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Variational Algorithms for Noisy Quantum Devices (NISQ)
• Quantum advantage is still limited by noise and number of qubit counts: The idea isto combine quantum circuits with classical optimization.• Variational Quantum Algorithms (VQAs) use a parameterized quantum circuit toprepare a trial wavefunction/quantum state |ψ(θ)⟩ = U(θ) |0⟩ and a classicaloptimizer to minimize a cost function C(θ)
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Applications of Variational Quantum Algorithms (VQAs)

VQE:Quantum Chemistry
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Observables

• An observable H is a self-adjoint/Hermitian operator on the Hilbert space (C2)⊗n.This means H† = H

• Spectral theorem: ∃ orthonormal basis {|ψi⟩}i of (C2)⊗n consisting of eigenvectorsof H, and all eigenvalues λi are real.
• We can write: H =

∑
i λi |ψi⟩ ⟨ψi|

• To each energy λj corresponds to an energy eigenstate.– ground state: energy eigenstate |v1⟩ corresponding to the lowest energy– first excited state, second excited state, ...: |v2⟩ , |v3⟩ , ...
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Expectation values
Given
• a state |ϕ⟩ prepared on a quantum computer using the unitary U such that

U |0⟩ = |ϕ⟩
• an observable H we are interested to measure

Then the expectation value of H respect to the state |ϕ⟩ is given by
⟨H⟩|ϕ⟩ := ⟨ϕ|H |ϕ⟩ = ⟨0|UHU† |0⟩ (1)

From the spectral theorem it follows:
⟨H⟩|ϕ⟩ = ⟨ϕ|

∑
i

λi |ψi⟩ ⟨ψi|ϕ⟩ =
∑

i

λi |⟨ϕ|ψi⟩|2 (2)
Particularly: ⟨H⟩|ψi⟩ = λi
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The Variational Principle
⟨H⟩|ϕ⟩ =

∑
i

λi |⟨ϕ|ψi⟩|2 ≥
∑

i

λmin |⟨ϕ|ψi⟩|2 = λmin (3)

• Find θ∗ s.t. ⟨H⟩|ϕ(θ∗⟩ minimal
• H =

∑
α wασ⃗α, σ⃗α ∈ {I, X, Y, Z}⊗N

• EVQE = min
θ⃗

∑
α wa

〈
ψ(θ⃗)

∣∣∣ σ⃗α ∣∣∣ψ(θ⃗)〉 initial state
solution
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The Ansatz
The right choice of ansatz is critical to obtain a solution that is close to the ground state.• Expressability: Refers the range of feasible states that the ansatz can achieve.• Trainability: Refers to the ability to find the best set of parameters of the ansatz respect to expectationvalues of the Hamiltonian in a finite amount of time.• Depth: Refers to the number of sequential operations required for the implementation, which impactsthe overall runtime of the method and its resilience to noise

Hardware Efficient Ansatz
|ψ(θ)⟩HEA =

∏p
i=1 UentUrot(θi) |0⟩

Hamiltonian Variational Ansatz
|ψ(θ)⟩ =

∏p
l=1(

∏
j eiθljHj) |ψ0⟩ ,H =

∑
j Hj
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The Classical Optimizer choice

Gradient Descent Based
Use the analytical property of
the ansatz, the gradient of
observables can be directly
computed on a quantum
computer.Gradient Descent,Quantum Natural Gradient

Stochastic Gradient Based
Approximated the true gradient
using random sampled data at
each iteration.SPSA,QNSPSA,Adam

Gradient-free searching
Do not rely on gradient
information and instead explore
the parameter space using
alternative techniques as
random search, evolutionary
algorithms or Bayesian
optimization.COBYLA, Nelder-Mead
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The Quantum Alternating Operator Ansatz
• Objective function f : {0, 1}n → R• Where are looking for the optimal vector x∗ = argminx∈{0,1}f (x)• Encode each binary string into a quantum state: z = {0,1}n → |z⟩• Encode the objective function into a problem Hamiltonian

HP |z⟩ = f (z) |z⟩ , ⟨HP⟩|z⟩ = f (z)• The Ground state of HP correspond to the minima of the the objective function.
• ∣∣∣γ⃗, β⃗〉 = UM(βp)UP(γp) · · ·UM(β1)UP(γ1) |ϕ0⟩ ,UP(γ) = eiγHP ,UM =

∏n
i=1 RXi(β)

• Find γ⃗, β⃗ ∈ Rp, such that ⟨γ, β|HP |γ, β⟩ is minimized.
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Combinatorial Optimization Example: The Max-k-Cut Problem
max

x∈{1,...,k}n
C(x), C(x) =

∑
(i,j)∈E

wij

{
1, if xi ̸= xj

0, otherwise. (4)
Solving NP hard optimization problems.
• Heuristic algorithms. No polynomial run timeguarantee; appear to perform well on someinstances.
• Approximate algorithms. Efficient and provideprovable guarantees. With high probability weget a solution x∗ such that

C(x∗)−minx C(x)
maxx C(x)−minx C(x)

≥ α, (5)
where 0 < α ≤ 1 is the approximation ratio.
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The MaxCut Implementation

Ĥe =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 = |01⟩ ⟨01|+ |10⟩ ⟨10| = I− Z ⊗ Z
2

(6)

HMaxcut =
∑
(i,j)∈E

wij
1 − ZiZj

2
⇒ eiθHmaxcut =

∏
(i,j)∈E

ei θ2 wijZiZj (7)

e−iθZ⊗Z =


e−iθ/2 0 0 0

0 eiθ/2 0 0
0 0 eiθ/2 0
0 0 0 e−iθ/2

 = Rz(−θ) (8)
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Example: Solving Max-Cut with QAOA
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QAOA for Constrained Optimization Problems
The solutions constrained to a feasible subspace span(B) ⊂ H = (C2)⊗n:

B =
{
|zj⟩ , 1 ≤ j ≤ J, zj ∈ {0,1}n} . (9)

Definition valid mixer
• Preserve the feasible subspace

UM(β) |v⟩ ∈ span(B) , ∀ |v⟩ ∈ span(B) , ∀β ∈ R, (10)
• Provide transitions between all pairs of feasible states, i.e., for each pair ofcomputational basis states |x⟩ , |y⟩ ∈ B there exist β∗ ∈ R and r ∈ N∪ {0}, such that

| ⟨x|UM(β
∗) · · ·UM(β

∗)︸ ︷︷ ︸
r times

|y⟩ | > 0. (11)
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Example of Valid Mixers
Unconstrained case: X mixer

UX(β) =
∏

i

RXi(β) =
∏

i

(cos(β)I+isin(β)Xi)

(12)

UX(
π
2 ) =

1
2
√

2
(I+ i(X1 + X2 + X3)−

(X1X2 + X2X3 + X1X3)− iX1X2X3)

Constrained case: Grover mixer

|F⟩ = 1√
|B|

∑
i∈B

|i⟩ = US |0⟩ ⇒ (13)
UGrover(β) = eiβ|F⟩⟨F| = USeiβ|0⟩⟨0|U†

S (14)

(|F⟩ ⟨F|)2 = |F⟩ ⟨F| ⇒ UGrover(β) =∑
i
(iβ)n

n! (|F⟩ ⟨F|)n = I+ (eiβ − 1) |F⟩ ⟨F|
13



Portfolio Optimization Problem
Motivation: The goal here is to decide which assets to include in a portfolio to balance risk andreturn. In the binary formulation, each asset is either included in the portfolio (zi = 1) or excluded(zi = 0).
Objective Function:

F(z1, z2, . . . , zn) = q
n∑

i,j=1

zizjσij − (1 − q)
n∑

i=1

ziµi, zi ∈ {0,1}.

• n: number of available assets
• σij: covariance matrix of asset returns
• µi: expected return of asset i

• q ∈ [0, 1]: investor’s risk preference
– q = 1: fully risk-averse (minimize variance)– q = 0: fully risk-seeking (maximize return)14



The Budget Constraint and XY Mixer
Budget Constraint:

n∑
i=1

zi = B,

where B is the number of assets selected in the portfolio.
Hamiltonian: zi =

1−Zi
2 ⇒ H =

∑
ij wijZiZj +

∑
i hiZi

Initial State (Dicke State):

|ψMXY
0 ⟩ = |DB

n⟩ =
1√(n

B

) ∑
i1,...,in=0,1
i1+···+in=B

|i1i2 . . . in⟩

XYMixer: XYi,j(β) = e iβ(X̂iX̂j+ŶiŶj), XX + YY =


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 = |10⟩ ⟨01|+ |01⟩ ⟨10|
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Example: Quantum Portfolio Optimization with XY Mixers

XY(θ) =

Ry(
π
2 ) Ry(θ) Ry(−π

2 )

Ry(θ)
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Thank You!
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