

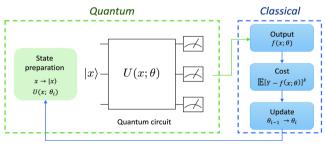
Introduction to Variational Quantum Algorithms: QAOA

Ruben Pariente Bassa

07 October 2025

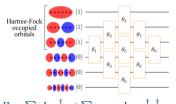
Variational Algorithms for Noisy Quantum Devices (NISQ)

- Quantum advantage is still limited by noise and number of qubit counts: The idea is to combine quantum circuits with classical optimization.
- Variational Quantum Algorithms (VQAs) use a parameterized quantum circuit to prepare a trial wavefunction/quantum state $|\psi(\theta)\rangle=U(\theta)\,|0\rangle$ and a classical optimizer to minimize a cost function $\mathcal{C}(\theta)$



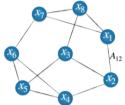
Applications of Variational Quantum Algorithms (VQAs)

VQE:Quantum Chemistry

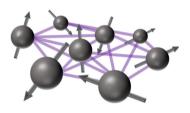


$$\begin{split} H &= \textstyle \sum_{ij} h_{ij} c_i^\dagger c_j \! + \! \sum_{i < j,k < l} h_{ijkl} c_i^\dagger c_j^\dagger c_k c_l \\ \text{N=} & \sum_i c_i^\dagger c_i, \qquad [N,H] = 0 \end{split}$$

QAOA:Combinatorial Optimization



VQS:Quantum Spin Simulation



$$H = -J \sum_{(i,j) \in E(G)} \sigma_i^z \sigma_j^z + h \sum_i \sigma_i^x$$

Observables

- An observable H is a **self-adjoint/Hermitian** operator on the Hilbert space $(\mathbb{C}^2)^{\otimes n}$. This means $H^{\dagger} = H$
- Spectral theorem: \exists orthonormal **basis** $\{|\psi_i\rangle\}_i$ of $(\mathbb{C}^2)^{\otimes n}$ consisting of eigenvectors of H, and all eigenvalues λ_i are **real**.
- We can write: $H = \sum_{i} \lambda_{i} \ket{\psi_{i}} \bra{\psi_{i}}$
- To each energy λ_i corresponds to an **energy eigenstate**.
 - **ground state**: energy eigenstate $|v_1\rangle$ corresponding to the lowest energy
 - first excited state, second excited state, ...: $|v_2\rangle\,, |v_3\rangle\,,$...

Expectation values

Given

- a state $|\phi\rangle$ prepared on a quantum computer using the unitary U such that $U\,|0\rangle=|\phi\rangle$
- an observable H we are interested to measure

Then the expectation value of H respect to the state $|\phi\rangle$ is given by

$$\langle H \rangle_{|\phi \rangle} \coloneqq \langle \phi | H | \phi \rangle = \langle 0 | \mathit{UHU}^\dagger | 0 \rangle$$
 (1)

From the spectral theorem it follows:

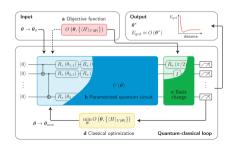
$$\langle H \rangle_{|\phi\rangle} = \langle \phi | \sum_{i} \lambda_{i} | \psi_{i} \rangle \langle \psi_{i} | \phi \rangle = \sum_{i} \lambda_{i} | \langle \phi | \psi_{i} \rangle |^{2}$$
 (2)

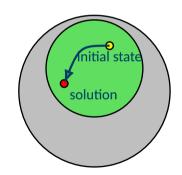
Particularly: $\langle H \rangle_{|g/g\rangle} = \lambda_i$

The Variational Principle

$$\langle H \rangle_{|\phi\rangle} = \sum_{i} \lambda_{i} \left| \langle \phi | \psi_{i} \rangle \right|^{2} \ge \sum_{i} \lambda_{\min} \left| \langle \phi | \psi_{i} \rangle \right|^{2} = \lambda_{\min} \tag{3}$$

- Find θ^* s.t. $\langle H \rangle_{|\phi(\theta^*)}$ minimal
- $H = \sum_{\alpha} w_{\alpha} \vec{\sigma_{\alpha}}, \quad \vec{\sigma_{\alpha}} \in \{I, X, Y, Z\}^{\otimes N}$
- $E_{VQE} = min_{\vec{\theta}} \sum_{\alpha} w_a \left\langle \psi(\vec{\theta}) \middle| \vec{\sigma_{\alpha}} \middle| \psi(\vec{\theta}) \right\rangle$





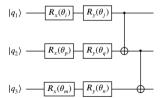
The Ansatz

The right choice of ansatz is critical to obtain a solution that is close to the ground state.

- Expressability: Refers the range of feasible states that the ansatz can achieve.
- Trainability: Refers to the ability to find the best set of parameters of the ansatz respect to expectation values of the Hamiltonian in a finite amount of time.
- **Depth**: Refers to the number of sequential operations required for the implementation, which impacts the overall runtime of the method and its resilience to noise

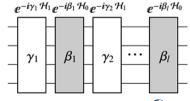
Hardware Efficient Ansatz

$$|\psi(\theta)
angle_{\mathit{HEA}} = \prod_{i=1}^p \mathit{U}_{\mathit{ent}} \mathit{U}_{\mathit{rot}}(\theta_i) \, |0
angle$$



Hamiltonian Variational Ansatz

$$|\psi(\theta)\rangle = \prod_{l=1}^{p} (\prod_{j} e^{i\theta_{lj}H_{j}}) |\psi_{0}\rangle, H = \sum_{j} H_{j}$$



The Classical Optimizer choice

Gradient Descent Based

Use the analytical property of the ansatz, the gradient of observables can be directly computed on a quantum computer.

Gradient Descent, Quantum Natural Gradient

Stochastic Gradient Based

Approximated the true gradient using random sampled data at each iteration.

SPSA,QNSPSA,Adam

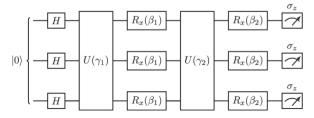
Gradient-free searching

Do not rely on gradient information and instead explore the parameter space using alternative techniques as random search, evolutionary algorithms or Bayesian optimization.

COBYLA, Nelder-Mead

The Quantum Alternating Operator Ansatz

- Objective function $f: \{0,1\}^n \to \mathbb{R}$
- Where are looking for the optimal vector $x^* = argmin_{x \in \{0,1\}} f(x)$
- Encode each binary string into a quantum state: $z = \{0, 1\}^n \rightarrow |z\rangle$
- Encode the objective function into a problem Hamiltonian $H_P\ket{z}=f(z)\ket{z}, \quad \langle H_P
 angle_{\ket{z}}=f(z)$
- The Ground state of H_P correspond to the minima of the the objective function.
- $\left|\vec{\gamma}, \vec{\beta}\right\rangle = U_M(\beta_p)U_P(\gamma_p) \cdots U_M(\beta_1)U_P(\gamma_1) \left|\phi_0\right\rangle, U_P(\gamma) = e^{i\gamma H_P}, U_M = \prod_{i=1}^n RX_i(\beta)$ Find $\vec{\gamma}, \vec{\beta} \in \mathbb{R}^p$, such that $\left\langle \gamma, \beta \right| H_P \left|\gamma, \beta\right\rangle$ is minimized.



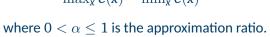
Combinatorial Optimization Example: The Max-k-Cut Problem

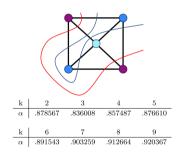
$$\max_{\mathbf{x} \in \{1,\dots,k\}^n} C(\mathbf{x}), \qquad C(\mathbf{x}) = \sum_{(i,j) \in E} w_{ij} \begin{cases} 1, & \text{if } x_i \neq x_j \\ 0, & \text{otherwise.} \end{cases} \tag{4}$$

Solving NP hard optimization problems.

- Heuristic algorithms. No polynomial run time guarantee; appear to perform well on some instances.
- Approximate algorithms. Efficient and provide provable guarantees. With high probability we get a solution x* such that

$$\frac{C(x^*) - \min_{\mathbf{x}} C(\mathbf{x})}{\max_{\mathbf{x}} C(\mathbf{x}) - \min_{\mathbf{x}} C(\mathbf{x})} \ge \alpha, \tag{5}$$





The MaxCut Implementation

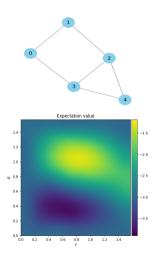
$$\widehat{H}_{e} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} = |01\rangle \langle 01| + |10\rangle \langle 10| = \frac{\mathbb{I} - Z \otimes Z}{2}$$

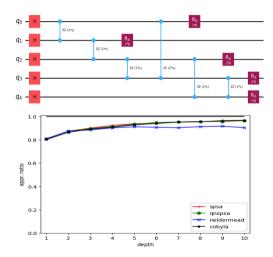
$$\tag{6}$$

$$H_{Maxcut} = \sum_{(i,j)\in E} w_{ij} \frac{1 - Z_i Z_j}{2} \Rightarrow e^{i\theta H_{maxcut}} = \prod_{(i,j)\in E} e^{i\frac{\theta}{2}w_{ij}Z_i Z_j}$$
(7)

$$e^{-i\theta Z \otimes Z} = \begin{pmatrix} e^{-i\theta/2} & 0 & 0 & 0 \\ 0 & e^{i\theta/2} & 0 & 0 \\ 0 & 0 & e^{i\theta/2} & 0 \\ 0 & 0 & 0 & e^{-i\theta/2} \end{pmatrix} = \begin{matrix} R_z(-\theta) \\ \hline \end{pmatrix}$$
(8)

Example: Solving Max-Cut with QAOA





QAOA for Constrained Optimization Problems

The solutions constrained to a feasible subspace $\operatorname{span}(B) \subset \mathcal{H} = (\mathbb{C}^2)^{\otimes n}$:

$$B = \{ |z_j\rangle, \ 1 \le j \le J, \ z_j \in \{0, 1\}^n \}.$$
 (9)

Definition valid mixer

• Preserve the feasible subspace

$$U_{M}(\beta)|v\rangle\in \operatorname{span}(B)\,,\quad \forall\,|v\rangle\in \operatorname{span}(B)\,, \forall \beta\in\mathbb{R},$$
 (10)

• Provide transitions between all pairs of feasible states, i.e., for each pair of computational basis states $|x\rangle$, $|y\rangle \in B$ there exist $\beta^* \in \mathbb{R}$ and $r \in \mathbb{N} \cup \{0\}$, such that

$$|\langle x|\underbrace{U_M(\beta^*)\cdots U_M(\beta^*)}|y\rangle|>0.$$
 (11)

Example of Valid Mixers

Unconstrained case: X mixer

$$U_X(\beta) = \prod_i RX_i(\beta) = \prod_i (cos(\beta)\mathbb{I} + isin(\beta)X_i)$$

(12)

$$-\begin{bmatrix} R_x(\beta_1) \\ -\end{bmatrix} -$$

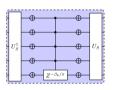
$$-\begin{bmatrix} R_x(\beta_1) \\ -\end{bmatrix} -$$

$$U_X(\frac{\pi}{2}) = \frac{1}{2\sqrt{2}}(\mathbb{I} + i(X_1 + X_2 + X_3) - (X_1X_2 + X_2X_3 + X_1X_3) - iX_1X_2X_3)$$

Constrained case: Grover mixer

$$|F
angle = rac{1}{\sqrt{|B|}} \sum_{i \in B} |i
angle = U_{\mathcal{S}} |0
angle \Rightarrow$$
 (13)

$$U_{Grover}(eta)=e^{ieta|F
angle\langle F|}=U_{\mathcal{S}}e^{ieta|0
angle\langle 0|}U_{\mathcal{S}}^{\dagger}$$
 (14



$$(|F\rangle\langle F|)^2 = |F\rangle\langle F| \Rightarrow U_{Grover}(\beta) = \sum_{i} \frac{(i\beta)^n}{n!} (|F\rangle\langle F|)^n = \mathbb{I} + (e^{i\beta} - 1)|F\rangle\langle F|$$

Portfolio Optimization Problem

Motivation: The goal here is to decide which assets to include in a portfolio to balance risk and return. In the binary formulation, each asset is either included in the portfolio ($z_i = 1$) or excluded ($z_i = 0$).

Objective Function:

$$F(z_1, z_2, \ldots, z_n) = q \sum_{i,j=1}^n z_i z_j \sigma_{ij} - (1-q) \sum_{i=1}^n z_i \mu_i, \quad z_i \in \{0,1\}.$$

- n: number of available assets
- σ_{ij} : covariance matrix of asset returns
- μ_i: expected return of asset i
- $q \in [0, 1]$: investor's risk preference
 - -q=1: fully risk-averse (minimize variance)
 - q = 0: fully risk-seeking (maximize return)

The Budget Constraint and XY Mixer

Budget Constraint:

$$\sum_{i=1}^n z_i = B,$$

where B is the number of assets selected in the portfolio.

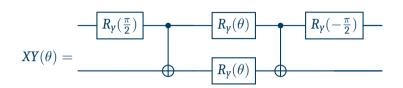
Hamiltonian: $z_i = \frac{1-Z_i}{2} \Rightarrow H = \sum_{ij} w_{ij} Z_i Z_j + \sum_i h_i Z_i$

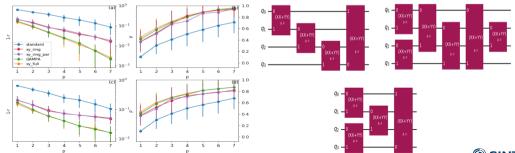
Initial State (Dicke State):

$$|\psi_0^{M_{XY}}
angle = |D_n^B
angle = rac{1}{\sqrt{inom{n}{B}}} \sum_{\substack{i_1,\ldots,i_n=0,1 \ i_1+\cdots+i_n=B}} |i_1i_2\ldots i_n
angle$$

$$\text{XY Mixer: } XY_{i,j}(\beta) = e^{i\beta(\hat{X}_i\hat{X}_j + \hat{Y}_i\hat{Y}_j)}, \quad XX + YY = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} = |10\rangle \left<01| + |01\rangle \left<10| \right>$$

Example: Quantum Portfolio Optimization with XY Mixers





Thank You!

Ruben Pariente Bassa

Sintef/University of Oslo

ruben.bassa@sintef.no