Exciton calculation

Objectives

  • Learn how to run an ab initio exciton model calculation.

Keypoints

  • Run an ab initio exciton model calculation.

  • Plot the UV-Vis absorption and ECD spectra.

  • Analyze the character of the excitations.

Introduction

In this exercise we will use an ab initio exciton model to compute the UV-Vis absorption and electronic ciruclar dichroism (ECD) of stacked base-pairs.

The Frenkel exciton model describes the electronic structure of multi-chromophoric system by dividing the system into subgroups. It has been most successful in the weak-coupling limit where the excitons are localized on inidividual chromophores. The ab initio exciton model expands the Frenkel exciton model by taking into account charge-transfer between the chromophores, and is therefore more useful for studies of singly excited states. You may read more in this paper [LPL+17]

In the exciton model, the Hamiltonian adopts the following matrix form

\[\mathbf{H} = \sum_I^N E_I |\phi_I\rangle \langle \phi_I| + \sum_{I \ne J}^N V_{IJ} |\phi_I\rangle \langle \phi_J|\]

where \(N\) is the total number of excited states, \(\phi_I\) is the \(I\)-th excitonic basis function, and \(E\) and \(V\) are the excitation energies and couplings, respectively. Diagonalization of the Hamiltonian gives the eigenvalues and eigenvectors for the excited states.

System: stacked base-pairs

Input file

Below is the input file for ab initio exciton model calculation of stacked base-pairs. You can read more about the VeloxChem input keywords in this page.

@jobs
task: exciton
@end

@method settings
xcfun: b3lyp
basis: cc-pvdz
@end

@exciton
fragments: 4
atoms_per_fragment: 18
nstates: 5
ct_nocc: 1
ct_nvir: 1
@end

@molecule
charge: 0
multiplicity: 1
xyz:
!
 C        -6.660852       -0.537882        1.153909
 N        -5.464736       -1.279376        0.755959
 C        -5.401171       -2.560318        0.247397
 N        -4.174046       -3.023620        0.133321
 C        -3.381917       -1.986143        0.602941
 C        -1.992881       -1.833262        0.772320
 N        -1.082150       -2.773804        0.430539
 N        -1.561016       -0.663937        1.284758
 C        -2.433159        0.310896        1.615380
 N        -3.755877        0.269284        1.515634
 C        -4.169954       -0.898312        1.003955
 H        -6.251667        0.367975        1.602217
 H        -6.307739       -3.093503        0.000510
 H        -0.105552       -2.647436        0.711625
 H        -1.428402       -3.703654        0.256126
 H        -1.977553        1.222109        1.990935
 H        -7.232028       -0.272547        0.264277
 H        -7.198697       -1.104105        1.914241
!
 C         2.851050        2.995046        2.599348
 N         2.527756        1.602753        2.308882
 C         3.532227        0.664719        2.312269
 C         3.334055       -0.650927        2.042128
 C         4.427868       -1.675290        2.122996
 C         1.991369       -1.073522        1.662818
 O         1.695829       -2.225702        1.304567
 N         1.033632       -0.081482        1.723397
 C         1.202795        1.237840        2.079265
 O         0.267775        2.020999        2.194386
 H         2.038764        3.665857        2.318009
 H         4.514450        1.063598        2.536881
 H         4.468845       -2.269173        1.208202
 H         5.402713       -1.203674        2.275485
 H         4.243922       -2.374298        2.949162
 H         0.028442       -0.344669        1.510910
 H         3.059650        3.104482        3.663610
 H         3.756601        3.276716        2.061996
!
 C        -4.314093        3.585540       -0.745962
 N        -3.776236        2.345248       -1.222725
 C        -4.429311        1.234574       -1.724072
 N        -3.619950        0.263430       -2.082104
 C        -2.355203        0.754373       -1.794323
 C        -1.062681        0.209500       -1.941029
 N        -0.829700       -1.011471       -2.484749
 N        -0.016323        0.966928       -1.550945
 C        -0.232699        2.193134       -1.027881
 N        -1.398793        2.802091       -0.844023
 C        -2.426789        2.040798       -1.247281
 H        -3.476672        4.252611       -0.541847
 H        -5.507670        1.210043       -1.788692
 H         0.097505       -1.414764       -2.327103
 H        -1.616525       -1.643972       -2.460000
 H         0.667576        2.728356       -0.738854
 H        -4.949051        4.025189       -1.515114
 H        -4.870540        3.409636        0.174609
!
 C         5.998154        1.457635       -0.884522
 N         4.880476        0.546557       -1.110671
 C         5.131080       -0.800139       -1.218262
 C         4.175422       -1.720603       -1.495703
 C         4.420389       -3.200491       -1.511467
 C         2.819732       -1.249071       -1.750005
 O         1.900417       -1.986038       -2.139201
 N         2.619774        0.100602       -1.531205
 C         3.575740        1.051488       -1.217952
 O         3.304363        2.231635       -1.062168
 H         5.639472        2.486207       -0.926066
 H         6.167047       -1.075919       -1.059977
 H         4.077679       -3.645564       -2.450382
 H         5.481281       -3.429544       -1.370436
 H         3.845849       -3.678198       -0.708469
 H         1.625787        0.452603       -1.593169
 H         6.431836        1.263647        0.096542
 H         6.752907        1.304911       -1.655985
@end

Exercise

  • Submit a job

    Runs the above example. On Beskow this calculation can finish within 15 minutes on 2 nodes. You can choose to run on more nodes.

  • Plot the spectrum

    The excitation energies, oscillator strengths, and rotatory strengths will be printed at the end of the output file. You can plot the UV-Vis and ECD spectra by line broadening using e.g. Gaussian function.

  • Examine the character of the excitations

    The character of the excitations will also be printed at the end of the output file. Find out the characters of the important excitations.

  • Compare with full TDDFT-TDA result

    Compare the spectra from exciton model and from full TDDFT-TDA calculation (link to TDDFT-TDA output file).