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National Supercomputer Centre (NSC)
NSC is part of:
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NSC academic clusters

Tetralith (2018 - ) 1908 x 2 x 16 cores, Intel Xeon Gold 6130

Sigma (2018 - ) 110 x 2 x 16 cores, Intel Xeon Gold 6130 

BerzeLiUs (2021 - ) Nvidia DGX SuperPOD, 60 x 8 A100 GPUs 

Top500 no. 282 (74)

Top500 no. 151 & 178 (82)

NAISS

- increased with 34 nodes in 2023 
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• PhD in Physics 2005 @Uppsala Univ.

• PostDoc @Kyoto Univ. 4y, @Leoben Univ. 1y

• Application Expert @NSC, 2011 (50%), 2016 (90%)

• 10% theoretical spectroscopy @IFM, LiU

• Electronic structure calculations

• @NSC: VASP, QE, WIEN2k, GPAW, …

About myself

YEARS IN HPC 1989–2009

National Supercomputer Centre in Linköping Sweden



Information / Schedule
https://www.nsc.liu.se/support/Events/VASP_workshop_2024/

10-15 min breaks every hour
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• Weine Olovsson (NSC) - organizer & presentations

• Yonglei Wang (ENCCS) - organizer & helper

• Diana Iusan (UPPMAX) - helper

• Pavlin Mitev (UPPMAX) - helper

• Wei Li (ENCCS) - helper

• Qiang Li (ENCCS) - helper

• Luis Casillas Trujillo (NSC) - helper

Workshop organization



• Basic theory (PAW)

• General considerations

• Focus on practical aspects of running VASP

• Influential parameters, NPAR/NCORE, ALGO, NSIM, KPAR, …

• Benchmarks, examples

• Common problems

VASP - Best Practices Workshop 

…at specific supercomputer centres

… clickable links are underlined



- Also other resources, materials and tools for VASP (see presentation 4.)
- Peter Larsson’s old blog at NSC:
- NSC VASP installations: 

Resources
• Wiki and Manual

• Examples, tutorials

• Presentations

• Forum

https://vasp.at/

Check in detail!

Find all the links:

Questions / trouble @NSC clusters? support@nsc.liu.se

https://www.nsc.liu.se/~pla/
https://www.nsc.liu.se/software/installed/tetralith/vasp/

https://www.vasp.at/wiki/index.php/The_VASP_Manual
https://www.vasp.at/wiki/index.php/Category:Examples
https://www.vasp.at/wiki/index.php/Category:Tutorials
https://www.vasp.at/wiki/index.php/Lectures_and_presentations
https://www.vasp.at/forum/
https://vasp.at/
mailto:support@nsc.liu.se?subject=
https://www.nsc.liu.se/~pla/
https://www.nsc.liu.se/software/installed/tetralith/vasp/




1. Introduction & Basic Theory
Weine Olovsson
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• PAW-method

• DFT, post-DFT (HSE06, GW, …)

• Born-Oppenheimer Molecular Dynamics

• widely used in Academia/Industry

• Efforts from Intel & Nvidia for optimization

• 20-25% of Tetralith usage

https://vasp.at/

VASP: short background

… clickable links are underlined

https://vasp.at/


Schrödinger Equation

2 Density functional theory

Though it is not obvious, for many purposes it is sufficient to describe a system
in its ground state, a static state at its lowest possible total energy at absolute
zero temperature, not interacting with the “outside world” and having a con-
stant number of particles. One can start with considering the time-independent
Schrödinger equation for a macroscopic system,

HY = EY, (2.1)

the Hamiltonian H includes all the quantum mechanical operators for the ki-
netic and potential energies, giving the total energy E of the system as H
operates on the many body wave function Y. In principle Y contains all in-
formation that can be extracted about nucleii and electrons in the system. In
particular the full Hamiltonian can be written

H = T +Tn +Vint +Vnn +Vext =� h̄2
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me and r correspond to the electron mass and positions respectively, MI are
the masses of the atomic nucleii at the coordinates R. The first two terms are
the kinetic energy operators for the electrons T , respectively nucleii Tn. The
potential energy operators follows as, the electron-electron repulsion Vint , the
nuclei-nuclei interaction Vnn , and the potential that includes external effects
on the electrons Vext , here describing the attraction from the positively charged
atomic nucleii to the electrons, the so-called crystal potential.

The kinetic energies of the atomic cores is the only term in the Hamiltonian
that can be considered as small in comparison with the others, the mass of
a single proton is ⇡ 1836⇥me, so it can effectively be put to zero in many
cases. This procedure is the often used Born-Oppenheimer or adiabatic ap-
proximation, that reduces the overall complexity of the problem at hand, as
the electrons can be considered to move in a fixed crystal potential Vext . An-
other consequence is that Vnn givning rise to the Madelung energy will depend
on a fixed structure. From here Vnn will be left out in the considerations, but
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solid ~1023 particles…

Born-Oppenheimer approx.
= 0

Time-independent SE



How to solve it?
“The general theory of quantum mechanics is now almost complete, …” 

“The underlying physical laws necessary for the mathematical theory of a
large part of physics and the whole of chemistry are thus completely known,
and the difficulty is only that the exact application of these laws leads to
equations much too complicated to be soluble.”

“It therefore becomes desirable that approximate practical methods of applying
quantum mechanics should be developed, which can lead to an explanation
of the main features of complex atomic systems without too much computation”

Dirac, Proc. R. Soc. Lond. Ser. A 123, 714 (1929)



Density Functional Theory (DFT)

Hohenberg & Kohn, PRL 136, B864 (1964)
Kohn & Sham, PRL 140, A1133 (1965)

(1) The potential Vext of a system is determined uniquely,                    
      except for a constant by the ground state density n(r)

(2) The total energy functional E[n], for a given Vext, assumes 
      its minimal value for the correct electron density n(r) of the      
      ground state

Ansatz:

1. The potential Vext of a system is determined uniquely, except for a constant,
by the ground state density n(r)

2. If one consider the total energy functional E[n], for a given Vext , it assumes
its minimal value for the correct electron density n(r) of the ground state.

With the starting point from the Hohenberg-Kohn theorems the total energy
of a system is given as a functional of the density from the expectation value
of H

EHK [n] = hY|Ĥ|Yi = hY|T̂ +V̂int |Yi| {z }
FHK [n]

+
Z

d3rVext(r)n(r), (2.4)

introducing the density functional FHK [n], that separates into the kinetic en-
ergy and the interaction terms for the electrons. Notice that so far there is no
actual solution to the problem, for that one must obtain an expression for FHK
to use in the calculations.

2.1 Kohn-Sham equations
In the second paper, Kohn and Sham introduce a scheme for performing the
actual calculations. They make an important ansatz that there exists such a
system with non-interacting electrons that its ground state corresponds to a
specific system with interacting electrons, such that the Kohn-Sham energy
functional can be written as

EKS[n] =
Z

d3rVext(r)n(r)+Ts[n]+Exc[n]+
Z Z

d3r d3r0
n(r)n(r0)
|r� r0| , (2.5)

introducing the kinetic energy of independent electrons, Ts, is solved exactly,
in contrast with the Thomas-Fermi method. The classical Coulomb interaction
energy of the electron density n(r), also called the Hartree term, EHartree[n] is
separated out as the last term in the equation. Now there remains a single
unknown term Exc, which is exchange-correlation density functional, defined
from Eqs. (2.4) and (2.5), for clarity also given below

Exc[n] = hT̂ i�Ts[n]+ hV̂inti�EHartree[n]. (2.6)

The exchange contribution is a purely quantum mechanical effect due to the
Pauli principle, as was mentioned before. Its effect is that parallel spins keep
apart, because the total wave function of a fermionic system is anti-symmetric.
For example in a two-electron system, Y(r1,r2) = �Y(r2,r1), meaning that
the wave function is zero if {r1} = {r2}. The electron correlation originates

5

for independent electrons (mean field theory)

Use electron probability density n(r) instead of 𝚿…  



R4 Topical Review

′
′

′

Figure 1. Properties of a quantum mechanical system can be calculated by solving the SE (left
part of the figure). A more tractable, formally equivalent way is to solve the DFT KS equations
(right part of the figure). However, the exact exchange-correlation functional, Exc[n(r)], is not
known. An approximation, such as LDA or GGA, needs to be used, limiting the accuracy of the
KS solution.

enlightening. Richard Martin’s recent volume reviews electronic structure from a physics
perspective [9] and also has an associated web page (http://ElectronicStructure.org) intended
to serve as a living reference document of progress in electronic structure. New books and
reviews are published frequently. See http://dft.sandia.gov for overviews of available reference
texts. This site also provides information on the ongoing effort to improve functionals.

2.1. Hierarchy of functionals

John Perdew, who has been involved in the construction of most functionals in use, has a
roadmap for functional development that he calls ‘Jacob’s ladder’ [10,11], which is useful for
classifying functionals. Each rung of the ladder adds increased sophistication to the form of
the functionals.

Local density approximation (LDA). LDA constitutes the first rung. It uses only the
electron density, n(r), at spatial point r to determine the exchange-correlation energy density
at that point. The exchange-correlation energy density is taken to be that of a uniform electron
gas of the same density. The exchange part of the functional is defined as the exact expression
derived for a uniform electron gas [3]. The available versions of LDA differ only in their
representation of correlation. All modern LDA correlation functionals are based on Ceperly
and Alder’s (CA’s) 1980 Monte Carlo calculation [12] of the total energy of the uniform
electron gas. The Perdew–Zunger (PZ) [13], Perdew–Wang (PW) [14] and Vosko–Wilk–
Nusair (VWN) [15] are different fits to the CA data.

Generalized gradient approximation (GGA). The second rung of Jacob’s ladder, the GGA,
adds the gradient of the density, |∇n(r)|, as an independent variable. The gradient introduces
non-locality into the description of exchange and correlation. GGA functionals have evolved
in two main directions. One is sometimes called ‘parameter free’, where the new parameters
are determined from known expansion coefficients and other exact theoretical conditions. The
other is empirical, with parameters determined from fits to experimental data or accurately
calculated atomic and molecular properties. The GGA functionals most commonly used in

Mattsson et al., Modelling Simul. Mater. Sci. Eng. 13, R1 (2005)



Exchange-Correlation Functional

from the fact that in reality each and every electron is not moving in a mean
field, but is affected by the motion of all other electrons, from the Coulomb
repulsion. In practice, it includes everything that was not accounted for in
the Hartree-Fock approximation. Because parallel spins are kept apart by the
Pauli principle, correlation effects are more important for electrons with anti-
parallel spins. In solids the contribution from exchange to the total energy is
typically larger than the correlation part.

All difficulties have now been collected in the exchange-correlation term,
which is not known exactly, so it must be approximated somehow. A first
suggestion was immediately made by Kohn and Sham [2], namely the local
density approximation (LDA),

ELDA
xc [n] =

Z
dr3 n(r)exc(n(r)), (2.7)

where exc(n(r)) is the exchange-correlation energy per particle for a homoge-
neous electron gas with a density n(r). The effective potential for the whole
system can then be written

Ve f f (r) = Vext(r)+VCoul(r)+Vxc[n(r)], (2.8)

where VCoul is the Hartree potential and Vxc is the exchange-correlation poten-
tial determined by the functional derivative

Vxc[n] =
∂Exc[n]

∂n
. (2.9)

There is an extension of LDA to spin-polarized systems called the local spin
density approximation (LSDA) [4, 5]. By neglecting the spin-orbit coupling
the density of the electrons is separated into two spin channels, spin up and
spin down, n(r) = n"(r)+n#(r). The magnetization can in turn be defined as
m(r) = n"(r)�n#(r).

The results obtained from LDA have been well above the expectations, con-
sidering its simplicitly. To partly explain its success one can note that it is by
definition exact for a homogeneous electron gas. There have been an attempt
to improve LDA by including gradients of the charge density in the exchange-
correlation term, namely

EGGA
xc [n] =

Z
d3r n(r)exc(n(r), |—n|), (2.10)

called the generalized gradient approximation (GGA), see for instance Ref.
[6].

6

from the fact that in reality each and every electron is not moving in a mean
field, but is affected by the motion of all other electrons, from the Coulomb
repulsion. In practice, it includes everything that was not accounted for in
the Hartree-Fock approximation. Because parallel spins are kept apart by the
Pauli principle, correlation effects are more important for electrons with anti-
parallel spins. In solids the contribution from exchange to the total energy is
typically larger than the correlation part.

All difficulties have now been collected in the exchange-correlation term,
which is not known exactly, so it must be approximated somehow. A first
suggestion was immediately made by Kohn and Sham [2], namely the local
density approximation (LDA),

ELDA
xc [n] =

Z
dr3 n(r)exc(n(r)), (2.7)

where exc(n(r)) is the exchange-correlation energy per particle for a homoge-
neous electron gas with a density n(r). The effective potential for the whole
system can then be written

Ve f f (r) = Vext(r)+VCoul(r)+Vxc[n(r)], (2.8)

where VCoul is the Hartree potential and Vxc is the exchange-correlation poten-
tial determined by the functional derivative

Vxc[n] =
∂Exc[n]

∂n
. (2.9)

There is an extension of LDA to spin-polarized systems called the local spin
density approximation (LSDA) [4, 5]. By neglecting the spin-orbit coupling
the density of the electrons is separated into two spin channels, spin up and
spin down, n(r) = n"(r)+n#(r). The magnetization can in turn be defined as
m(r) = n"(r)�n#(r).

The results obtained from LDA have been well above the expectations, con-
sidering its simplicitly. To partly explain its success one can note that it is by
definition exact for a homogeneous electron gas. There have been an attempt
to improve LDA by including gradients of the charge density in the exchange-
correlation term, namely

EGGA
xc [n] =

Z
d3r n(r)exc(n(r), |—n|), (2.10)

called the generalized gradient approximation (GGA), see for instance Ref.
[6].

6

All difficulties now included in the XC-functional, need to find an approximation…

Local Density Approximation (LDA)

Generalized Gradient Approximation (GGA)

GGA: PBE, AM05, PBEsol, …
meta-GGA: SCAN, …
mixing with exact-X: HSE06, …

homogeneous electron gas

many choices, commonly used are e.g. PBE, HSE06, ...



Using periodicity

from Marsman: https://www.vasp.at/mmars/day1.pdf

Basics PAW Hybrids NewDF Optimization HF-PAW

Translational invariance implies the existence of a good quantum
number, usually called the Bloch wave vector k. All electronic
states can be indexed by this quantum number

|Ψk〉

In a one-electron theory, one can introduce a second index,
corresponding to the one-electron band n,

|ψnk〉

The Bloch theorem states that the one-electron wavefunctions obey
the equation:

ψnk(r + R) = ψnk(r)eikR

where R is any translational vector leaving the Hamiltonian
invariant.

k is usually constrained to lie within the first Brillouin zone in
reciprocal space.

Marsman VASP Workshop: Day 1

Basics PAW Hybrids NewDF Optimization HF-PAW

The intractable task of determining Ψ(r1, ..., rN ) (for N ∼ 1023) has

been reduced to calculating ψnk(r) at a discrete set of points {k} in the

first BZ, for a number of bands that is of the order of the number of

electrons per unit cell.

Marsman VASP Workshop: Day 1

https://www.vasp.at/mmars/day1.pdf


Basics PAW Hybrids NewDF Optimization HF-PAW
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Using periodicity

from Marsman: https://www.vasp.at/mmars/day1.pdf
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Self-consistent iterations

from Marsman: https://www.vasp.at/mmars/day1.pdf

Basics PAW Hybrids NewDF Optimization HF-PAW

The Self-Consistency Cycle

trial-charge ρin and trial-wavevectors ψn!! !!

"
set up Hamiltonian H(ρin)

"
iterative refinements of wavefunctions {ψn}

"
new charge density ρout =

P
n fn|ψn(r)|2

"
refinement of density ρin, ρout ⇒ new ρin

"##### $$$$$
$$$$$ #####no

∆E < δ

calculate forces, update ions

%

"

%

two subproblems
optimization of
{ψn} and ρin

refinement of
density:
DIIS algorithm
P. Pulay, Chem. Phys. Lett.

73, 393 (1980)

refinement of
wavefunctions:
DIIS or Davidson
algorithm

Marsman VASP Workshop: Day 1

https://www.vasp.at/mmars/day1.pdf


Why PAW?
• Goal: both accurate (LAPW) and fast (e.g. USPP) method

• Want to keep all-electron (AE) wave function

• Focus on valence electrons (frozen core) - chemical bonding

• Fast calculation in reciprocal space using FFT (plane waves)

• Solution: Projector Augmented Wave (PAW) method



Plane waves & Augmentation
• Rapid wave oscillations close to nucleus

• Strongly localised states at atoms

• Split into interstitial and augmentation (sphere) regions

• No overlap between spheres (one-centre expansion)

• PAW: Energy and potential independent wave functions

need too many plane waves!

therefore ->
smooth pw



PAW AugmentationPAW augmentation
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Transformation theory

a radically new way of thinking into electronic structure methods. Diagonaliza-
tion of a Hamilton matrix has been replaced by classical equations of motion for
the wave function coefficients. If one applies friction, the system is quenched to
the ground state. Without friction truly dynamical simulations of the atomic
structure are performed. Electronic wave functions and atomic positions are
treated on equal footing.

The Car-Parrinello method had been implemented first for the pseudopoten-
tial approach. There seemed to be unsurmountable barriers against combining
the new technique with augmented wave methods. The main problem was re-
lated to the potential dependent basis set used sofar: the Car-Parrinello method
requires a well defined and unique total energy functional of atomic positions
and basis set coefficients. Therefore, it was one of the main goals of the PAW
method to introduce energy and potential independent basis sets that were as
accurate and numerically efficient as the previously used augmented basis sets.
Other requirements have been: (1) The method should match the efficiency of
the pseudopotential approach for Car-Parrinello simulations. (2) It should be-
come an exact theory when converged and (3) its convergence should be easily
controlled. We believe that these criteria have been met, which explains why
the PAW method becomes increasingly wide spread today.

We would like to point out that most of these seemingly singular devel-
opments did not come out of the blue, but the ideas seemed to have evolved
in the community. In the case of the PAW method, similar ideas have been
developed by Vanderbilt [Vanderbilt 1990] in the context of ultra-soft pseu-
dopotentials. The first dynamical simulations using a semiempirical electronic
structure method have been performed by Wang and Karplus [Wang et al 1973]
in 1973. The first ab-initio pseudopotentials have been published by Zunger
[Zunger et al 1978] one year before Hamann, Bachelet and Schlüter [Hamann et al 1979].

2 Transformation theory

At the root of the PAW method lies a transformation, that maps the true wave
functions with their complete nodal structure onto auxiliary wave functions, that
are numerically convenient. We aim for smooth auxiliary wave functions, which
have a rapidly convergent plane wave expansion. With such a transformation
we can expand the auxiliary wave functions into a convenient basis set, and
evaluate all physical properties after reconstructing the related physical (true)
wave functions.

Let us denote the physical one-particle wave functions as |Ψn〉 and the aux-
iliary wave functions as |Ψ̃n〉. Note that the tilde refers to the representation
of smooth auxiliary wave functions. n is the label for a one-particle state and
contains a band index, a k-point and a spin index. The transformation from
the auxiliary to the physical wave functions is T .

|Ψn〉 = T |Ψ̃n〉 (1)

We use here Dirac’s Bra and Ket notation. A wave function Ψn(r) corre-
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sponds to a ket |Ψn〉, the complex conjugate wave function Ψ∗
n(r) corresponds

to a bra 〈Ψn|, and a scalar product
∫

d3rΨ∗
n(r)Ψm(r) is written as 〈Ψn|Ψm〉.

Vectors in the 3-d coordinate space are indicated by boldfaced symbols.
The electronic ground state is determined by minimizing a total energy func-

tional E[Ψn] of the density functional theory. The one-particle wave functions
have to be orthogonal. This constraint is implemented with the method of
Lagrange multipliers. We obtain the ground state wave functions from the ex-
tremum condition for

F ([Ψn], Λm,n) = E[Ψn] −
∑

n,m

[〈Ψn|Ψm〉 − δn,m]Λn,m (2)

with respect to the wave functions and the Lagrange multipliers Λn,m. The
extremum condition for the wave functions has the form

H |Ψn〉fn =
∑

m

|Ψm〉Λm,n (3)

where the fn are the occupation numbers and H = − h̄2

2me
∇2 + veff(r) is the

effective one-particle Hamilton operator.
After a unitary transformation that diagonalizes the matrix of Lagrange

multipliers Λm,n, we obtain the Kohn-Sham equations.

H |Ψn〉 = |Ψn〉εn (4)
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Transformation operator

The transformation takes us conceptionally from the world of pseudopo-
tentials to that of augmented wave methods, which deal with the full wave
functions. We will see that our auxiliary wave functions, which are simply the
plane wave parts of the full wave functions, translate into the wave functions of
the pseudopotential approach. In the PAW method the auxiliary wave functions
are used to construct the true wave functions and the total energy functional
is evaluated from the latter. Thus it provides the missing link between aug-
mented wave methods and the pseudopotential method, which can be derived
as a well-defined approximation of the PAW method.

In the original paper [Blöchl 1994], the auxiliary wave functions have been
termed pseudo wave functions and the true wave functions have been termed
all-electron wave functions, in order to make the connection more evident. I
avoid this notation here, because it resulted in confusion in cases, where the
correspondence is not clear cut.

3 Transformation operator

Sofar, we have described how we can determine the auxiliary wave functions of
the ground state and how to obtain physical information from them. What is
missing, is a definition of the transformation operator T .

The operator T has to modify the smooth auxiliary wave function in each
atomic region, so that the resulting wave function has the correct nodal struc-
ture. Therefore, it makes sense to write the transformation as identity plus a
sum of atomic contributions SR

T = 1 +
∑

R

SR. (8)

For every atom, SR adds the difference between the true and the auxiliary wave
function. The index R is a label for an atomic site.

The local terms SR are defined in terms of solutions |φi〉 of the Schrödinger
equation for the isolated atoms. This set of partial waves |φi〉 will serve as a
basis set so that, near the nucleus, all relevant valence wave functions can be
expressed as superposition of the partial waves with yet unknown coefficients.

Ψ(r) =
∑

i∈R

φi(r)ci for |r − RR| < rc,R (9)

The index i refers to a site index R, the angular momentum indices (", m) and an
additional index that differentiates partial waves with same angular momentum
quantum numbers on the same site. With i ∈ R we indicate those partial waves
that belong to site R. RR is the position of the nucleus of site R.

Note that the partial waves are not necessarily bound states and are therefore
not normalizable, unless we truncate them beyond a certain radius rc,R. The
PAW method is formulated such that the final results do not depend on the
location where the partial waves are truncated, as long as this is not done too
close to the nucleus.
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Since the core wave functions do not spread out into the neighboring atoms,
we will treat them differently. Currently we use the frozen-core approximation
so that density and energy of the core electrons are identical to those of the
corresponding isolated atoms. The transformation T shall produce only wave
functions orthogonal to the core electrons, while the core electrons are treated
separately. Therefore, the set of atomic partial waves |φi〉 includes only valence
states that are orthogonal to the core wave functions of the atom.

For each of the partial waves we choose an auxiliary partial wave |φ̃i〉. The
identity

|φi〉 = (1 + SR)|φ̃i〉 for i ∈ R

SR|φ̃i〉 = |φi〉 − |φ̃i〉 (10)

defines the local contribution SR to the transformation operator. Since 1 + SR

shall change the wave function only locally, we require that the partial waves
|φi〉 and their auxiliary counter parts |φ̃i〉 are pairwise identical beyond a certain
radius rc.

φi(r) = φ̃i(r) for i ∈ R and |r− RR| > rc,R (11)

In order to be able to apply the transformation operator to an arbitrary aux-
iliary wave function, we need to be able to expand the auxiliary wave function
locally into the auxiliary partial waves.

Ψ̃(r) =
∑

i∈R

φ̃i(r)〈p̃i|Ψ̃〉 for |r − RR| < rc,R (12)

which defines the projector functions |p̃i〉. The projector functions probe the
local character of the auxiliary wave function in the atomic region. Examples of
projector functions are shown in Fig. 1. From Eq. 12 we can derive

∑

i |φ̃i〉〈p̃i| =
1, which is valid within rc. It can be shown by insertion, that the identity
Eq. 12 holds for any auxiliary wave function |Ψ̃〉 that can be expanded locally
into auxiliary partial waves |φ̃i〉, if

〈p̃i|φ̃j〉 = δi,j for i, j ∈ R (13)

Note that neither the projector functions nor the partial waves need to be or-
thogonal among themselves.

By combining Eq. 10 and Eq. 12, we can apply SR to any auxiliary wave
function.

SR|Ψ̃〉 =
∑

i∈R

SR|φ̃i〉〈p̃i|Ψ̃〉 =
∑

i∈R

(

|φi〉 − |φ̃i〉
)

〈p̃i|Ψ̃〉 (14)

Hence the transformation operator is

T = 1 +
∑

i

(

|φi〉 − |φ̃i〉
)

〈p̃i| (15)

7

Since the core wave functions do not spread out into the neighboring atoms,
we will treat them differently. Currently we use the frozen-core approximation
so that density and energy of the core electrons are identical to those of the
corresponding isolated atoms. The transformation T shall produce only wave
functions orthogonal to the core electrons, while the core electrons are treated
separately. Therefore, the set of atomic partial waves |φi〉 includes only valence
states that are orthogonal to the core wave functions of the atom.

For each of the partial waves we choose an auxiliary partial wave |φ̃i〉. The
identity

|φi〉 = (1 + SR)|φ̃i〉 for i ∈ R

SR|φ̃i〉 = |φi〉 − |φ̃i〉 (10)

defines the local contribution SR to the transformation operator. Since 1 + SR

shall change the wave function only locally, we require that the partial waves
|φi〉 and their auxiliary counter parts |φ̃i〉 are pairwise identical beyond a certain
radius rc.

φi(r) = φ̃i(r) for i ∈ R and |r− RR| > rc,R (11)

In order to be able to apply the transformation operator to an arbitrary aux-
iliary wave function, we need to be able to expand the auxiliary wave function
locally into the auxiliary partial waves.

Ψ̃(r) =
∑

i∈R

φ̃i(r)〈p̃i|Ψ̃〉 for |r − RR| < rc,R (12)

which defines the projector functions |p̃i〉. The projector functions probe the
local character of the auxiliary wave function in the atomic region. Examples of
projector functions are shown in Fig. 1. From Eq. 12 we can derive

∑

i |φ̃i〉〈p̃i| =
1, which is valid within rc. It can be shown by insertion, that the identity
Eq. 12 holds for any auxiliary wave function |Ψ̃〉 that can be expanded locally
into auxiliary partial waves |φ̃i〉, if

〈p̃i|φ̃j〉 = δi,j for i, j ∈ R (13)

Note that neither the projector functions nor the partial waves need to be or-
thogonal among themselves.

By combining Eq. 10 and Eq. 12, we can apply SR to any auxiliary wave
function.

SR|Ψ̃〉 =
∑

i∈R

SR|φ̃i〉〈p̃i|Ψ̃〉 =
∑

i∈R

(

|φi〉 − |φ̃i〉
)

〈p̃i|Ψ̃〉 (14)

Hence the transformation operator is

T = 1 +
∑

i

(

|φi〉 − |φ̃i〉
)

〈p̃i| (15)

7

Since the core wave functions do not spread out into the neighboring atoms,
we will treat them differently. Currently we use the frozen-core approximation
so that density and energy of the core electrons are identical to those of the
corresponding isolated atoms. The transformation T shall produce only wave
functions orthogonal to the core electrons, while the core electrons are treated
separately. Therefore, the set of atomic partial waves |φi〉 includes only valence
states that are orthogonal to the core wave functions of the atom.

For each of the partial waves we choose an auxiliary partial wave |φ̃i〉. The
identity

|φi〉 = (1 + SR)|φ̃i〉 for i ∈ R

SR|φ̃i〉 = |φi〉 − |φ̃i〉 (10)

defines the local contribution SR to the transformation operator. Since 1 + SR

shall change the wave function only locally, we require that the partial waves
|φi〉 and their auxiliary counter parts |φ̃i〉 are pairwise identical beyond a certain
radius rc.

φi(r) = φ̃i(r) for i ∈ R and |r− RR| > rc,R (11)

In order to be able to apply the transformation operator to an arbitrary aux-
iliary wave function, we need to be able to expand the auxiliary wave function
locally into the auxiliary partial waves.

Ψ̃(r) =
∑

i∈R

φ̃i(r)〈p̃i|Ψ̃〉 for |r − RR| < rc,R (12)

which defines the projector functions |p̃i〉. The projector functions probe the
local character of the auxiliary wave function in the atomic region. Examples of
projector functions are shown in Fig. 1. From Eq. 12 we can derive

∑

i |φ̃i〉〈p̃i| =
1, which is valid within rc. It can be shown by insertion, that the identity
Eq. 12 holds for any auxiliary wave function |Ψ̃〉 that can be expanded locally
into auxiliary partial waves |φ̃i〉, if

〈p̃i|φ̃j〉 = δi,j for i, j ∈ R (13)

Note that neither the projector functions nor the partial waves need to be or-
thogonal among themselves.

By combining Eq. 10 and Eq. 12, we can apply SR to any auxiliary wave
function.

SR|Ψ̃〉 =
∑

i∈R

SR|φ̃i〉〈p̃i|Ψ̃〉 =
∑

i∈R

(

|φi〉 − |φ̃i〉
)

〈p̃i|Ψ̃〉 (14)

Hence the transformation operator is

T = 1 +
∑

i

(

|φi〉 − |φ̃i〉
)

〈p̃i| (15)

7

TO unity in interstitial, outside 
augmentation sphere R

Inside sphere R, describe by AE partial waves,
undetermined coefficients ci

Relate AE partial wave with PS partial wave,
through local transformation operator S

Expand PS wf in PS partial waves

requirement for above to hold

projector function

Blöchl et al. https://arxiv.org/abs/cond-mat/0201015v2

https://arxiv.org/abs/cond-mat/0201015v2


Transformation operator

Since the core wave functions do not spread out into the neighboring atoms,
we will treat them differently. Currently we use the frozen-core approximation
so that density and energy of the core electrons are identical to those of the
corresponding isolated atoms. The transformation T shall produce only wave
functions orthogonal to the core electrons, while the core electrons are treated
separately. Therefore, the set of atomic partial waves |φi〉 includes only valence
states that are orthogonal to the core wave functions of the atom.

For each of the partial waves we choose an auxiliary partial wave |φ̃i〉. The
identity

|φi〉 = (1 + SR)|φ̃i〉 for i ∈ R

SR|φ̃i〉 = |φi〉 − |φ̃i〉 (10)

defines the local contribution SR to the transformation operator. Since 1 + SR

shall change the wave function only locally, we require that the partial waves
|φi〉 and their auxiliary counter parts |φ̃i〉 are pairwise identical beyond a certain
radius rc.

φi(r) = φ̃i(r) for i ∈ R and |r− RR| > rc,R (11)

In order to be able to apply the transformation operator to an arbitrary aux-
iliary wave function, we need to be able to expand the auxiliary wave function
locally into the auxiliary partial waves.

Ψ̃(r) =
∑

i∈R

φ̃i(r)〈p̃i|Ψ̃〉 for |r − RR| < rc,R (12)

which defines the projector functions |p̃i〉. The projector functions probe the
local character of the auxiliary wave function in the atomic region. Examples of
projector functions are shown in Fig. 1. From Eq. 12 we can derive

∑

i |φ̃i〉〈p̃i| =
1, which is valid within rc. It can be shown by insertion, that the identity
Eq. 12 holds for any auxiliary wave function |Ψ̃〉 that can be expanded locally
into auxiliary partial waves |φ̃i〉, if

〈p̃i|φ̃j〉 = δi,j for i, j ∈ R (13)

Note that neither the projector functions nor the partial waves need to be or-
thogonal among themselves.

By combining Eq. 10 and Eq. 12, we can apply SR to any auxiliary wave
function.

SR|Ψ̃〉 =
∑

i∈R

SR|φ̃i〉〈p̃i|Ψ̃〉 =
∑

i∈R

(

|φi〉 − |φ̃i〉
)

〈p̃i|Ψ̃〉 (14)

Hence the transformation operator is

T = 1 +
∑

i

(

|φi〉 − |φ̃i〉
)

〈p̃i| (15)

7

Since the core wave functions do not spread out into the neighboring atoms,
we will treat them differently. Currently we use the frozen-core approximation
so that density and energy of the core electrons are identical to those of the
corresponding isolated atoms. The transformation T shall produce only wave
functions orthogonal to the core electrons, while the core electrons are treated
separately. Therefore, the set of atomic partial waves |φi〉 includes only valence
states that are orthogonal to the core wave functions of the atom.

For each of the partial waves we choose an auxiliary partial wave |φ̃i〉. The
identity

|φi〉 = (1 + SR)|φ̃i〉 for i ∈ R

SR|φ̃i〉 = |φi〉 − |φ̃i〉 (10)

defines the local contribution SR to the transformation operator. Since 1 + SR

shall change the wave function only locally, we require that the partial waves
|φi〉 and their auxiliary counter parts |φ̃i〉 are pairwise identical beyond a certain
radius rc.

φi(r) = φ̃i(r) for i ∈ R and |r− RR| > rc,R (11)

In order to be able to apply the transformation operator to an arbitrary aux-
iliary wave function, we need to be able to expand the auxiliary wave function
locally into the auxiliary partial waves.

Ψ̃(r) =
∑

i∈R

φ̃i(r)〈p̃i|Ψ̃〉 for |r − RR| < rc,R (12)

which defines the projector functions |p̃i〉. The projector functions probe the
local character of the auxiliary wave function in the atomic region. Examples of
projector functions are shown in Fig. 1. From Eq. 12 we can derive

∑

i |φ̃i〉〈p̃i| =
1, which is valid within rc. It can be shown by insertion, that the identity
Eq. 12 holds for any auxiliary wave function |Ψ̃〉 that can be expanded locally
into auxiliary partial waves |φ̃i〉, if

〈p̃i|φ̃j〉 = δi,j for i, j ∈ R (13)

Note that neither the projector functions nor the partial waves need to be or-
thogonal among themselves.

By combining Eq. 10 and Eq. 12, we can apply SR to any auxiliary wave
function.

SR|Ψ̃〉 =
∑

i∈R

SR|φ̃i〉〈p̃i|Ψ̃〉 =
∑

i∈R

(

|φi〉 − |φ̃i〉
)

〈p̃i|Ψ̃〉 (14)

Hence the transformation operator is

T = 1 +
∑

i

(

|φi〉 − |φ̃i〉
)

〈p̃i| (15)

7

Figure 1: Top: projector functions of the Cl atom for two s-type partial waves,
middle: p-type, bottom: d-type.

where the sum runs over all partial waves of all atoms. The true wave function
can be expressed as

|Ψ〉 = |Ψ̃〉 +
∑

i

(

|φi〉 − |φ̃i〉
)

〈p̃i|Ψ̃〉 = |Ψ̃n〉 +
∑

R

(

|Ψ1
R〉 − |Ψ̃1

R〉
)

(16)

with

|Ψ1
R〉 =

∑

i∈R

|φi〉〈p̃i|Ψ̃〉 (17)

|Ψ̃1
R〉 =

∑

i∈R

|φ̃i〉〈p̃i|Ψ̃〉 (18)

In Fig. 2 the decomposition of Eq. 16 is shown for the example of the bonding
p-σ state of the Cl2 molecule.

To understand the expression for the true wave function, Eq. 16, let us con-
centrate on different regions in space. (1) Far from the atoms, the partial waves
are, according to Eq. 11, pairwise identical so that the auxiliary wave function is
identical to the true wave function Ψ(r) = Ψ̃(r). (2) Close to an atom, however,
the true wave function Ψ(r) = Ψ1

R(r) is built up from partial waves that contain
the proper nodal structure, because the auxiliary wave function and its partial
wave expansion are equal according to Eq. 12.

In practice the partial wave expansions are truncated. Therefore, the identity
of Eq. 12 does not hold strictly. As a result the plane waves also contribute to
the true wave function inside the atomic region. This has the advantage that
the missing terms in a truncated partial wave expansion are partly accounted
for by plane waves, which explains the rapid convergence of the partial wave
expansions.

Frequently, the question comes up, whether the transformation Eq. 15 of the
auxiliary wave functions indeed provides the true wave function. The transfor-
mation should be considered merely as a change of representation analogous to a
coordinate transform. If the total energy functional is transformed consistently,
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of Eq. 12 does not hold strictly. As a result the plane waves also contribute to
the true wave function inside the atomic region. This has the advantage that
the missing terms in a truncated partial wave expansion are partly accounted
for by plane waves, which explains the rapid convergence of the partial wave
expansions.

Frequently, the question comes up, whether the transformation Eq. 15 of the
auxiliary wave functions indeed provides the true wave function. The transfor-
mation should be considered merely as a change of representation analogous to a
coordinate transform. If the total energy functional is transformed consistently,

8

Final expression for the 
transformation operator

From using the previous relations

Final expression for the true AE wf: 

- one PS wf expanded in plane waves

- two atom centred localised functions 

Blöchl et al. https://arxiv.org/abs/cond-mat/0201015v2

https://arxiv.org/abs/cond-mat/0201015v2


Partial waves

from Blöchl: http://www2.pt.tu-clausthal.de/atp/downloads/lyngby2_paw.pdf

Partial waves

• all-electron partial waves
– integrate Schrödinger equation outward

– have the correct nodal structure

• pseudo partial waves
– smooth inside

– identical to ae partial waves outside

– n-ncore nodes

– usually constructed by adjusting an  
dependent potential

9

0 1 2 3
r [a0]

-1

0

1

2

ps

d

Fe

|�↵�

|�̃↵�

Monday, August 16, 2010

http://www2.pt.tu-clausthal.de/atp/downloads/lyngby2_paw.pdf


Figure 1: Top: projector functions of the Cl atom for two s-type partial waves,
middle: p-type, bottom: d-type.
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Projector functions

Blöchl et al. https://arxiv.org/abs/cond-mat/0201015v2

- Localised
- Angular momentum of partial waves

https://arxiv.org/abs/cond-mat/0201015v2


Figure 2: Bonding p-σ orbital of the Cl2 molecule and its decomposition of the
wave function into auxiliary wave function and the two one-center expansions.
Top-left: True and auxiliary wave function; top-right: auxiliary wave function
and its partial wave expansion; bottom-left: the two partial wave expansions;
bottom-right: true wave function and its partial wave expansion.

its minimum will yield an auxiliary wave function that produces a correct wave
function |Ψ〉.

4 Expectation values

Expectation values can be obtained either from the reconstructed true wave
functions or directly from the auxiliary wave functions

〈A〉 =
∑

n

fn〈Ψn|A|Ψn〉 +
Nc∑

n=1

〈φc
n|A|φc

n〉

=
∑

n

fn〈Ψ̃n|T
†AT |Ψ̃n〉 +

Nc∑

n=1

〈φc
n|A|φc

n〉 (19)

where fn are the occupations of the valence states and Nc is the number of core
states. The first sum runs over the valence states, and second over the core
states |φc

n〉.
Now we can decompose the matrix elements into their individual contribu-

tions according to Eq. 16.

〈Ψ|A|Ψ〉 = 〈Ψ̃ +
∑

R

(Ψ1
R − Ψ̃1

R)|A|Ψ̃ +
∑

R′

(Ψ1
R′ − Ψ̃1

R′)〉
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More examples50 PROJECTOR AUGMENTED-WAVE METHOD 17 965

potential V,„i(R) acting on the nuclei. Assuxning that
the wave functions of the atom reside exactly on the
Born-Oppenheimer surface, the wave functions do not
change, except that they undergo a rigid displacement
and ~4) i ———~V4) tR. Hence the Lagrangian can be
simplified to

) R l 2m+ ) fat, ~(Va@n~V~@~)st

+M&b;, R, —Eo[@j—V.„,.

Here Eo is the total energy of the isolated atom, which
is constant during the simulation. The constraints of
orthonormal wave functions are automatically fu16lled
because here 4 denotes rigidly displaced PS wave func-
tions of the isolated atom. The efFective mass tensor
2m@ g„f„(V;0'„~V~4'„) +. MRb;~ is diagonal because
the isolated atom is spherically symmetric. The efFec-
tive mass

is therefore one-third of the trace of the mass tensor,
which has been modi6ed after applying Gauss's theorem.
The expectation value P„f„(4~—2V ~@)« is nothing
other than the plane-wave part of the true electronic ki-
netic energy. Hence the bare mass of the ions used in the
Lagrangian should be reduced by

bM = -m+ ) f, „(4„~——,'V'~4'„)„. (85)
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1

(ao)

I

r (ao)

FIG. 1. Partial waves and projectors for Mn. Left panel:
AE partial waves (solid lines) and PS partial waves (dashed
and dash-dotted lines). The "first" PS partial wave is a
dash-dotted line. Right panel: first (solid line) and second
(dashed line) projector functions. (a) and (d) show the re-
sults for the 6rst and the second partial wave of the s angular
momentum channel, respectively, (b) and (e) for the p chan-
nel, and (c) and (f) for the d channel. 3s and 3p functions are
treated as valence states. Functions are scaled individually.

This correction has been included in all our simulations
described here. The quality of this correction can be
estimated by comparing the kinetic energy related to the
PS wave functions of the system of interest to that of the
isolated atoms.

VI. CONSTRUCTION OF PARTIAL WAVES
AND PROJECTORS

The basic ingredients of the PAW method are partial
waves and projectors. There is an in6nite number of ways
to construct them. I will describe here in detail the par-
ticular choice I made for this application. Even though
the solution of the problem is quite satisfactory, there
may be better choices than the ones described here. In
particular the construction of PS partial waves is com-
pletely analogous to the construction of pseudopoten-
tials with the pseudopotential method. The expertise
acquired with the pseudopotential method is likely
to create choices that permit a further reduction of the
number of plane waves. The partial waves and projector
functions obtained with the procedure described below
are shown in Fig. l.

A. All-electron partial maves

The AE partial waves are obtained by radially inte-
grating the Schrodinger equation

outward for the self-consistent atomic AE potential v q

and a set of energies e;. In practice we use the scalar
relativistic version of Koelling and Harmon.
The AE partial waves are chosen to describe the phys-

ically relevant states, i.e., those &om the valence band
region, reasonably well. The energy e of the first partial
wave per angular momentum and site is usually chosen as
the energy of the 1owest bound valence state of the atom.
The energy of the second partial wave is chosen after in-
specting the scattering properties of the PAW method
for the isolated atom with only one partial wave. It is
placed at the energy where the scattering properties be-
gin to deteriorate. There is no need for the partial wave
to be bound states because the exponentially increasing
tail will be canceled exactly by the identical behavior of
the PS partial waves. The number of partial waves is
then further increased until the scattering properties of
the valence band region are described satisfactorily.
An equally justi6ed approach, more similar in spirit

to the linear methods, is to use increasingly higher en-
ergy derivatives of the energy-dependent partial waves
obtained at one fixed energy. In principle, one can also
add partial waves &om atoms with various occupations.
If core states extend beyond the augmentation re-

gion, we subsequently orthogonalize the AE partial waves
within the augmentation region to core states centered
on the same site. We 6nd that one AE partial wave per
angular momentum and site is often sufBcient and that

50 PROJECTOR AUGMENTED-WAVE METHOD 17 965
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The energy of the second partial wave is chosen after in-
specting the scattering properties of the PAW method
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Basics PAW Hybrids NewDF Optimization HF-PAW

|ψ̃n〉

|ψ̃n〉 −
∑

i |φ̃i〉〈p̃i|ψ̃n〉

|ψ̃n〉 −
∑

i |φ̃i〉〈p̃i|ψ̃n〉 +
∑

i |φi〉〈p̃i|ψ̃n〉

Marsman VASP Workshop: Day 1

PAW Augmentation

from Marsman: https://www.vasp.at/mmars/day1.pdf

https://www.vasp.at/mmars/day1.pdf


Basics PAW Hybrids NewDF Optimization HF-PAW

Character of wavefunction: clmε = 〈p̃lmε|ψ̃n〉

|ψn〉 = |ψ̃n〉 −
∑

|φ̃lmε〉clmε +
∑

|φlmε〉clmε

= +-

pseudo-onsitepseudo AE-onsiteAE

Same trick works for

Wavefunctions
Charge density

Kinetic energy
Exchange correlation energy
Hartree energy

Marsman VASP Workshop: Day 1

PAW Augmentation

from Marsman: https://www.vasp.at/mmars/day1.pdf

https://www.vasp.at/mmars/day1.pdf


Total Energy

from Marsman: https://www.vasp.at/mmars/day1.pdf

Basics PAW Hybrids NewDF Optimization HF-PAW

PAW energy functional

Total energy becomes a sum of three terms: E = Ẽ + E1 − Ẽ1

Ẽ =
∑

n

fn〈ψ̃n|−
1

2
∆|ψ̃n〉+ Exc[ρ̃+ ρ̂+ ρ̃c] +

EH [ρ̃+ ρ̂] +

∫
vH [ρ̃Zc] (ρ̃(r) + ρ̂(r)) d3r + U(R, Zion)

Ẽ1 =
∑

sites

{ ∑

(i,j)

ρij〈φ̃i|−
1

2
∆|φ̃j〉+ Exc[ρ̃1 + ρ̂+ ρ̃c] +

EH [ρ̃1 + ρ̂] +

∫

Ωr

vH [ρ̃Zc]
(
ρ̃1(r) + ρ̂(r)

)
d3r

}

E1 =
∑

sites

{ ∑

(i,j)

ρij〈φi|−
1

2
∆|φj〉+ Exc[ρ1 + ρc] +

EH [ρ1] +

∫

Ωr

vH [ρZc]ρ
1(r) d3r

}

Marsman VASP Workshop: Day 1

Basics PAW Hybrids NewDF Optimization HF-PAW

PAW energy functional

Total energy becomes a sum of three terms: E = Ẽ + E1 − Ẽ1
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three terms

PW grid

local 
radial grid

local 
radial grid

https://www.vasp.at/mmars/day1.pdf


What are the approximations?

• Frozen core

• Plane wave expansion, energy cut-off

• Partial wave expansion (1-2 per angular momentum)

Basics PAW Hybrids NewDF Optimization HF-PAW

Introduce the cell periodic part unk of the wavefunctions

ψnk(r) = unk(r)eikr

with unk(r + R) = unk(r).

All cell periodic functions are now written as a sum of plane waves

unk(r) =
1

Ω1/2

∑

G

CGnkeiGr ψnk(r) =
1

Ω1/2

∑

G

CGnkei(G+k)r

ρ(r) =
∑

G

ρGeiGr V (r) =
∑

G

VGeiGr

In practice only those plane waves |G + k| are included for which

1

2
|G + k|2 < Ecutoff

Marsman VASP Workshop: Day 1

can be relaxed: Marsman & Kresse, JCP 125, 104101 (2006) 



PAW: Things to note

• All-electron method (valence states orthogonal to core)

• Frozen core approximation

• Plane waves: FFT in reciprocal space, fast calculations

• Forces from total energy expression

• PAW point-of-view: LAPW special case, PP an approximation



Accuracy

18 K. LEJAEGHERE ET AL.

TABLE 9
Rms energy differences !i between the equations of state predicted by APW+lo(WIEN2k) and PAW(VASP) (green),

APW+lo(WIEN2k) and PAW(GPAW) (red), and experiment and PAW(VASP) (blue) for the ground-state elemental crystals. All values
are expressed in meV per atom. The darkest shades correspond to the largest errors. The average numerical error ! is shown for

each code at the header of the table (color figure available online)
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Lejaeghere et al. Crit. Rev. Solid State Mat. Sci. 39, 1 (2014)

Compare with FPLAPW method (WIEN2k):

https://doi.org/10.1080/10408436.2013.772503
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FHI-aims/really_tight 0.6 0.5 0.0 0.5 0.7 3.8 0.9 1.1 0.8 1.8 1.8 0.5 1.0 3.8 1.3 1.6 1.3 0.7 1.7 1.0 2.2 0.8 0.6 1.1 1.2 1.1 2.6 0.7 0.6 6.5 6.3 13.6 2.2 1.2 2.0 0.8 1.5 1.4 1.5

FHI-aims/tier2 0.3 0.1 0.5 0.5 0.5 3.9 0.9 0.9 0.8 1.7 1.8 0.2 0.8 3.8 1.3 1.5 1.2 0.6 1.6 0.8 2.0 0.6 0.4 0.9 1.0 0.9 2.5 0.5 0.3 6.4 6.3 13.4 2.2 1.1 2.1 0.7 1.4 1.3 1.4

FLEUR 0.6 0.5 0.7 0.7 0.5 3.6 0.8 0.8 0.6 1.4 1.5 0.4 0.9 3.5 1.3 1.5 1.0 0.6 1.5 0.8 1.9 0.7 0.6 1.0 1.0 1.0 2.6 0.7 0.5 6.5 6.3 13.2 2.0 1.0 1.9 0.6 1.3 1.3 1.3

FPLO/default 3.9 3.9 3.8 3.8 3.9 3.6 3.1 3.6 3.3 2.9 2.5 3.9 4.0 3.1 4.1 4.1 3.4 3.6 3.3 3.9 2.8 3.9 4.0 4.0 4.0 4.1 5.8 4.1 3.9 7.9 7.2 13.0 4.9 3.6 3.2 3.7 4.1 4.1 4.1

FPLO/T+F 1.0 1.0 0.9 0.9 0.9 0.8 3.1 0.8 0.7 1.4 1.4 0.9 1.3 3.4 1.7 1.9 1.0 0.9 1.5 1.3 1.9 1.2 1.0 1.3 1.3 1.3 3.1 1.1 1.0 6.6 6.4 13.7 2.4 1.2 1.8 1.0 1.6 1.6 1.6

FPLO/T+F+s 1.0 0.9 1.1 1.1 0.9 0.8 3.6 0.8 0.9 1.5 1.5 0.9 1.3 3.5 1.7 1.8 1.2 0.9 1.4 1.3 1.9 1.2 1.0 1.4 1.4 1.4 2.9 1.0 0.9 6.4 6.4 13.0 2.3 1.2 1.8 1.0 1.6 1.6 1.6

RSPt 0.9 0.8 0.7 0.8 0.8 0.6 3.3 0.7 0.9 1.3 1.3 0.8 1.1 3.4 1.5 1.7 0.9 0.7 1.6 1.1 1.9 1.0 0.8 1.2 1.3 1.3 3.0 1.0 0.8 6.7 6.5 13.2 2.2 1.1 1.8 0.8 1.5 1.5 1.5

WIEN2k/default 1.7 1.7 1.8 1.8 1.7 1.4 2.9 1.4 1.5 1.3 0.9 1.7 1.9 3.2 2.2 2.3 1.3 1.5 1.8 1.8 1.7 1.8 1.8 1.9 1.9 1.9 3.8 1.8 1.6 7.1 7.0 13.0 2.8 1.7 1.9 1.6 2.1 2.1 2.1

WIEN2k/enhanced 1.8 1.8 1.8 1.8 1.8 1.5 2.5 1.4 1.5 1.3 0.9 1.8 2.0 2.6 2.1 2.2 1.1 1.5 1.6 1.8 1.4 1.9 2.0 2.0 2.0 2.0 3.8 2.0 1.7 6.9 6.9 12.3 2.8 1.6 1.5 1.7 1.9 1.9 1.9

WIEN2k/acc 0.3 0.2 0.5 0.5 0.2 0.4 3.9 0.9 0.9 0.8 1.7 1.8 0.8 3.8 1.3 1.5 1.2 0.5 1.6 0.8 2.0 0.7 0.3 0.9 1.0 1.0 2.5 0.5 0.3 6.4 6.2 13.4 2.1 1.0 2.0 0.6 1.4 1.3 1.4

GBRV12/ABINIT 0.9 0.8 1.0 1.0 0.8 0.9 4.0 1.3 1.3 1.1 1.9 2.0 0.8 4.1 1.5 1.6 1.5 1.1 2.0 1.1 2.3 1.0 0.9 0.7 0.8 0.7 2.8 1.0 0.7 6.4 6.3 15.1 2.5 1.5 2.4 1.1 1.8 1.7 1.8

GPAW06/GPAW 3.8 3.8 3.8 3.8 3.8 3.5 3.1 3.4 3.5 3.4 3.2 2.6 3.8 4.1 3.6 3.5 3.2 3.5 3.0 3.8 2.8 3.7 3.8 4.0 3.8 4.0 5.6 3.9 3.6 7.4 7.6 12.3 4.5 3.0 3.0 3.6 3.7 3.8 3.7

GPAW09/ABINIT 1.3 1.3 1.3 1.3 1.3 1.3 4.1 1.7 1.7 1.5 2.2 2.1 1.3 1.5 3.6 0.6 1.5 1.4 2.0 1.5 2.4 1.4 1.3 1.6 1.6 1.6 2.5 1.4 1.3 6.5 6.1 13.6 2.3 1.7 2.3 1.2 1.7 1.7 1.7

GPAW09/GPAW 1.5 1.5 1.6 1.6 1.5 1.5 4.1 1.9 1.8 1.7 2.3 2.2 1.5 1.6 3.5 0.6 1.6 1.5 2.1 1.6 2.5 1.6 1.5 1.7 1.7 1.7 2.7 1.5 1.4 6.5 6.1 13.6 2.5 1.8 2.3 1.5 1.8 1.8 1.8

JTH01/ABINIT 1.2 1.2 1.3 1.3 1.2 1.0 3.4 1.0 1.2 0.9 1.3 1.1 1.2 1.5 3.2 1.5 1.6 0.9 1.5 1.4 1.9 1.4 1.3 1.5 1.5 1.5 3.0 1.4 1.1 6.5 6.5 13.0 2.2 1.3 1.5 1.2 1.4 1.4 1.4

JTH02/ABINIT 0.6 0.6 0.7 0.7 0.6 0.6 3.6 0.9 0.9 0.7 1.5 1.5 0.5 1.1 3.5 1.4 1.5 0.9 1.4 0.9 1.9 0.7 0.7 1.2 1.2 1.2 2.6 0.7 0.6 6.3 6.2 13.4 2.2 1.2 1.9 0.7 1.4 1.4 1.4

PSlib031/QE 1.6 1.6 1.7 1.7 1.6 1.5 3.3 1.5 1.4 1.6 1.8 1.6 1.6 2.0 3.0 2.0 2.1 1.5 1.4 1.6 1.5 1.6 1.6 2.0 1.9 2.0 3.1 1.6 1.5 6.1 5.8 12.8 2.4 1.6 1.7 1.5 2.1 2.2 2.1

PSlib100/QE 0.9 0.8 1.0 1.0 0.8 0.8 3.9 1.3 1.3 1.1 1.8 1.8 0.8 1.1 3.8 1.5 1.6 1.4 0.9 1.6 1.7 1.0 0.8 1.1 1.2 1.2 2.2 0.9 0.7 6.1 5.9 13.5 2.1 1.4 1.9 0.9 1.6 1.6 1.6

VASP2007/VASP 2.1 2.1 2.2 2.2 2.0 1.9 2.8 1.9 1.9 1.9 1.7 1.4 2.0 2.3 2.8 2.4 2.5 1.9 1.9 1.5 1.7 1.8 2.1 2.1 2.2 2.1 3.5 2.1 1.9 6.5 6.1 12.4 3.0 2.2 1.7 1.9 2.5 2.4 2.5

VASP2012/VASP 0.7 0.6 0.8 0.8 0.6 0.7 3.9 1.2 1.2 1.0 1.8 1.9 0.7 1.0 3.7 1.4 1.6 1.4 0.7 1.6 1.0 1.8 0.7 1.1 1.2 1.1 2.5 0.8 0.6 6.5 6.3 13.4 2.2 1.2 2.1 0.9 1.6 1.5 1.6

VASPGW2015/VASP 0.4 0.4 0.6 0.6 0.4 0.6 4.0 1.0 1.0 0.8 1.8 2.0 0.3 0.9 3.8 1.3 1.5 1.3 0.7 1.6 0.8 2.1 0.7 1.1 1.1 1.1 2.6 0.5 0.4 6.6 6.2 13.7 2.2 1.1 2.2 0.7 1.5 1.4 1.5

GBRV12/QE 1.1 1.0 1.1 1.1 0.9 1.0 4.0 1.3 1.4 1.2 1.9 2.0 0.9 0.7 4.0 1.6 1.7 1.5 1.2 2.0 1.1 2.1 1.1 1.1 0.4 0.1 2.6 1.0 0.8 6.3 6.4 15.3 2.3 1.4 2.1 1.2 1.6 1.5 1.6

GBRV14/CASTEP 1.1 1.1 1.2 1.2 1.0 1.0 4.0 1.3 1.4 1.3 1.9 2.0 1.0 0.8 3.8 1.6 1.7 1.5 1.2 1.9 1.2 2.2 1.2 1.1 0.4 0.3 2.6 0.9 0.9 6.2 6.3 15.0 2.4 1.6 2.1 1.1 1.5 1.5 1.5

GBRV14/QE 1.0 1.0 1.1 1.1 0.9 1.0 4.1 1.3 1.4 1.3 1.9 2.0 1.0 0.7 4.0 1.6 1.7 1.5 1.2 2.0 1.2 2.1 1.1 1.1 0.1 0.3 2.6 1.0 0.8 6.3 6.3 15.2 2.3 1.4 2.1 1.2 1.6 1.5 1.5

OTFG7/CASTEP 2.5 2.5 2.6 2.6 2.5 2.6 5.8 3.1 2.9 3.0 3.8 3.8 2.5 2.8 5.6 2.5 2.7 3.0 2.6 3.1 2.2 3.5 2.5 2.6 2.6 2.6 2.6 2.2 2.4 4.8 5.7 14.5 2.7 2.9 3.4 2.4 2.6 2.6 2.6

OTFG9/CASTEP 0.4 0.5 0.7 0.7 0.5 0.7 4.1 1.1 1.0 1.0 1.8 2.0 0.5 1.0 3.9 1.4 1.5 1.4 0.7 1.6 0.9 2.1 0.8 0.5 1.0 0.9 1.0 2.2 0.6 6.3 6.2 13.6 2.2 1.1 2.1 0.8 1.5 1.4 1.5

SSSP/QE 0.4 0.3 0.6 0.6 0.3 0.5 3.9 1.0 0.9 0.8 1.6 1.7 0.3 0.7 3.6 1.3 1.4 1.1 0.6 1.5 0.7 1.9 0.6 0.4 0.8 0.9 0.8 2.4 0.6 6.4 6.2 13.6 2.1 1.0 2.0 0.7 1.4 1.2 1.3

Vdb/CASTEP 6.4 6.4 6.4 6.5 6.4 6.5 7.9 6.6 6.4 6.7 7.1 6.9 6.4 6.4 7.4 6.5 6.5 6.5 6.3 6.1 6.1 6.5 6.5 6.6 6.3 6.2 6.3 4.8 6.3 6.4 9.6 16.3 6.6 6.1 6.6 6.4 5.7 5.8 5.7

Vdb2/DACAPO 6.3 6.3 6.3 6.3 6.3 6.3 7.2 6.4 6.4 6.5 7.0 6.9 6.2 6.3 7.6 6.1 6.1 6.5 6.2 5.8 5.9 6.1 6.3 6.2 6.4 6.3 6.3 5.7 6.2 6.2 9.6 17.9 6.2 5.9 6.4 6.1 6.5 6.5 6.5

FHI98pp/ABINIT 13.5 13.4 13.6 13.6 13.4 13.2 13.0 13.7 13.0 13.2 13.0 12.3 13.4 15.1 12.3 13.6 13.6 13.0 13.4 12.8 13.5 12.4 13.4 13.7 15.3 15.0 15.2 14.5 13.6 13.6 16.3 17.9 14.3 8.5 13.0 13.3 13.3 13.6 13.4

HGH/ABINIT 2.2 2.2 2.2 2.2 2.2 2.0 4.9 2.4 2.3 2.2 2.8 2.8 2.1 2.5 4.5 2.3 2.5 2.2 2.2 2.4 2.1 3.0 2.2 2.2 2.3 2.4 2.3 2.7 2.2 2.1 6.6 6.2 14.3 0.9 2.6 2.0 2.0 2.0 2.0

HGH-NLCC/BigDFT 1.1 1.1 1.2 1.2 1.1 1.0 3.6 1.2 1.2 1.1 1.7 1.6 1.0 1.5 3.0 1.7 1.8 1.3 1.2 1.6 1.4 2.2 1.2 1.1 1.4 1.6 1.4 2.9 1.1 1.0 6.1 5.9 8.5 0.9 1.8 1.1 1.5 1.4 1.4

MBK2013/OpenMX 2.1 2.1 2.0 2.0 2.1 1.9 3.2 1.8 1.8 1.8 1.9 1.5 2.0 2.4 3.0 2.3 2.3 1.5 1.9 1.7 1.9 1.7 2.1 2.2 2.1 2.1 2.1 3.4 2.1 2.0 6.6 6.4 13.0 2.6 1.8 2.0 2.2 2.2 2.2

ONCVPSP(PD0.1)/ABINIT 0.7 0.7 0.8 0.8 0.7 0.6 3.7 1.0 1.0 0.8 1.6 1.7 0.6 1.1 3.6 1.2 1.5 1.2 0.7 1.5 0.9 1.9 0.9 0.7 1.2 1.1 1.2 2.4 0.8 0.7 6.4 6.1 13.3 2.0 1.1 2.0 1.3 1.4 1.3

ONCVPSP(SG15)1/CASTEP 1.5 1.4 1.5 1.5 1.4 1.3 4.1 1.6 1.6 1.5 2.1 1.9 1.4 1.8 3.7 1.7 1.8 1.4 1.4 2.1 1.6 2.5 1.6 1.5 1.6 1.5 1.6 2.6 1.5 1.4 5.7 6.5 13.3 2.0 1.5 2.2 1.3 0.3 0.1

ONCVPSP(SG15)1/QE 1.4 1.3 1.4 1.4 1.3 1.3 4.1 1.6 1.6 1.5 2.1 1.9 1.3 1.7 3.8 1.7 1.8 1.4 1.4 2.2 1.6 2.4 1.5 1.4 1.5 1.5 1.5 2.6 1.4 1.2 5.8 6.5 13.6 2.0 1.4 2.2 1.4 0.3 0.3

ONCVPSP(SG15)2/CASTEP 1.4 1.4 1.5 1.5 1.4 1.3 4.1 1.6 1.6 1.5 2.1 1.9 1.4 1.8 3.7 1.7 1.8 1.4 1.4 2.1 1.6 2.5 1.6 1.5 1.6 1.5 1.5 2.6 1.5 1.3 5.7 6.5 13.4 2.0 1.4 2.2 1.3 0.1 0.3

AE
NC

PP
US

PP
PA
W

AE PAW USPP NCPP

Fig. S1. �-values between all considered DFT methods (in meV/atom). Methods are listed
alphabetically for each of four categories, i.e. all-electron (AE), PAW, ultrasoft (USPP) and
norm-conserving pseudopotential methods (NCPP). The tags stand for code, code/specifi-
cation (AE) or potential set/code (PAW/USPP/NCPP), and are explained in full in
Tables S3–S42. The colour code ranges from green over yellow to red (small to large � values).
The mixed potential set SSSP was added to the ultrasoft category, in agreement with its prevalent
potential type. Both the code settings and the DFT-predicted equation-of-state parameters behind
these numbers are listed in Tables S3–S42.

4

Le
ja

eg
he

re
 e

t a
l. 

Sc
ie

nc
e 

35
1,

 1
41

5 
(2

01
6)

https://doi.org/10.1126/science.aad3000


DFT codes using PAW

• VASP license

• Abinit free

• Quantum Espresso free

• GPAW free

• + more Importance of good potential database

https://www.vasp.at/
https://www.abinit.org/
http://www.quantum-espresso.org/
https://wiki.fysik.dtu.dk/gpaw/
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