA not valid at 

all; ĤAJC essential; qubit-oscillator compound system.

In the two cases of weak and strong coupling, one performs 
the rotating-wave approximation (RWA) and only keeps the 
first ĤJC

qr  term, which gives the canonical Jaynes–Cummings 
model [209, 212, 213],

H ≈ −1
2
ϵ σz + g (σ+a + σ−a+) + !ω (a+a) (11)

describing dipole coupling of a two-level system to an oscil-
lator. In the non-resonant case, diagonalising the Jaynes–
Cummings Hamiltonian to second order by a unitary 
transformation gives [21, 25, 213]

H = −1
2
(ϵ+

g2

∆
) σz + (!ω +

g2

∆
σz) a+a (12)

where ∆ = ϵ− !ω ≫ g is the so-called detuning. The result 
implies that (i) the qubit transition energy ε is Stark shifted 
(renormalized) by the coupling to the oscillator, and (ii) the 
oscillator energy !ω is shifted by the qubit in different direc-
tions depending on the state of the qubit. This condition allows 
discriminating the two qubit states in dispersive readout mea-
surement [21, 23].

The strong coupling situation [17, 18, 21] was demon-
strated experimentally already in 2004 with superconducting 
CPB-cQED [23] by direct physical coupling of the CPB and 
the 2D resonator. The ultra-strong coupling case [210, 214] is 
more difficult to achieve by direct statical physical coupling 
of a transmon qubit and a resonator, and but has recently been 
achieved experimentally using  ux qubit cQED [126–128]. 
On the other hand, it is possible to simulate the QRM in the 
USC and DSC regimes by external time-dependent driving 
of the oscillator in analogue [214, 215] or digital [216–218] 
quantum simulation schemes.

4.3. Multi-qubit Transmon Hamiltonians

In the following we will focus on transmon multi-qubit sys-
tems, and then the Hamiltonian takes the general form (omit-
ting the harmonic oscillator term):

Ĥ = Ĥq + Ĥqr + Ĥqq

= −1
2

∑

i

ϵi σzi +
∑

i

gi σxi(a + a+) +
1
2

∑

i,j;ν

λν,ij σνi σνj

 (13)

For simplicity, in equationfl(13) the qubit-resonator term Ĥqr  
is considered only to refer to readout and bus operations, leav-
ing indirect qubit–qubit interaction via the resonator to be 
included in Ĥqq  via the coupling constant λν,ij.

4.3.1. Capacitive coupling. This case (figure 6(b)) is 
described by an Ising-type model Hamiltonian with direct 
capacitive (Cc) qubit–qubit charge coupling. For the trans-
mon [55],

H = −
∑

i=1,2

ϵi

2
σzi + λ12 σx1σx2 (14)

λ12 =
1
2
√

E10,1E10,2

√
EC1EC2

ECc
=

1
2
√

E10,1E10,2
Cc√
C1C2

≈ 1
2

E10
Cc

C
 

(15)
where the approximate result for λ12 refers to identical qubits 
in resonance. In the RWA one finally obtains the Jaynes–
Cummings Hamiltonian

H = −
∑

i=1,2

ϵi

2
σzi + λ12(σ

+
1 σ

−
2 + σ−

1 σ
+
2 ) (16)

4.3.2. Resonator coupling. In this case (figure 6(c)) the cou-
pling is primarily indirect, via virtual excitation (polarisation) 
of the detuned bus resonator. Diagonalisation of the Hamilto-
nian gives the usual second-order qubit–qubit coupling [21, 
24, 55]:

H = −
∑

i=1,2

ϵi

2
σzi + λ12 σx1 σx2

 
(17)

λ12 =
1
2

g1g2 (
1
∆1

+
1
∆2

) ≡ g1g2
1
∆

 (18)

Figure 5. Transmon-cQED: (a) Equivalent circuit (see text); (b) Physical device. The 2-JJ SQUID is located at the centre of a large 
interdigitated shunt capacitor (CB), and the entire transmon is capacitively coupled to a coplanar waveguide (CPW) resonator (LrCr).  
The transmon is not grounded—it is  oating and driven differentially. Reprinted figure with permission from [25], Copyright (2007) by the 
American Physical Society.
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rate ψ (resonance line width) and the qubit decay rate γ  (trans-
ition line width).

One typically distinguishes between four cases of qubit-
oscillator coupling:

 (i) Weak coupling: g ≪ γ,κ, ϵ,ω ; RWA valid for ϵ− ω ≪ ω.
 (ii) Strong coupling: γ,κ≪ g ≪ ϵ,ω ; RWA valid; vacuum 
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down; ĤAJC counter-rotating term important.
 (iv) Deep-strong coupling (DSC): g/ω ! 1; RWA not valid at 

all; ĤAJC essential; qubit-oscillator compound system.

In the two cases of weak and strong coupling, one performs 
the rotating-wave approximation (RWA) and only keeps the 
first ĤJC

qr  term, which gives the canonical Jaynes–Cummings 
model [209, 212, 213],

H ≈ −1
2
ϵ σz + g (σ+a + σ−a+) + !ω (a+a) (11)

describing dipole coupling of a two-level system to an oscil-
lator. In the non-resonant case, diagonalising the Jaynes–
Cummings Hamiltonian to second order by a unitary 
transformation gives [21, 25, 213]

H = −1
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where ∆ = ϵ− !ω ≫ g is the so-called detuning. The result 
implies that (i) the qubit transition energy ε is Stark shifted 
(renormalized) by the coupling to the oscillator, and (ii) the 
oscillator energy !ω is shifted by the qubit in different direc-
tions depending on the state of the qubit. This condition allows 
discriminating the two qubit states in dispersive readout mea-
surement [21, 23].

The strong coupling situation [17, 18, 21] was demon-
strated experimentally already in 2004 with superconducting 
CPB-cQED [23] by direct physical coupling of the CPB and 
the 2D resonator. The ultra-strong coupling case [210, 214] is 
more difficult to achieve by direct statical physical coupling 
of a transmon qubit and a resonator, and but has recently been 
achieved experimentally using  ux qubit cQED [126–128]. 
On the other hand, it is possible to simulate the QRM in the 
USC and DSC regimes by external time-dependent driving 
of the oscillator in analogue [214, 215] or digital [216–218] 
quantum simulation schemes.

4.3. Multi-qubit Transmon Hamiltonians

In the following we will focus on transmon multi-qubit sys-
tems, and then the Hamiltonian takes the general form (omit-
ting the harmonic oscillator term):

Ĥ = Ĥq + Ĥqr + Ĥqq

= −1
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∑
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For simplicity, in equationfl(13) the qubit-resonator term Ĥqr  
is considered only to refer to readout and bus operations, leav-
ing indirect qubit–qubit interaction via the resonator to be 
included in Ĥqq  via the coupling constant λν,ij.

4.3.1. Capacitive coupling. This case (figure 6(b)) is 
described by an Ising-type model Hamiltonian with direct 
capacitive (Cc) qubit–qubit charge coupling. For the trans-
mon [55],
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where the approximate result for λ12 refers to identical qubits 
in resonance. In the RWA one finally obtains the Jaynes–
Cummings Hamiltonian
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4.3.2. Resonator coupling. In this case (figure 6(c)) the cou-
pling is primarily indirect, via virtual excitation (polarisation) 
of the detuned bus resonator. Diagonalisation of the Hamilto-
nian gives the usual second-order qubit–qubit coupling [21, 
24, 55]:
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Figure 5. Transmon-cQED: (a) Equivalent circuit (see text); (b) Physical device. The 2-JJ SQUID is located at the centre of a large 
interdigitated shunt capacitor (CB), and the entire transmon is capacitively coupled to a coplanar waveguide (CPW) resonator (LrCr).  
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rate ψ (resonance line width) and the qubit decay rate γ  (trans-
ition line width).

One typically distinguishes between four cases of qubit-
oscillator coupling:

 (i) Weak coupling: g ≪ γ,κ, ϵ,ω ; RWA valid for ϵ− ω ≪ ω.
 (ii) Strong coupling: γ,κ≪ g ≪ ϵ,ω ; RWA valid; vacuum 

Rabi oscillations.
 (iii) Ultra-strong coupling (USC): g/ω ! 1; RWA breaks 

down; ĤAJC counter-rotating term important.
 (iv) Deep-strong coupling (DSC): g/ω ! 1; RWA not valid at 

all; ĤAJC essential; qubit-oscillator compound system.

In the two cases of weak and strong coupling, one performs 
the rotating-wave approximation (RWA) and only keeps the 
first ĤJC

qr  term, which gives the canonical Jaynes–Cummings 
model [209, 212, 213],

H ≈ −1
2
ϵ σz + g (σ+a + σ−a+) + !ω (a+a) (11)

describing dipole coupling of a two-level system to an oscil-
lator. In the non-resonant case, diagonalising the Jaynes–
Cummings Hamiltonian to second order by a unitary 
transformation gives [21, 25, 213]

H = −1
2
(ϵ+

g2

∆
) σz + (!ω +

g2

∆
σz) a+a (12)

where ∆ = ϵ− !ω ≫ g is the so-called detuning. The result 
implies that (i) the qubit transition energy ε is Stark shifted 
(renormalized) by the coupling to the oscillator, and (ii) the 
oscillator energy !ω is shifted by the qubit in different direc-
tions depending on the state of the qubit. This condition allows 
discriminating the two qubit states in dispersive readout mea-
surement [21, 23].

The strong coupling situation [17, 18, 21] was demon-
strated experimentally already in 2004 with superconducting 
CPB-cQED [23] by direct physical coupling of the CPB and 
the 2D resonator. The ultra-strong coupling case [210, 214] is 
more difficult to achieve by direct statical physical coupling 
of a transmon qubit and a resonator, and but has recently been 
achieved experimentally using  ux qubit cQED [126–128]. 
On the other hand, it is possible to simulate the QRM in the 
USC and DSC regimes by external time-dependent driving 
of the oscillator in analogue [214, 215] or digital [216–218] 
quantum simulation schemes.

4.3. Multi-qubit Transmon Hamiltonians

In the following we will focus on transmon multi-qubit sys-
tems, and then the Hamiltonian takes the general form (omit-
ting the harmonic oscillator term):

Ĥ = Ĥq + Ĥqr + Ĥqq

= −1
2

∑

i

ϵi σzi +
∑

i

gi σxi(a + a+) +
1
2

∑

i,j;ν

λν,ij σνi σνj

 (13)

For simplicity, in equationfl(13) the qubit-resonator term Ĥqr  
is considered only to refer to readout and bus operations, leav-
ing indirect qubit–qubit interaction via the resonator to be 
included in Ĥqq  via the coupling constant λν,ij.

4.3.1. Capacitive coupling. This case (figure 6(b)) is 
described by an Ising-type model Hamiltonian with direct 
capacitive (Cc) qubit–qubit charge coupling. For the trans-
mon [55],

H = −
∑

i=1,2

ϵi

2
σzi + λ12 σx1σx2 (14)

λ12 =
1
2
√

E10,1E10,2

√
EC1EC2

ECc
=

1
2
√

E10,1E10,2
Cc√
C1C2

≈ 1
2

E10
Cc

C
 

(15)
where the approximate result for λ12 refers to identical qubits 
in resonance. In the RWA one finally obtains the Jaynes–
Cummings Hamiltonian

H = −
∑

i=1,2

ϵi

2
σzi + λ12(σ

+
1 σ

−
2 + σ−

1 σ
+
2 ) (16)

4.3.2. Resonator coupling. In this case (figure 6(c)) the cou-
pling is primarily indirect, via virtual excitation (polarisation) 
of the detuned bus resonator. Diagonalisation of the Hamilto-
nian gives the usual second-order qubit–qubit coupling [21, 
24, 55]:

H = −
∑

i=1,2

ϵi

2
σzi + λ12 σx1 σx2

 
(17)

λ12 =
1
2

g1g2 (
1
∆1

+
1
∆2

) ≡ g1g2
1
∆

 (18)

Figure 5. Transmon-cQED: (a) Equivalent circuit (see text); (b) Physical device. The 2-JJ SQUID is located at the centre of a large 
interdigitated shunt capacitor (CB), and the entire transmon is capacitively coupled to a coplanar waveguide (CPW) resonator (LrCr).  
The transmon is not grounded—it is  oating and driven differentially. Reprinted figure with permission from [25], Copyright (2007) by the 
American Physical Society.
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rate ψ (resonance line width) and the qubit decay rate γ  (trans-
ition line width).

One typically distinguishes between four cases of qubit-
oscillator coupling:

 (i) Weak coupling: g ≪ γ,κ, ϵ,ω ; RWA valid for ϵ− ω ≪ ω.
 (ii) Strong coupling: γ,κ≪ g ≪ ϵ,ω ; RWA valid; vacuum 

Rabi oscillations.
 (iii) Ultra-strong coupling (USC): g/ω ! 1; RWA breaks 

down; ĤAJC counter-rotating term important.
 (iv) Deep-strong coupling (DSC): g/ω ! 1; RWA not valid at 

all; ĤAJC essential; qubit-oscillator compound system.
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the rotating-wave approximation (RWA) and only keeps the 
first ĤJC
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wells separated by a barrier at the bottom of the parabola. 
This defines two low-lying ‘bonding-antibonding’ qubit 
levels describing superpositions of left- and right- rotating  
supercurrents: |L⟩± |R⟩. Since the inductive SQUID loop is 
large, this  ux qubit is sensitive to  ux noise, and the relax-
ation and coherence times are quite short, ∼20 ns [122], prob-
ably due to two-level  uctuators in the Nb/AlOx/Nb trilayer 

junction [122]. The D-Wave Systems’  ux qubit is of this type 
[123, 124].

3.3.3. Three-JJ flux qubit. The three-JJ  ux qubit [13, 14, 
125] consists of an rf-SQUID where the inductor L has been 
replaced by two JJs to provide large inductance with a small 
SQUID ring. Since the added JJs also create an oscillating 

Figure 3. Level spectrum (band structure) of the Cooper pair box (CPB) as a function of the offset charge ng for different ratios EJ0/EC 
[25]: (a) charge qubit [23]; (b) Quantronium [15]; (d) Transmon [25]. ‘Historically’, the CPB evolved from the original charge qubit (1999) 
[11] via the quantronium (2002) [15, 204, 207] and CPB-cQED (2004) [21, 23], to the transmon (2007) [25] and the Xmon (2013) [149, 
150]. The charge dispersion decreases exponentially with EJ0/EC, while the anharmonicity only decreases algebraically with a slow power 
law in EJ0/EC [25, 204]—this makes it possible to individually address selected transitions even for quite large ratios of EJ0/EC. Reprinted 
figure with permission from [25], Copyright (2007) by the American Physical Society.

Table 1. Main types of Josephson junction (JJ) based qubit circuits.

C CJ L LJ0 EL/EJ0 EJ0/EC Z

fF fF pH pH Ω
1. Phase qubit [16] 0 6000 3300 16 0.005 ∼106 ∼1.5
2. Phase qubit [115] 800 ∼0 720 ∼80 0.11 ∼104 ∼15
3. rf-SQUID [12] 0 40 238 101 0.43 2000 48
4. Flux qubit [125] 0 3 1200 600 0.5 10 450
5. Fluxonium [137] 0.15 ∼0 3300 150 0.045 1 1400
6. C-shunt [140] 50 ∼0 15 000 4500 0.3 25 480
7. Charge qubit [11] 0.68 ∼0 ∞ 808 0 0.018 ∼104

8. Quantronium [15] 2.8 ∼0 ∞ 1.1 104 0 1.27 1300
9. Transmon [25, 26] 15–40 ∼0 ∞ ∼103 0 10–50 ∼250
10. Xmon [149] 100 ∼0 ∞ ∼104 0 22–28 ∼500
11. Gatemon [153] 100 ∼0 ∞ ∼104 0 17-32 ∼500

Charging energy of one Cooper pair (2e): EC = (2e)2/2C
Inductive energy: EL = !2/(4e2L)
Josephson energy: EJ0 = !2/(4e2LJ0)
Resistance ‘quantum’: RQ = !/(2e)2 ≈ 1.027 059 kΩ
Impedance: Z ∼

√
LJ0/C = RQ

√
2/

√
EJ0/EC
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L̂z= !r!p" ·ez=−i" !
!# , so that the rotor’s Hamiltonian reads

Hrot =
L̂z

2

2ml2 − mgl cos # . !2.6"

Identifying the !integer-valued" number operator for Cooper
pairs with the angular momentum of the rotor, n̂↔ L̂z /", and
relating EJ↔mgl, EC↔ !"2 /8ml2", one finds that the rotor
Hamiltonian is identical to the transmon Hamiltonian with
ng=0.

To capture the case of a nonzero offset charge, we imag-
ine that the mass also carries an electrical charge q and
moves in a homogeneous magnetic field with strength B0 in z
direction. Representing the magnetic field by the vector po-
tential A=B0!−y ,x ,0" /2 !symmetric gauge" and noting that
the vector potential enters the Hamiltonian according to

p → p − qA ⇒ Lz → Lz + 1
2qB0l2, !2.7"

one finds that the offset charge ng can be identified with
qB0l2 /2". This establishes a one-to-one mapping between
the transmon system and the charged quantum rotor in a
constant magnetic field. We emphasize that for the transmon
!and CPB" the island charge is well defined so that n̂ has
discrete eigenvalues and # is a compact variable leading to
$!#"=$!#+2%". In the rotor picture, this corresponds to the

fact that the eigenvalues of the angular momentum L̂z are
discrete and that the “positions” # and #+2% are identical. It
is important to note that this mapping is different from the
tilted washboard model used within the context of resistively
shunted junctions, see, e.g., #27$, and must not be confused
with this case.

In the transmon regime, i.e., large EJ /EC, the dynamics of
the rotor is dominated by the strong gravitational field. Ac-
cordingly, small oscillation amplitudes around #=0 are fa-
vored; see Fig. 3. Perturbation theory for small angles imme-

diately leads to an anharmonic oscillator with quartic
perturbation !Duffing oscillator". !This method will be em-
ployed in Sec. II C to obtain the leading-order anharmonicity
corrections." However, the charge dispersion &m cannot be
captured in such a perturbative picture. Within the perturba-
tive approach !at any finite order" the # periodicity is lost
and the angular variable becomes noncompact, −' (#('.
Now, in the absence of the boundary condition $!#+2%"
=$!#" the vector potential can be eliminated by a gauge
transformation. In other words, the effect of the offset charge
ng only enters through the rare event of a full 2% rotation, in
which case the system picks up an Aharonov-Bohm-type
phase. This corresponds to “instanton” tunneling events
through the cosine potential barrier to adjacent wells, and
explains the WKB-type exponential decrease of the charge
dispersion. It is interesting to note that the nonvanishing
charge dispersion is truly a nonperturbative quantum effect,
which can be ascribed to the discreteness of charge or
equivalently to the peculiar role of the vector potential in
quantum mechanics leading to the Aharonov-Bohm effect.

The comparison between the exact result for the charge
dispersion and the asymptotic expansion is depicted in Fig.
4!a". The requirements on the largeness of EJ /EC are seen to
become stricter for increasing level index. For the transmon,
we will mainly focus on the lowest two levels, for which Eq.
!2.5" constitutes a very good approximation when EJ /EC
)20. Asymptotically, the differential charge dispersion
!E01/!ng is dominated by the contribution from the first ex-
cited level, so that from Eqs. !2.3" and !2.5" we have

FIG. 3. !Color online" !a" Rotor analogy for the transmon. The
transmon Hamiltonian can be understood as a charged quantum
rotor in a constant magnetic field %ng. For large EJ /EC, there is a
significant “gravitational” pull on the pendulum and the system
typically remains in the vicinity of #=0. Only tunneling events
between adjacent cosine wells !i.e., a full 2% rotor movement" will
acquire an Aharonov-Bohm-type phase due to ng. The tunneling
probability decreases exponentially with EJ /EC, explaining the ex-
ponential decrease of the charge dispersion. !b" Cosine potential
!black solid line" with corresponding eigenenergies and squared
moduli of the eigenfunctions.

FIG. 4. !Color online" Comparison of numerically exact and
asymptotic expressions for the charge dispersion and energy levels.
!a" Charge dispersion &&m& as a function of the ratio EJ /EC for the
lowest four levels. The solid curves depict the exact results using
Mathieu characteristic values, the dashed curves represent the
asymptotic expansion, Eq. !2.5". The right vertical scale gives the
charge dispersion in MHz for a transition frequency of 7 GHz. !b"
Energy level difference E0m=Em−E0 at ng=1/2 as a function of the
EJ /EC ratio. Solid curves show the exact results; dashed lines are
based on the asymptotic expression !2.11". The vertical scale on the
right-hand side gives the transition frequencies from the ground
state to level m in GHz, assuming a charging energy of EC /h
=0.35 GHz. All numerical data are obtained for ng=1/2.
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FIG. 1. (Color online) (a) A two-dimensional array implementa-
tion of the surface code. Data qubits are open circles (◦), measurement
qubits are solid circles (•), with measure-Z qubits colored green
(dark) and measure-X qubits colored orange (light). Away from
the boundaries, each data qubit contacts four measure qubits, and
each measure qubit contacts four data qubits; the measure qubits
perform four-terminal measurements. On the boundaries, the measure
qubits contact only three data qubits and perform three-terminal
measurements, and the data qubits contact either two or three measure
qubits. The solid line surrounding the array indicates the array
boundary. (b) Geometric sequence of operations (left), and quantum
circuit (right) for one surface code cycle for a measure-Z qubit,
which stabilizes ẐaẐbẐcẐd . (c) Geometry and quantum circuit for
a measure-X qubit, which stabilizes X̂aX̂bX̂cX̂d . The two identity Î

operators for the measure-Z process, which are performed by simply
waiting, ensure that the timing on the measure-X qubit matches that
of the measure-Z qubit, the former undergoing two Hadamard Ĥ

operations. The identity operators come at the beginning and end of
the sequence, reducing the impact of any errors during these steps.

IV. QUIESCENT STATE OF THE SURFACE CODE

The measure-Z and measure-X qubits that stabilize the
surface code are operated in a very particular sequence,
with one complete cycle shown in Figs. 1(b) and 1(c),
for a single measure-Z and measure-X qubit, respectively.
After initializing each measure qubit in its ground state |g〉,
the heart of the sequence comprises four CNOT operations
followed by a projective measurement. For the measure-Z
qubit, the CNOTs target the measure qubit with the four
nearest-neighbor data qubits as the controls, with the
projective measurement yielding an eigenstate of ẐaẐbẐcẐd

(see Appendix B, as well as [38]; eigenstates are listed
in Table III). For the measure-X qubit, the four CNOTs

TABLE III. Eigenstates for the four-qubit stabilizers ẐaẐbẐcẐd

and X̂aX̂bX̂cX̂d .

Eigenvalue ẐaẐbẐcẐd X̂aX̂bX̂cX̂d

+1 |gggg〉 | + + + +〉
|ggee〉 | + + − −〉
|geeg〉 | + − − +〉
|eegg〉 | − − + +〉
|egge〉 | − + + −〉
|gege〉 | + − + −〉
|egeg〉 | − + − +〉
|eeee〉 | − − − −〉

−1 |ggge〉 | + + + −〉
|ggeg〉 | + + − +〉
|gegg〉 | + − + +〉
|eggg〉 | − + + +〉
|geee〉 | + − − −〉
|egee〉 | − + − −〉
|eege〉 | − − + −〉
|eeeg〉 | − − − +〉

target the nearest-neighbor data qubits using the measure
qubit as the control, and the sequence also includes a
Hadamard applied to the measure qubit before and after
the CNOTs; the projective measurement yields an eigenstate
of X̂aX̂bX̂cX̂d . Hence, after the projective measurement of
all the measure qubits in the array, the state |ψ〉 of all the
data qubits simultaneously satisfies ẐaẐbẐcẐd |ψ〉 =
Zabcd |ψ〉, with eigenvalues Zabcd = ±1, and
X̂aX̂bX̂cX̂d |ψ〉 = Xabcd |ψ〉 with eigenvalues Xabcd = ±1.
Following measurement, the cycle is repeated.7 The measure
qubits in Figs. 1(b) and 1(c) all operate in lockstep, so that
every step in the cycle shown in the figure is completed over
the entire two-dimensional (2D) array before the next step
begins. We note that the zig-zag sequence abcd followed by
each of the measure qubits is quite particular and cannot be
easily modified while preserving the stabilizer property (see
Appendix B).

Stabilizer codes have the remarkable property that they do
not operate from the system ground state, but instead from the
state |ψ〉 that results from the concurrent measurement of all
the stabilizers; we call this the quiescent state. The quiescent
state |ψ〉 is randomly selected by completing one full surface
code cycle, which is the sequence shown in Figs. 1(b) and 1(c),
starting, for example, with all data and measurement qubits in
their ground states |g〉.

7A capital italic letter with a “hat,” for example, X̂, designates
an operator, while a capital italic letter by itself, X, represents
the outcome of a measurement of that operator, which must be
an eigenvalue of the operator. A stabilizer X̂aX̂bX̂cX̂d is the outer
product of four physical qubit X̂j operators, so would be represented
by a 24 × 24 = 16 × 16 matrix; its measurement outcome Xabcd is
an eigenvalue of this matrix. Note measuring the product X̂aX̂bX̂cX̂d

does not yield the same result as measuring each individual X̂a , X̂b,
X̂c, and X̂d , as the qubits are, in general, not in a product eigenstate
of the individual X̂j operators, so measuring the individual X̂j would
cause undesirable projections.
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FIG. 1. (Color online) (a) A two-dimensional array implementa-
tion of the surface code. Data qubits are open circles (◦), measurement
qubits are solid circles (•), with measure-Z qubits colored green
(dark) and measure-X qubits colored orange (light). Away from
the boundaries, each data qubit contacts four measure qubits, and
each measure qubit contacts four data qubits; the measure qubits
perform four-terminal measurements. On the boundaries, the measure
qubits contact only three data qubits and perform three-terminal
measurements, and the data qubits contact either two or three measure
qubits. The solid line surrounding the array indicates the array
boundary. (b) Geometric sequence of operations (left), and quantum
circuit (right) for one surface code cycle for a measure-Z qubit,
which stabilizes ẐaẐbẐcẐd . (c) Geometry and quantum circuit for
a measure-X qubit, which stabilizes X̂aX̂bX̂cX̂d . The two identity Î

operators for the measure-Z process, which are performed by simply
waiting, ensure that the timing on the measure-X qubit matches that
of the measure-Z qubit, the former undergoing two Hadamard Ĥ

operations. The identity operators come at the beginning and end of
the sequence, reducing the impact of any errors during these steps.

IV. QUIESCENT STATE OF THE SURFACE CODE

The measure-Z and measure-X qubits that stabilize the
surface code are operated in a very particular sequence,
with one complete cycle shown in Figs. 1(b) and 1(c),
for a single measure-Z and measure-X qubit, respectively.
After initializing each measure qubit in its ground state |g〉,
the heart of the sequence comprises four CNOT operations
followed by a projective measurement. For the measure-Z
qubit, the CNOTs target the measure qubit with the four
nearest-neighbor data qubits as the controls, with the
projective measurement yielding an eigenstate of ẐaẐbẐcẐd

(see Appendix B, as well as [38]; eigenstates are listed
in Table III). For the measure-X qubit, the four CNOTs

TABLE III. Eigenstates for the four-qubit stabilizers ẐaẐbẐcẐd

and X̂aX̂bX̂cX̂d .
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target the nearest-neighbor data qubits using the measure
qubit as the control, and the sequence also includes a
Hadamard applied to the measure qubit before and after
the CNOTs; the projective measurement yields an eigenstate
of X̂aX̂bX̂cX̂d . Hence, after the projective measurement of
all the measure qubits in the array, the state |ψ〉 of all the
data qubits simultaneously satisfies ẐaẐbẐcẐd |ψ〉 =
Zabcd |ψ〉, with eigenvalues Zabcd = ±1, and
X̂aX̂bX̂cX̂d |ψ〉 = Xabcd |ψ〉 with eigenvalues Xabcd = ±1.
Following measurement, the cycle is repeated.7 The measure
qubits in Figs. 1(b) and 1(c) all operate in lockstep, so that
every step in the cycle shown in the figure is completed over
the entire two-dimensional (2D) array before the next step
begins. We note that the zig-zag sequence abcd followed by
each of the measure qubits is quite particular and cannot be
easily modified while preserving the stabilizer property (see
Appendix B).

Stabilizer codes have the remarkable property that they do
not operate from the system ground state, but instead from the
state |ψ〉 that results from the concurrent measurement of all
the stabilizers; we call this the quiescent state. The quiescent
state |ψ〉 is randomly selected by completing one full surface
code cycle, which is the sequence shown in Figs. 1(b) and 1(c),
starting, for example, with all data and measurement qubits in
their ground states |g〉.

7A capital italic letter with a “hat,” for example, X̂, designates
an operator, while a capital italic letter by itself, X, represents
the outcome of a measurement of that operator, which must be
an eigenvalue of the operator. A stabilizer X̂aX̂bX̂cX̂d is the outer
product of four physical qubit X̂j operators, so would be represented
by a 24 × 24 = 16 × 16 matrix; its measurement outcome Xabcd is
an eigenvalue of this matrix. Note measuring the product X̂aX̂bX̂cX̂d

does not yield the same result as measuring each individual X̂a , X̂b,
X̂c, and X̂d , as the qubits are, in general, not in a product eigenstate
of the individual X̂j operators, so measuring the individual X̂j would
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Superconducting quantum circuits at the surface
code threshold for fault tolerance
R. Barends1*, J. Kelly1*, A.Megrant1, A.Veitia2, D. Sank1, E. Jeffrey1, T. C.White1, J.Mutus1, A.G. Fowler1,3, B. Campbell1, Y. Chen1,
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A. N. Cleland1 & John M. Martinis1

Aquantumcomputercansolvehardproblems,suchasprimefactoring1,2,
database searching3,4 and quantum simulation5, at the cost of need-
ing to protect fragile quantum states from error. Quantum error
correction6 provides this protection by distributing a logical state
amongmany physical quantum bits (qubits) by means of quantum
entanglement. Superconductivity is a useful phenomenon in this
regard, because it allows the construction of large quantum circuits
and is compatiblewithmicrofabrication.For superconductingqubits,
the surface code approach to quantum computing7 is a natural choice
for error correction, because it uses only nearest-neighbour coupling
and rapidly cycled entangling gates. The gate fidelity requirements
aremodest: the per-step fidelity threshold is only about 99 per cent.
Herewe demonstrate a universal set of logic gates in a superconduc-
ting multi-qubit processor, achieving an average single-qubit gate
fidelity of 99.92 per cent and a two-qubit gate fidelity of up to 99.4
per cent. This places Josephson quantum computing at the fault-
tolerance threshold for surface code error correction.Our quantum
processor is a first step towards the surface code, using five qubits
arranged in a linear arraywithnearest-neighbour coupling. As a fur-
ther demonstration, we construct a five-qubitGreenberger–Horne–
Zeilinger state8,9 using the complete circuit and full set of gates. The
results demonstrate that Josephson quantum computing is a high-
fidelity technology,with a clear path to scalingup to large-scale, fault-
tolerant quantum circuits.
Fault tolerance in the surface code is achieved by placing physical

qubits in a chequerboard pattern, with white squares representing data
and black squares representingmeasurement qubits that detect errors.
To perform this detection, each measurement qubit needs to interact
with its four neighbouring data qubits. All that is needed for these inter-
actions are single- and two-qubit gates with sufficiently high fidelity.
Thehigh fidelity demonstratedhere is achieved through a combination
of coherent qubits, a straightforward interconnection architecture and
a novel implementation of the two-qubit controlled-phase entangling
gate. The controlled-phase gate uses a fast but adiabatic qubit frequency
tuning that minimizes error10.
Here the tuneable nature of the qubits and their entangling gates pro-

vides both high fidelity and fast control. Previous demonstrations of
two-qubit gates achieving.99% fidelity used fixed-frequency qubits:
systemsbased onnuclearmagnetic resonance and ion traps have shown
two-qubit gates with fidelities of 99.5% (ref. 11) and 99.3% (ref. 12).
Recently, for a five-qubit ion trap13 and a three-qubit superconducting
system14, two-qubit entanglinggate fidelitiesof95%and96%werereported.
Superconductivity allows for the construction of large quantum inte-

grated circuits as the electrons are condensed into a singlemacroscopic
quantum state.Wehavedesigned a processor to test our ability to imple-
ment the surface code; it consists of five cross-shaped transmon qubits
(Xmons) with nearest-neighbour coupling, arranged in a linear array
(Fig. 1). TheXmonqubit15 offers a nodal approach to connectivitywhile

maintaining a high level of coherence (see Supplementary Information
for decoherence times).Here the four legsof the cross allow for anatural
segmentationof the design into coupling, control and readout.We choose
a modest inter-qubit capacitive coupling strength of g/2p5 30MHz
and use alternating qubit idle frequencies of 5.5 and 4.7GHz, enabling
a controlled-phase gate in 40 ns when two qubits are brought near res-
onance, while minimizing the effective coupling to 0.3MHz when the
qubits are at their idle points. Rotations around theX andY axes in the
Bloch sphere representation are performed using pulses on themicro-
wave (XY) line, whereasZ-axis rotations, which control the phase of the
quantum state, are achieved by a flux-bias current on the frequency-
control (Z) line. We use a dispersive measurement method16 whereby
each qubit is coupled to a readout resonator with a distinct resonance
frequency, enabling simultaneous readout using frequency-domainmul-
tiplexing through a single coplanar waveguide17. The modularity of this
architecturemakes it straightforward to integratemorequbits in the circuit.
We characterize our gate fidelities using Clifford-based randomized

benchmarking11,18,19. TheClifford group is a set of rotations that evenly
samples the Hilbert space, and the benchmarking thus averages across
errors. For the single-qubit case, the Clifford gates (which we hence-
forth refer to simply as Cliffords) comprise p, p/2 and 2p/3 rotations
(Supplementary Information). In randomized benchmarking, a logic
gate is characterized by measuring its performance when it is inter-
leaved with many random sequences of gates, making the measured
fidelity resilient to state preparation and measurement errors. We first
perform a control experiment on a ground-state qubit by generating a
random sequence ofm Cliffords; appending the unique recovery Clif-
ford (Cr) that inverts the sequence; and averaging the experimental
sequence fidelity, the final ground-state population, over k different
sequences19,20. The resulting reference sequence fidelity, Fref, is fitted to
Fref5Apref

m1B, where pref is the sequence decay, and state prepara-
tion and measurement errors are captured in the parameters A and B.
The average error per Clifford of the reference is given by rref5 (12
pref)(d2 1)/d, with d~2Nqubits . We then measure the fidelity of a spe-
cific gate by interleaving it withm randomCliffords. The sequence decay,
pgate, gives the gate error, rgate5 (12 pgate/pref)(d2 1)/d.
The benchmarking results for the single-qubit gates are shown in

Fig. 2. We generate the Cliffords using microwave pulses, from a basis
set of p and p/2 rotations around the X and Y axes (Supplementary
Information). We benchmark X- and Y-axis p and p/2 rotations, the
Hadamard gate (implemented with a p/2 Y rotation (Y/2) followed by
a p X rotation (X)) and Z-axis rotations. From the data in Fig. 2, we
extract the individual gate fidelities listed in the key.We find an average
fidelity of 99.92%over all gates andqubits (Supplementary Information).
The highest fidelities are achieved by optimizing the pulse amplitude and
frequency, and minimizing two-state leakage21.
Wehave alsomeasured the performancewhen simultaneously oper-

ating nearest-neighbour or next-nearest-neighbour qubits22, with the
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(Xmons) with nearest-neighbour coupling, arranged in a linear array
(Fig. 1). TheXmonqubit15 offers a nodal approach to connectivitywhile

maintaining a high level of coherence (see Supplementary Information
for decoherence times).Here the four legsof the cross allow for anatural
segmentationof the design into coupling, control and readout.We choose
a modest inter-qubit capacitive coupling strength of g/2p5 30MHz
and use alternating qubit idle frequencies of 5.5 and 4.7GHz, enabling
a controlled-phase gate in 40 ns when two qubits are brought near res-
onance, while minimizing the effective coupling to 0.3MHz when the
qubits are at their idle points. Rotations around theX andY axes in the
Bloch sphere representation are performed using pulses on themicro-
wave (XY) line, whereasZ-axis rotations, which control the phase of the
quantum state, are achieved by a flux-bias current on the frequency-
control (Z) line. We use a dispersive measurement method16 whereby
each qubit is coupled to a readout resonator with a distinct resonance
frequency, enabling simultaneous readout using frequency-domainmul-
tiplexing through a single coplanar waveguide17. The modularity of this
architecturemakes it straightforward to integratemorequbits in the circuit.
We characterize our gate fidelities using Clifford-based randomized

benchmarking11,18,19. TheClifford group is a set of rotations that evenly
samples the Hilbert space, and the benchmarking thus averages across
errors. For the single-qubit case, the Clifford gates (which we hence-
forth refer to simply as Cliffords) comprise p, p/2 and 2p/3 rotations
(Supplementary Information). In randomized benchmarking, a logic
gate is characterized by measuring its performance when it is inter-
leaved with many random sequences of gates, making the measured
fidelity resilient to state preparation and measurement errors. We first
perform a control experiment on a ground-state qubit by generating a
random sequence ofm Cliffords; appending the unique recovery Clif-
ford (Cr) that inverts the sequence; and averaging the experimental
sequence fidelity, the final ground-state population, over k different
sequences19,20. The resulting reference sequence fidelity, Fref, is fitted to
Fref5Apref

m1B, where pref is the sequence decay, and state prepara-
tion and measurement errors are captured in the parameters A and B.
The average error per Clifford of the reference is given by rref5 (12
pref)(d2 1)/d, with d~2Nqubits . We then measure the fidelity of a spe-
cific gate by interleaving it withm randomCliffords. The sequence decay,
pgate, gives the gate error, rgate5 (12 pgate/pref)(d2 1)/d.
The benchmarking results for the single-qubit gates are shown in

Fig. 2. We generate the Cliffords using microwave pulses, from a basis
set of p and p/2 rotations around the X and Y axes (Supplementary
Information). We benchmark X- and Y-axis p and p/2 rotations, the
Hadamard gate (implemented with a p/2 Y rotation (Y/2) followed by
a p X rotation (X)) and Z-axis rotations. From the data in Fig. 2, we
extract the individual gate fidelities listed in the key.We find an average
fidelity of 99.92%over all gates andqubits (Supplementary Information).
The highest fidelities are achieved by optimizing the pulse amplitude and
frequency, and minimizing two-state leakage21.
Wehave alsomeasured the performancewhen simultaneously oper-

ating nearest-neighbour or next-nearest-neighbour qubits22, with the
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qubits at dissimilar idle frequencies to minimize coupling. The fideli-
ties are essentially unchanged, with small added errors of , 1024

(Supplementary Information), showing a high degree of addressability
for this architecture.
The two-qubit controlled-phase gate is implemented by tuning one

qubit in frequency along a ‘fast adiabatic’ trajectory10 that takes the two-
qubit state j11æclose to theavoided level crossingwith thestate j02æ (ref. 23),
yielding a state-dependent relative phase shift (Fig. 3a). This implemen-
tation is the natural choice for weakly anharmonic, frequency-tunable
qubits, because the other computational states are left unchanged23–25.
It is advantageous that the controlled-phase gate is adiabatic as well as
fast. An adiabatic trajectory is easily optimized and allows for leakage
into the non-computational state j02æ to be exponentially suppressed
with gate duration, because slower gates are less likely to lead to
undesired transitions10. Having a fast controlled-phase gate minimizes the
accumulation of errors from decoherence and unwanted entanglement
with other circuit elements, which is favourable for fault tolerance.

The benchmarking results of the controlled-phase gate are shown in
Fig. 3b. Similar to the single-qubit case, we generate sequences of two-
qubit Cliffords to produce a reference curve, and then interleave the
controlled-phase gate to extract the fidelity. An example pulse sequence
for anm5 55Clifford sequence is shown inFig. 3c.We find a controlled-
phase gate fidelity of up to 99.446 0.05%, consistent with the average
error per Clifford (Supplementary Information). We find fidelities of
between99.0%and99.44% for all fourpairs ofnearest-neighbourqubits
(Supplementary Information). This is a clear demonstration of high-
fidelity single- and two-qubit gates in amulti-qubit Josephson quantum
processor. The two-qubit gate fidelity compares well with the highest
values reported for other mature quantum systems: for nuclear mag-
netic resonance and ion traps, entangling gate fidelities are as high as
99.5%(ref. 11) and99.3%(ref. 12). Importantly,wehave verifiedby simu-
lation that the experimentally obtained gate fidelities are at the threshold
for surface codequantumerror correction (Supplementary Information).
We are optimistic that we can improve on these gate fidelities with

modest effort. The controlled-phase gate fidelity is limited by three error
mechanisms: decoherence (55%of the total error), control error (24%)
and state leakage (21%) (Supplementary Information). Decoherence
can be suppressedwith enhancedmaterials and optimized fabrication26,27.
Imperfections in control arise primarily from reflections and stray induc-
tances in wiring, and can be improved using conventional microwave
techniques. Given the adiabatic nature of the controlled-phase gate,
two-state leakage can be suppressed by slightly increasing the gate time10.
We showcase themodularity of this set of quantum logic gates by con-

structing a maximally entangled Greenberger–Horne–Zeilinger (GHZ)
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Figure 2 | Single-qubit randomized benchmarking. a, A reference
experiment is performed by generating a sequence of m random Cliffords,
which are inverted by the recoveryClifford,Cr. A specific gate,H, is tested using
a sequence that interleavesHwithm randomCliffords. The difference between
interleaved and reference decay gives the gate fidelity. b, Representative
pulse sequence for a set of four Cliffords and their recovery, generated with p
and p/2 rotations aboutX andY, displaying both the real (I) and imaginary (Q)
microwave pulse envelopes before up-conversion by quadrature mixing to
the qubit frequency. c, Randomized benchmarking measurement for the set of
single-qubit gates for qubit Q2, plotting reference and interleaved sequence
fidelities as functions of the length, m; the fidelity for each value of m was
measured for k5 40 different sequences. The fit to the reference set yields an
average error per Clifford of rref5 0.0011, consistent with an average gate
fidelity of 12 rref/1.8755 0.9994 (Supplementary Information). The dashed
lines indicate the thresholds for exceeding gate fidelities of 0.998 and 0.999. The
fidelities for the single-qubit gates are tabulated in the key.We find that all gates
have a fidelity greater than 0.999. The error bars on the data points are the
standard deviations from the mean. The uncertainty in gate fidelity is typically
53 1025, determined by bootstrapping.
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Figure 1 | Architecture. a, Optical image of the integrated Josephson
quantum processor, consisting of aluminium (dark) on sapphire (light). The
five cross-shaped devices (Q0–Q4) are the Xmon variant of the transmon
qubits30, placed in a linear array. To the left of the qubits are five meandering
coplanar waveguide resonators used for individual state readout. Control
wiring is brought in from the contact pads at the edge of the chip, ending at
the right of the qubits. b, Circuit diagram. Our architecture uses direct,
nearest-neighbour coupling of the qubits (red/orange), made possible by the
nodal connectivity of the Xmon qubit. Using a single readout line, each qubit
can be measured using frequency-domain multiplexing (blue). Individual
qubits are driven through capacitively coupled microwave control lines (XY),
and frequency control is achieved through inductively coupled d.c. lines (Z)
(violet). c, Schematic representation of an entangling operation using a
controlled-phase gate with unitary representation UCZ; (I) qubits at rest, at
distinct frequencies with minimal interaction; (II) when brought near
resonance, the state-dependent frequency shift brings about a rotation
conditional on the qubit states; (III) qubits are returned to their rest frequency.
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qubits at dissimilar idle frequencies to minimize coupling. The fideli-
ties are essentially unchanged, with small added errors of , 1024

(Supplementary Information), showing a high degree of addressability
for this architecture.
The two-qubit controlled-phase gate is implemented by tuning one

qubit in frequency along a ‘fast adiabatic’ trajectory10 that takes the two-
qubit state j11æclose to theavoided level crossingwith thestate j02æ (ref. 23),
yielding a state-dependent relative phase shift (Fig. 3a). This implemen-
tation is the natural choice for weakly anharmonic, frequency-tunable
qubits, because the other computational states are left unchanged23–25.
It is advantageous that the controlled-phase gate is adiabatic as well as
fast. An adiabatic trajectory is easily optimized and allows for leakage
into the non-computational state j02æ to be exponentially suppressed
with gate duration, because slower gates are less likely to lead to
undesired transitions10. Having a fast controlled-phase gate minimizes the
accumulation of errors from decoherence and unwanted entanglement
with other circuit elements, which is favourable for fault tolerance.

The benchmarking results of the controlled-phase gate are shown in
Fig. 3b. Similar to the single-qubit case, we generate sequences of two-
qubit Cliffords to produce a reference curve, and then interleave the
controlled-phase gate to extract the fidelity. An example pulse sequence
for anm5 55Clifford sequence is shown inFig. 3c.We find a controlled-
phase gate fidelity of up to 99.446 0.05%, consistent with the average
error per Clifford (Supplementary Information). We find fidelities of
between99.0%and99.44% for all fourpairs ofnearest-neighbourqubits
(Supplementary Information). This is a clear demonstration of high-
fidelity single- and two-qubit gates in amulti-qubit Josephson quantum
processor. The two-qubit gate fidelity compares well with the highest
values reported for other mature quantum systems: for nuclear mag-
netic resonance and ion traps, entangling gate fidelities are as high as
99.5%(ref. 11) and99.3%(ref. 12). Importantly,wehave verifiedby simu-
lation that the experimentally obtained gate fidelities are at the threshold
for surface codequantumerror correction (Supplementary Information).
We are optimistic that we can improve on these gate fidelities with

modest effort. The controlled-phase gate fidelity is limited by three error
mechanisms: decoherence (55%of the total error), control error (24%)
and state leakage (21%) (Supplementary Information). Decoherence
can be suppressedwith enhancedmaterials and optimized fabrication26,27.
Imperfections in control arise primarily from reflections and stray induc-
tances in wiring, and can be improved using conventional microwave
techniques. Given the adiabatic nature of the controlled-phase gate,
two-state leakage can be suppressed by slightly increasing the gate time10.
We showcase themodularity of this set of quantum logic gates by con-

structing a maximally entangled Greenberger–Horne–Zeilinger (GHZ)
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experiment is performed by generating a sequence of m random Cliffords,
which are inverted by the recoveryClifford,Cr. A specific gate,H, is tested using
a sequence that interleavesHwithm randomCliffords. The difference between
interleaved and reference decay gives the gate fidelity. b, Representative
pulse sequence for a set of four Cliffords and their recovery, generated with p
and p/2 rotations aboutX andY, displaying both the real (I) and imaginary (Q)
microwave pulse envelopes before up-conversion by quadrature mixing to
the qubit frequency. c, Randomized benchmarking measurement for the set of
single-qubit gates for qubit Q2, plotting reference and interleaved sequence
fidelities as functions of the length, m; the fidelity for each value of m was
measured for k5 40 different sequences. The fit to the reference set yields an
average error per Clifford of rref5 0.0011, consistent with an average gate
fidelity of 12 rref/1.8755 0.9994 (Supplementary Information). The dashed
lines indicate the thresholds for exceeding gate fidelities of 0.998 and 0.999. The
fidelities for the single-qubit gates are tabulated in the key.We find that all gates
have a fidelity greater than 0.999. The error bars on the data points are the
standard deviations from the mean. The uncertainty in gate fidelity is typically
53 1025, determined by bootstrapping.
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Figure 1 | Architecture. a, Optical image of the integrated Josephson
quantum processor, consisting of aluminium (dark) on sapphire (light). The
five cross-shaped devices (Q0–Q4) are the Xmon variant of the transmon
qubits30, placed in a linear array. To the left of the qubits are five meandering
coplanar waveguide resonators used for individual state readout. Control
wiring is brought in from the contact pads at the edge of the chip, ending at
the right of the qubits. b, Circuit diagram. Our architecture uses direct,
nearest-neighbour coupling of the qubits (red/orange), made possible by the
nodal connectivity of the Xmon qubit. Using a single readout line, each qubit
can be measured using frequency-domain multiplexing (blue). Individual
qubits are driven through capacitively coupled microwave control lines (XY),
and frequency control is achieved through inductively coupled d.c. lines (Z)
(violet). c, Schematic representation of an entangling operation using a
controlled-phase gate with unitary representation UCZ; (I) qubits at rest, at
distinct frequencies with minimal interaction; (II) when brought near
resonance, the state-dependent frequency shift brings about a rotation
conditional on the qubit states; (III) qubits are returned to their rest frequency.
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state across all five qubits in our processor (Fig. 4, top). The N-qubit
GHZ state GHZj i~ 0j i6Nz 1j i6N! "# ffiffiffi

2
p

is constructed with single-
and two-qubit gates, using simultaneous control and readout of all

qubits. This algorithm is shown in Fig. 4 (bottom), the state is assem-
bledby entanglingone additional qubit at a time.The algorithm ishighly
sensitive to control error and decoherence on any computational ele-
ment.We fully characterize the Bell andGHZ states by using quantum
state tomography9, where quadratic maximum-likelihood estimation is
used to extract each density matrix, r, from the measurement data,
while satisfying the physical constraints that r beHermitian, have unit
trace and be positive semi-definite (Supplementary Information). The
density matrices are plotted in the traditional cityscape style, and show
significant elements only at the ideal locations.We find respective state
fidelities of Tr(ridealr)5 99.5%6 0.4%, 96.0%6 0.5%, 86.3%6 0.5%
and 81.7%6 0.5% for the N5 2 Bell state and the N5 3, 4 and 5 GHZ
states. A GHZ state fidelity of more than 50% satisfies the criterion for
genuine entanglement28. It is interesting to note that the ratios of off-
diagonal to diagonal amplitudes jrj0i6N ,j1i6N j2

.
rj0i6N ,j0i6Nrj1i6N ,j1i6N

have the values 0.99, 0.98, 0.99 and 0.99, suggesting that dephasing is
small, uncorrelated or both. The five-qubit GHZ state is the largest to-
mographic measurement of multi-qubit entanglement demonstrated
so far in the solid state8,9, andhas a state fidelity similar to results obtained
in ion traps29. This demonstrates that complex quantum states can be
constructed with high fidelity in a modular fashion, highlighting the
potential formore intricate algorithms on this multipurpose quantum
processor.
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Figure 4 | Quantum state tomography and generation of the GHZ states.
Top: respective real parts of the densitymatrix r for theN5 2 Bell state and the
N5 3, 4 and 5 GHZ states, measured by quantum state tomography. Ideal
density matrix elements are transparent, with value 0.5 at the four corners.

Bottom: algorithmused to construct the states. See Supplementary Information
for Im(r), the Pauli operator representation and the full gate sequence, which
includes Hahn spin-echo pulses.

Figure 3 | Controlled-phase gate physics and randomized benchmarking
results. a, We use the | 1B1Aæ and |0B2Aæ avoided level crossing to implement a
high-fidelity controlled-phase gate, with the fast adiabatic tuning of qubit A
giving a selective p phase change of | 1B1Aæ. The energy level diagram shows
qubitA approaching and leaving the avoided level crossing from
above (top, blue dashed line), following a fast (43 ns) yet effectively adiabatic
trajectory (bottom, solid blue line). Unwanted state leakage from |1B1Aæ to
| 0B2Aæ (red dashed line) is minimized by adjusting the trajectory.
b, Randomized benchmarking data (k5 100) of the controlled-phase gate (CZ)
for the qubit pair Q2 and Q3, using the two-qubit Clifford group, C2

(Supplementary Information). Reference data are in black (rref5 0.0189);
interleaved data are in blue rC2zCZ~0:0244ð Þ. Dashed lines indicate the
thresholds for gate fidelities of 0.98 and 0.99. We find a controlled-phase gate
fidelity of 0.99446 0.0005 (uncertainty from bootstrapping). c, Coherent
microwave (XY) and frequency (Z) control of the quantum state while
performing a complex two-qubit algorithm; the sequence contains more than
500 gates, corresponding to the characteristic reference decay of m5 55, and
is more than 7ms long. The rightmost panel shows an example Clifford
from the iSWAP class, comprising single-qubit rotations and two controlled-
phase gates (Supplementary Information).
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Superconducting quantum circuits at the surface
code threshold for fault tolerance
R. Barends1*, J. Kelly1*, A.Megrant1, A.Veitia2, D. Sank1, E. Jeffrey1, T. C.White1, J.Mutus1, A.G. Fowler1,3, B. Campbell1, Y. Chen1,
Z. Chen1, B. Chiaro1, A. Dunsworth1, C. Neill1, P. O’Malley1, P. Roushan1, A. Vainsencher1, J. Wenner1, A. N. Korotkov2,
A. N. Cleland1 & John M. Martinis1

Aquantumcomputercansolvehardproblems,suchasprimefactoring1,2,
database searching3,4 and quantum simulation5, at the cost of need-
ing to protect fragile quantum states from error. Quantum error
correction6 provides this protection by distributing a logical state
amongmany physical quantum bits (qubits) by means of quantum
entanglement. Superconductivity is a useful phenomenon in this
regard, because it allows the construction of large quantum circuits
and is compatiblewithmicrofabrication.For superconductingqubits,
the surface code approach to quantum computing7 is a natural choice
for error correction, because it uses only nearest-neighbour coupling
and rapidly cycled entangling gates. The gate fidelity requirements
aremodest: the per-step fidelity threshold is only about 99 per cent.
Herewe demonstrate a universal set of logic gates in a superconduc-
ting multi-qubit processor, achieving an average single-qubit gate
fidelity of 99.92 per cent and a two-qubit gate fidelity of up to 99.4
per cent. This places Josephson quantum computing at the fault-
tolerance threshold for surface code error correction.Our quantum
processor is a first step towards the surface code, using five qubits
arranged in a linear arraywithnearest-neighbour coupling. As a fur-
ther demonstration, we construct a five-qubitGreenberger–Horne–
Zeilinger state8,9 using the complete circuit and full set of gates. The
results demonstrate that Josephson quantum computing is a high-
fidelity technology,with a clear path to scalingup to large-scale, fault-
tolerant quantum circuits.
Fault tolerance in the surface code is achieved by placing physical

qubits in a chequerboard pattern, with white squares representing data
and black squares representingmeasurement qubits that detect errors.
To perform this detection, each measurement qubit needs to interact
with its four neighbouring data qubits. All that is needed for these inter-
actions are single- and two-qubit gates with sufficiently high fidelity.
Thehigh fidelity demonstratedhere is achieved through a combination
of coherent qubits, a straightforward interconnection architecture and
a novel implementation of the two-qubit controlled-phase entangling
gate. The controlled-phase gate uses a fast but adiabatic qubit frequency
tuning that minimizes error10.
Here the tuneable nature of the qubits and their entangling gates pro-

vides both high fidelity and fast control. Previous demonstrations of
two-qubit gates achieving.99% fidelity used fixed-frequency qubits:
systemsbased onnuclearmagnetic resonance and ion traps have shown
two-qubit gates with fidelities of 99.5% (ref. 11) and 99.3% (ref. 12).
Recently, for a five-qubit ion trap13 and a three-qubit superconducting
system14, two-qubit entanglinggate fidelitiesof95%and96%werereported.
Superconductivity allows for the construction of large quantum inte-

grated circuits as the electrons are condensed into a singlemacroscopic
quantum state.Wehavedesigned a processor to test our ability to imple-
ment the surface code; it consists of five cross-shaped transmon qubits
(Xmons) with nearest-neighbour coupling, arranged in a linear array
(Fig. 1). TheXmonqubit15 offers a nodal approach to connectivitywhile

maintaining a high level of coherence (see Supplementary Information
for decoherence times).Here the four legsof the cross allow for anatural
segmentationof the design into coupling, control and readout.We choose
a modest inter-qubit capacitive coupling strength of g/2p5 30MHz
and use alternating qubit idle frequencies of 5.5 and 4.7GHz, enabling
a controlled-phase gate in 40 ns when two qubits are brought near res-
onance, while minimizing the effective coupling to 0.3MHz when the
qubits are at their idle points. Rotations around theX andY axes in the
Bloch sphere representation are performed using pulses on themicro-
wave (XY) line, whereasZ-axis rotations, which control the phase of the
quantum state, are achieved by a flux-bias current on the frequency-
control (Z) line. We use a dispersive measurement method16 whereby
each qubit is coupled to a readout resonator with a distinct resonance
frequency, enabling simultaneous readout using frequency-domainmul-
tiplexing through a single coplanar waveguide17. The modularity of this
architecturemakes it straightforward to integratemorequbits in the circuit.
We characterize our gate fidelities using Clifford-based randomized

benchmarking11,18,19. TheClifford group is a set of rotations that evenly
samples the Hilbert space, and the benchmarking thus averages across
errors. For the single-qubit case, the Clifford gates (which we hence-
forth refer to simply as Cliffords) comprise p, p/2 and 2p/3 rotations
(Supplementary Information). In randomized benchmarking, a logic
gate is characterized by measuring its performance when it is inter-
leaved with many random sequences of gates, making the measured
fidelity resilient to state preparation and measurement errors. We first
perform a control experiment on a ground-state qubit by generating a
random sequence ofm Cliffords; appending the unique recovery Clif-
ford (Cr) that inverts the sequence; and averaging the experimental
sequence fidelity, the final ground-state population, over k different
sequences19,20. The resulting reference sequence fidelity, Fref, is fitted to
Fref5Apref

m1B, where pref is the sequence decay, and state prepara-
tion and measurement errors are captured in the parameters A and B.
The average error per Clifford of the reference is given by rref5 (12
pref)(d2 1)/d, with d~2Nqubits . We then measure the fidelity of a spe-
cific gate by interleaving it withm randomCliffords. The sequence decay,
pgate, gives the gate error, rgate5 (12 pgate/pref)(d2 1)/d.
The benchmarking results for the single-qubit gates are shown in

Fig. 2. We generate the Cliffords using microwave pulses, from a basis
set of p and p/2 rotations around the X and Y axes (Supplementary
Information). We benchmark X- and Y-axis p and p/2 rotations, the
Hadamard gate (implemented with a p/2 Y rotation (Y/2) followed by
a p X rotation (X)) and Z-axis rotations. From the data in Fig. 2, we
extract the individual gate fidelities listed in the key.We find an average
fidelity of 99.92%over all gates andqubits (Supplementary Information).
The highest fidelities are achieved by optimizing the pulse amplitude and
frequency, and minimizing two-state leakage21.
Wehave alsomeasured the performancewhen simultaneously oper-

ating nearest-neighbour or next-nearest-neighbour qubits22, with the
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The promise of quantum computers is that certain computational tasks might be 
executed exponentially faster on a quantum processor than on a classical processor1. A 
fundamental challenge is to build a high-!delity processor capable of running quantum 
algorithms in an exponentially large computational space. Here we report the use of a 
processor with programmable superconducting qubits2–7 to create quantum states on 
53 qubits, corresponding to a computational state-space of dimension 253 (about 1016). 
Measurements from repeated experiments sample the resulting probability 
distribution, which we verify using classical simulations. Our Sycamore processor takes 
about 200 seconds to sample one instance of a quantum circuit a million times—our 
benchmarks currently indicate that the equivalent task for a state-of-the-art classical 
supercomputer would take approximately 10,000 years. This dramatic increase in 
speed compared to all known classical algorithms is an experimental realization of 
quantum supremacy8–14 for this speci!c computational task, heralding a much-
anticipated computing paradigm.

In the early 1980s, Richard Feynman proposed that a quantum computer 
would be an effective tool with which to solve problems in physics 
and chemistry, given that it is exponentially costly to simulate large 
quantum systems with classical computers1. Realizing Feynman’s vision 
poses substantial experimental and theoretical challenges. First, can 
a quantum system be engineered to perform a computation in a large 
enough computational (Hilbert) space and with a low enough error 
rate to provide a quantum speedup? Second, can we formulate a prob-
lem that is hard for a classical computer but easy for a quantum com-
puter? By computing such a benchmark task on our superconducting 
qubit processor, we tackle both questions. Our experiment achieves 
quantum supremacy, a milestone on the path to full-scale quantum 
computing8–14.

In reaching this milestone, we show that quantum speedup is achiev-
able in a real-world system and is not precluded by any hidden physical 
laws. Quantum supremacy also heralds the era of noisy intermediate-
scale quantum (NISQ) technologies15. The benchmark task we demon-
strate has an immediate application in generating certifiable random 
numbers (S. Aaronson, manuscript in preparation); other initial uses 
for this new computational capability may include optimization16,17, 
machine learning18–21, materials science and chemistry22–24. However, 
realizing the full promise of quantum computing (using Shor’s algorithm 
for factoring, for example) still requires technical leaps to engineer 
fault-tolerant logical qubits25–29.

To achieve quantum supremacy, we made a number of techni-
cal advances which also pave the way towards error correction. We 
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developed fast, high-fidelity gates that can be executed simultaneously 
across a two-dimensional qubit array. We calibrated and benchmarked 
the processor at both the component and system level using a powerful 
new tool: cross-entropy benchmarking11. Finally, we used component-
level fidelities to accurately predict the performance of the whole sys-
tem, further showing that quantum information behaves as expected 
when scaling to large systems.

A suitable computational task
To demonstrate quantum supremacy, we compare our quantum proces-
sor against state-of-the-art classical computers in the task of sampling 
the output of a pseudo-random quantum circuit11,13,14. Random circuits 
are a suitable choice for benchmarking because they do not possess 
structure and therefore allow for limited guarantees of computational 
hardness10–12. We design the circuits to entangle a set of quantum bits 
(qubits) by repeated application of single-qubit and two-qubit logi-
cal operations. Sampling the quantum circuit’s output produces a set 
of bitstrings, for example {0000101, 1011100, …}. Owing to quantum 
interference, the probability distribution of the bitstrings resembles 
a speckled intensity pattern produced by light interference in laser 
scatter, such that some bitstrings are much more likely to occur than 
others. Classically computing this probability distribution becomes 
exponentially more difficult as the number of qubits (width) and number 
of gate cycles (depth) grow.

We verify that the quantum processor is working properly using a 
method called cross-entropy benchmarking11,12,14, which compares how 
often each bitstring is observed experimentally with its corresponding 
ideal probability computed via simulation on a classical computer. For 
a given circuit, we collect the measured bitstrings {xi} and compute the 
linear cross-entropy benchmarking fidelity11,13,14 (see also Supplementary 
Information), which is the mean of the simulated probabilities of the 
bitstrings we measured:

F P x= 2 " ( )# − 1 (1)n
i iXEB

where n is the number of qubits, P(xi) is the probability of bitstring xi 
computed for the ideal quantum circuit, and the average is over the 
observed bitstrings. Intuitively, FXEB is correlated with how often we 
sample high-probability bitstrings. When there are no errors in the 
quantum circuit, the distribution of probabilities is exponential (see 
Supplementary Information), and sampling from this distribution will 
produce F = 1XEB . On the other hand, sampling from the uniform  
distribution will give "P(xi)#i = 1/2n and produce F = 0XEB . Values of FXEB 
between 0 and 1 correspond to the probability that no error has occurred 
while running the circuit. The probabilities P(xi) must be obtained from 
classically simulating the quantum circuit, and thus computing FXEB is 
intractable in the regime of quantum supremacy. However, with certain 
circuit simplifications, we can obtain quantitative fidelity estimates of 
a fully operating processor running wide and deep quantum circuits.

Our goal is to achieve a high enough FXEB for a circuit with sufficient 
width and depth such that the classical computing cost is prohibitively 
large. This is a difficult task because our logic gates are imperfect and 
the quantum states we intend to create are sensitive to errors. A single 
bit or phase flip over the course of the algorithm will completely shuffle 
the speckle pattern and result in close to zero fidelity11 (see also Sup-
plementary Information). Therefore, in order to claim quantum suprem-
acy we need a quantum processor that executes the program with 
sufficiently low error rates.

Building a high-fidelity processor
We designed a quantum processor named ‘Sycamore’ which consists 
of a two-dimensional array of 54 transmon qubits, where each qubit is 
tunably coupled to four nearest neighbours, in a rectangular lattice. The 

connectivity was chosen to be forward-compatible with error correc-
tion using the surface code26. A key systems engineering advance of this 
device is achieving high-fidelity single- and two-qubit operations, not 
just in isolation but also while performing a realistic computation with 
simultaneous gate operations on many qubits. We discuss the highlights 
below; see also the Supplementary Information.

In a superconducting circuit, conduction electrons condense into a 
macroscopic quantum state, such that currents and voltages behave 
quantum mechanically2,30. Our processor uses transmon qubits6, which 
can be thought of as nonlinear superconducting resonators at 5–7 GHz. 
The qubit is encoded as the two lowest quantum eigenstates of the 
resonant circuit. Each transmon has two controls: a microwave drive 
to excite the qubit, and a magnetic flux control to tune the frequency. 
Each qubit is connected to a linear resonator used to read out the qubit 
state5. As shown in Fig. 1, each qubit is also connected to its neighbouring 
qubits using a new adjustable coupler31,32. Our coupler design allows us 
to quickly tune the qubit–qubit coupling from completely off to 40 MHz. 
One qubit did not function properly, so the device uses 53 qubits and 
86 couplers.

The processor is fabricated using aluminium for metallization and 
Josephson junctions, and indium for bump-bonds between two silicon 
wafers. The chip is wire-bonded to a superconducting circuit board 
and cooled to below 20 mK in a dilution refrigerator to reduce ambient 
thermal energy to well below the qubit energy. The processor is con-
nected through filters and attenuators to room-temperature electronics, 

Qubit Adjustable coupler

a

b

10 mm

Fig. 1 | The Sycamore processor. a, Layout of processor, showing a rectangular 
array of 54 qubits (grey), each connected to its four nearest neighbours with 
couplers (blue). The inoperable qubit is outlined. b, Photograph of the  
Sycamore chip.
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processor with programmable superconducting qubits2–7 to create quantum states on 
53 qubits, corresponding to a computational state-space of dimension 253 (about 1016). 
Measurements from repeated experiments sample the resulting probability 
distribution, which we verify using classical simulations. Our Sycamore processor takes 
about 200 seconds to sample one instance of a quantum circuit a million times—our 
benchmarks currently indicate that the equivalent task for a state-of-the-art classical 
supercomputer would take approximately 10,000 years. This dramatic increase in 
speed compared to all known classical algorithms is an experimental realization of 
quantum supremacy8–14 for this speci!c computational task, heralding a much-
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In the early 1980s, Richard Feynman proposed that a quantum computer 
would be an effective tool with which to solve problems in physics 
and chemistry, given that it is exponentially costly to simulate large 
quantum systems with classical computers1. Realizing Feynman’s vision 
poses substantial experimental and theoretical challenges. First, can 
a quantum system be engineered to perform a computation in a large 
enough computational (Hilbert) space and with a low enough error 
rate to provide a quantum speedup? Second, can we formulate a prob-
lem that is hard for a classical computer but easy for a quantum com-
puter? By computing such a benchmark task on our superconducting 
qubit processor, we tackle both questions. Our experiment achieves 
quantum supremacy, a milestone on the path to full-scale quantum 
computing8–14.

In reaching this milestone, we show that quantum speedup is achiev-
able in a real-world system and is not precluded by any hidden physical 
laws. Quantum supremacy also heralds the era of noisy intermediate-
scale quantum (NISQ) technologies15. The benchmark task we demon-
strate has an immediate application in generating certifiable random 
numbers (S. Aaronson, manuscript in preparation); other initial uses 
for this new computational capability may include optimization16,17, 
machine learning18–21, materials science and chemistry22–24. However, 
realizing the full promise of quantum computing (using Shor’s algorithm 
for factoring, for example) still requires technical leaps to engineer 
fault-tolerant logical qubits25–29.

To achieve quantum supremacy, we made a number of techni-
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the edge of quantum ergodicity
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The dynamics of quantum many-body systems is characterized by quantum 
observables that are reconstructed from correlation functions at separate points in 
space and time1–3. In dynamics with fast entanglement generation, however, quantum 
observables generally become insensitive to the details of the underlying dynamics at 
long times due to the e!ects of scrambling. To circumvent this limitation and enable 
access to relevant dynamics in experimental systems, repeated time-reversal protocols 
have been successfully implemented4. Here we experimentally measure the second-
order out-of-time-order correlators (OTOC(2))5–18 on a superconducting quantum 
processor and "nd that they remain sensitive to the underlying dynamics at long 
timescales. Furthermore, OTOC(2) manifests quantum correlations in a highly entangled 
quantum many-body system that are inaccessible without time-reversal techniques. 
This is demonstrated through an experimental protocol that randomizes the phases 
of Pauli strings in the Heisenberg picture by inserting Pauli operators during quantum 
evolution. The measured values of OTOC(2) are substantially changed by the protocol, 
thereby revealing constructive interference between Pauli strings that form large 
loops in the con"guration space. The observed interference mechanism also endows 
OTOC(2) with high degrees of classical simulation complexity. These results, combined 
with the capability of OTOC(2) in unravelling useful details of quantum dynamics, as 
shown through an example of Hamiltonian learning, indicate a viable path to practical 
quantum advantage.

Identifying complex correlations between the many-body degrees of 
freedom in a quantum system is a central goal for the simulation of 
quantum dynamics. Even spectroscopic questions can be formulated 
in terms of few-point dynamical correlations. As entanglement grows 
with system size or evolution time, the resulting dynamics are often 
ergodic. Consequently, the sensitivities to the details of the quantum 
dynamics decay exponentially for most quantum observables, limit-
ing their utility in revealing many-body correlations. Numerical or 
analytical studies of correlations are also hindered by the difficulty of 
identifying subtle contributing processes, which undermine common 
simplifying assumptions. Moreover, the linearity of the Schrödinger 
equation precludes the use of classical techniques based on sensitivity 
to initial conditions, methods that have proven effective in detecting 
the butterfly effect and characterizing classical chaos.

As a solution to the above challenge, experimental protocols that 
use refocusing to echo out nearly all evolution have become essential 
for probing highly entangled dynamics. These protocols have proven 
indispensable in quantum metrology and sensing19,20 as well as in studies 
of chaos, black holes and thermalization6,8,21–23. Dynamical sequences 
that include time reversal are most naturally described in the Heisen-
berg picture of operator evolution (Fig. 1). The sequence can be con-
ceptualized as an interference problem, where correlations reflect 
coherent interference across many-body trajectories. Computing an 
observable can, thus, be expressed as a sum over distinct trajecto-
ries. In this conceptual framework, each time reversal corresponds 

to the addition of two interference arms and also other cross-terms 
contributing to experimental observables, which are formally known 
as out-of-time-order correlators (OTOCs)5–18.

In our work, we perform a family of OTOC experiments and leverage 
the interference framework to understand how different paths and their 
combinations reveal quantum correlations inaccessible without time 
reversal or with numerical methods. More specifically, we use the unique 
programmability of a digital quantum processor to change the number 
of interference arms (Fig. 2) and insert either noisy (Fig. 3) or coherent  
(Fig. 5) phase shifters into each arm. In response, we find that OTOCs 
are more sensitive to these perturbations compared with observa-
bles in the absence of time reversal. Furthermore, we discover that 
this sensitivity is enhanced as the order k of OTOC(k) (the number of 
interference arms) increases. In particular, OTOC(2) reveals construc-
tive interference between Pauli strings that is invisible in lower-order 
observables.

To understand how repeated time-reversal restores the sensitivity 
to quantum dynamics, we first consider measuring the Pauli operator 
M ∈ {X, Y, Z} of a qubit qm in a square lattice of qubits and initialized 
in an eigenstate of M. The measurement at a time t is equivalent to 
the time-ordered correlator (TOC), %M(t)M&, where M(t) = U †(t)MU(t) 
denotes the time-evolved M in the Heisenberg picture, U is a many-body 
unitary, and %…& denotes the expectation value over a particular initial 
state. As observed in previous experiments24–27, %M(t)M& decays expo-
nentially over time when U is ergodic. This stems from the scrambling of 
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∑ c P P P P= Tr [ ]. (4)
α β γ δ

αβγδ α β γ δ
(4)

, , ,

C

Here each cαβγδ is also a real-valued coefficient. Each Pauli string in 
this expression is represented as a coloured segment in the diagrams 

within the top panels of Fig. 3a. The length of this segment qualita-
tively represents the Hamming distance between the Pauli string 
and the identity. Multiplying two Pauli strings joins them at one 
end and forms a new Pauli string connecting the two new terminal  
points.
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Fig. 2 | Sensitivity of OTOCs towards microscopic details of quantum 
dynamics. a, Top, quantum circuit schematic for measuring OTOCs of different 
orders, OTOC(k). Here, ψ #M∣  is an eigenstate of the measurement operator M 
(realized as Z in this work). The operator B is realized as X. Bottom, implemen 
tation of the unitary U as t cycles of single- and two-qubit gates. Each single- 
qubit gate is ( )φ X φ Yexp −i (cos( ) + sin( ) )θ

2 , where θ/% ∈ {0.25, 0.5, 0.75} and φ/% 
is chosen randomly from the interval [−1, 1]. Each iSWAP-like gate is equivalent to 
an iSWAP followed by a CPHASE gate with a conditional phase of approximately 
 0.35 rad. b, The mean (C(4)) and standard deviation (σ[ ](4)C ) of OTOC(2) ( (4)C ) 

measured over 100 circuit instances for t = 6, 12 and 18 cycles. The colour at 
each qubit site indicates data collected with B applied to the given qubit. Purple 
dots indicate the fixed location of qm. Cyan lines represent the light cone of qm. 
c, Standard deviation of four quantities, TOC ( (1)C ), OTOC (C (2)), OTOC(2) ( (4)C ) 
and the off-diagonal component of OTOC(2) ( off-diag

(4)C ). For C (2), C (4) and Coff-diag
(4) , qm 

has the same fixed location as in b whereas qb gradually moves further from qm 
as the number of circuit cycles increases, such that the OTOC mean C ≈ 0.5(2)  is 
maintained. C (1) corresponds to Z t Z( ( ) # measured at a qubit close to the centre 
of the lattice. SQ, single qubit.

Fig. 3 | Quantum interference and classical simulation complexity of 
OTOC(2). a, In the Heisenberg picture, the time-evolved B(t) branches into a 
superposition of multi-qubit Pauli strings. For C (2), in which only two copies  
of B(t) are present, the final strings Pα and Pβ need to be identical to contribute. 
For (4)C , the strings (Pα, Pβ, Pγ, Pδ) contribute a ‘diagonal’ component Cdiag

(4)  when 
Pα = Pβ and Pγ = Pδ, or an ‘off-diagonal’ component Coff-diag

(4)  when Pα ) Pβ ) Pγ ) Pδ.  
b, Protocol for probing quantum interference. Random Pauli operators are 
inserted at one circuit cycle, which changes the signs of the Pauli string 
coefficients. c, Relative signal change, characterized by 1 − ρ, as a function  
of the cycle at which Paulis are inserted. ρ refers to the Pearson correlation 
between experimental data from 50 different 40-qubit circuits (t = 22 cycles), 
obtained with and without Pauli insertion. Error bars denote standard errors 

estimated from resampling the experimental data. Insets, Data at cycle 11.  
d, Comparison of experimental C (2) values against exactly simulated C (2) for  
a set of 40-qubit circuit instances. Values computed using CMC heuristic 
algorithms are shown for comparison, achieving an SNR of 5.3, like that of  
the quantum processor (SNR = 5.4). Inset, circuit geometry (red for qm and  
blue for qb) used for the experiments in c–e. e, Experimental off-diag

(4)C  values  
on the same set of 40 qubits, alongside exact and CMC simulations. off-diag

(4)C   
is measured by subtracting the Pauli-averaged (4)C  from the non-averaged (4)C . 
Here the experimental SNR is 3.9 whereas the SNR from CMC is 1.1. Error bars  
on experimental data are based on an empirical error model discussed in 
Supplementary Information sections II.F.3 and II.F.4. Exp, experiment;  
MC, Monte Carlo; sim, simulation.
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Towards practical quantum advantage
The combination of large sensitivity and high classical simulation com-
plexity makes higher-order OTOCs such as OTOC(2) a prime candidate 
for achieving the long-standing goal of practical quantum advantage. 
To illustrate this potential, we perform two more experiments, which 
show: (1) OTOC(2) can be accurately resolved in regimes that are, at pre-
sent, intractable with classical supercomputers. (2) A specific example 
wherein OTOC(2) is used to accomplish a practical task.

We begin by demonstrating (1). Figure 4a shows a set of off-diag
(4)C  

measurements performed with a 65-qubit geometry with B applied 
simultaneously to three different qubits, chosen to maximize the 
effective quantum volume (corresponding to the number of two-qubit 
gates falling within the light cones of the B and M operators31). To 
estimate the accuracy of these measurements, we next characterize 
the experimental error (SNR) across six different system sizes of up 
to 40 qubits (Fig. 4b). Here we observe that the SNR degrades only 
weakly as the system size increases and is also captured by the confi-
dence interval of an empirical error model detailed in Supplementary 
Information sections II.F.3 and II.F.4. Based on the same error model, 
the SNR of the 65-qubit dataset is projected to range from 2 to 3. Given 
that classical heuristic algorithms are unable to achieve this accuracy 
(Supplementary Information section III.C), tensor-network contrac-
tion is the most effective approach toward classically simulating the 
same circuits. Figure 4c shows the estimated cost of simulating diag

(4)C  
through tensor-network contraction on the Frontier supercomputer, 
which converges to approximately 3.2 years. This is a factor of approx-
imately 13,000 longer than the experimental data collection time of 
2.1 h per circuit, indicating that this experiment is, at present, in the 
beyond-classical regime of quantum computation.

To apply OTOCs in real-world applications, we consider a physi-
cal system of interest characterized by a Hamiltonian with a set of 
unknown parameters. The physical system supplies a collection of 
OTOC(2) data, which is compared against a quantum simulation of the 
same Hamiltonian. The unknown parameters are then optimized until 
the quantum-simulated data match the real-world experimental data 
(Fig. 5a). The slowly decaying signal size and sensitivity of OTOC(2), as 
demonstrated in Figs. 2 and  3, make it a particularly suitable candidate 
for accomplishing this task, which is known as Hamiltonian learning32–35.

To demonstrate the proposed scheme in practice, we construct a 
one-parameter learning example, as shown in Fig. 5b. A set of off-diag

(4)C  
values from 20 random circuit instances, produced by a classical sim-
ulation to mimic the role of the ‘physical system’ in Fig. 5a, are provided. 
All details of U, except the phase ξ of one two-qubit gate located along 
the passage between qm and qb, are also given. To learn the unknown 
parameter ξ, we measure Coff-diag

(4)  on the quantum processor while 
varying ξ. Results for three circuit instances are shown in Fig. 5c, where 
we see smooth oscillations of experimental signals that are distinct 
between different instances. Importantly, all oscillations intersect the 
classically simulated values of Coff-diag

(4)  at the target value of ξ. This is 
further reflected in Fig. 5d, where we have constructed a cost function 
between the classically simulated and experimentally measured values 
of off-diag

(4)C . The cost function has a global minimum at the target ξ value.

Conclusion
In this work, we have shown that OTOCs have quantum interfer-
ence effects that endow them with a high sensitivity to details of 
the quantum dynamics and, for OTOC(2), also high levels of classical 
simulation complexity. As such, OTOCs are viable candidates for 
realizing practical quantum advantage, a chief milestone sought by 
recent experiments36–38. Generally, practical quantum advantage 
can be formulated as the task of measuring the expectation values 
of low-rank observables, for example, energy or correlations3,39, such  
that:

(1) The observable can be experimentally measured with the proper 
accuracy, in our case with an SNR above unity. More formally, the 
observable is in the bounded-error quantum polynomial-time (BQP) 
class40.

(2) The observable lies beyond the reach of both exact classical simula-
tion and heuristic methods that trade accuracy for efficiency31,41–44.

Satisfying both defines a ‘Goldilocks zone’ for quantum advantage. 
To demonstrate practical quantum advantage, one more criterion is 
required:
(3) The observable should yield practically relevant information about 

the quantum system.

Here, by measuring a many-body observable with SNR > 2 and show-
ing that it is beyond the reach of currently known classical simulation 
algorithms, we have made progress towards (1) and (2). Moreover, a 
proof-of-principle for (3) is demonstrated with a dynamic learning 
problem. Although the random circuits used in the dynamic learning 
demonstration remain a toy model for Hamiltonians that are of practi-
cal relevance, the scheme is readily applicable to real physical systems. 
One such example is solid-state nuclear magnetic resonance systems, 
where dipolar couplings between spin pairs can be inverted without 
complete knowledge of their strength45. Comparing experimental data 
from such systems with quantum simulation outcomes may allow more 
accurate estimates of these couplings. We leave this exciting real-world 
application for future work.
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Sammanfattning av remissinstansens synpunkter  
Sveriges forskningsinstitut RISE instämmer i förslaget med reservation för att strategin 
behöver utvecklas så att den tydligt: 

 
• förmedlar en vision av skolväsendets digitalisering 2027 eller senare 
• adresserar skolan som system och samhällsbärande institution 
• vägleder kring digitalisering för både innovation och effektivisering 
• lyfter fram effektmål för digital kompetens även för lärare och rektorer/chefer 
• adresserar ojämlikheten mellan skolhuvudmännen avseende i vilken grad barn och 

elever erbjuds en relevant digital lärmiljö. 

RISE förslår också att ett tredje övergripande mål med två tillhörande delmål om forskning 
och uppföljning (effektivitet) samt om utforskande av digitaliseringens möjligheter 
(innovation) adderas. 

 

Utgångpunkt för RISE ställningstaganden 
Som oberoende forskningsinstitut följer och stödjer RISE dagligen den alltmer accelererande 
samhällsutvecklingen. En utveckling där digitalisering är både katalysator och motor.  

I dessa dagar tas också ett gigantiskt (digitalt) utvecklingssteg som spås bli ett av det mest 
omvälvande mänskligheten upplevt. För första gången i vår historia är det möjligt för gemene 
man att för egen del nyttja potentialen och kraften i artificiell intelligens (AI). Detta steg 
jämförs med den stora samhällstransformation som pågått sedan alla fick tillgång till internet. 
Skillnaden är att det nu går mycket fortare. Som exempel kan nämnas att det tog endast fem 
dagar för den artificiella intelligensen (språkmodellen) ChatGPT 1 att nå en miljon användare, 
att jämföra med att det tog tio månader för Facebook och 3,5 år för strömningstjänsten Netflix 
att göra detsamma. 

 
1 https://openai.com/ 


